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ABSTRACT

A rigorous investigation into the identi�cation of the het-

erogeneous 
exural rigidity coe�cient from de
ection measure-

ments recorded along a beam in the presence of a prescribed load

is presented. Mathematically, the problem reduces to the need to

solve the Euler-Bernoulli steady-state beam equation subject to

appropriate boundary conditions. Conditions for the uniqueness

and continuous dependence on the input data of the solution of

the inverse problem for simply supported beams are established

and, in particular, it is shown that the operator which maps an

input de
ection into an output 
exural rigidity is Holder contin-

uous. Since the inverse problem can be recast in the form of a
Fredholm integral equation of the �rst kind, numerical results ob-

tained using various methods, such as Tikhonov's regularization,

singular value decomposition and molli�cation are discussed.

NOMENCLATURE

E Modulus of elasticity

I Moment of inertia

L Length of the beam

M Bending moment

a Flexural rigidity

f Transversely distributed load

p Amount of noise

u Transverse de
ection

� Inverse of the 
exural rigidity

� Regularization parameter

� Standard deviation

INTRODUCTION

In the Euler-Bernoulli beam theory, it is assumed that

the plane cross-sections perpendicular to the axis of the

beam remain plane and perpendicular to the axis after de-

formation, resulting in the transverse de
ection u of the

beam being governed by the fourth-order ordinary di�eren-

tial equation

d2

dx2

�
a(x)

d2u

dx2
(x)

�
= f(x); 0 < x < L (1)

where L is the length of the beam, f is the transversely

distributed load and the spacewise dependent conductivity

a = EI (often called 
exural rigidity) is the product of

the modulus of elasticity E and the moment of inertia I

of the cross section of the beam about an axis through its

centroid at right angles to the cross section. It should be

noted that eqn.(1) can be split into a system of two second-

order ordinary di�erential equations, namely,

M (x) = a(x)
d2u

dx2
(x); 0 < x < L (2)

d2M

dx2
= f(x); 0 < x < L (3)

where M is the bending moment. Using a simple �nite ele-

ment methodology, it can be seen that the primary variables
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associated with eqn.(1) are the de
ection u and the slope

du=dx, whilst the bending moment M = a(d2u=dx2) and

the shear force (d=dx)(ad2u=dx2) are the secondary vari-

ables, any four values of which are usually speci�ed on the

boundary, namely, x = 0 or x = L.

The direct problem of the Euler-Bernoulli beam theory

requires the determination of the de
ection u which satis�es

eqn.(1) (orM and u satisfying eqns (2) and (3)), when a > 0

and f � 0 are given and four boundary conditions (essential

or natural) are prescribed. If at least one of these bound-

ary conditions is on the de
ection then this direct problem

is well-posed. However, there are other problems (termed

inverse) that may be associated with the Euler-Bernoulli

eqns (1)-(3). For simply supported beams an inverse load

identi�cation problem, which requires the determination of

the load f(x) which satis�es eqn.(3) when a and M are

given, has been investigated by Collins et al. (1994) in the

practical context of recovering engineering loads from strain

gauge data. This problem is ill-posed since it violates the

stability of the solution, which relates to twice di�erentiat-

ing numerically M , which is a noisy function.

In this study, we investigate an inverse coe�cient iden-

ti�cation problem which requires the identi�cation of the

positive, heterogeneous 
exural rigidity coe�cient a(x) of a

beam which satis�es eqn.(1), (or eqns (2) and (3)), when u

and f are given. This problem is an extension to higher-

order di�erential equations of the inverse problem analysed

by Marcellini (1982) for the one-dimensional Poisson equa-

tion. Prior to this study, a numerical algorithm has been

recently proposed by Ismailov and Muravey (1996) for sup-

ported plates, when f > 0 and u � 0. However, the the-

oretical investigation of the uniqueness of the solution is

much more di�cult since eqn.(1) does not, in general, have

a unique solution, e.g. if a0 is a solution of eqn.(1) then for

any linear function h, the function a1 = a0+ h(d2u=dx2)�1

may still be a solution of eqn.(1). Therefore, a necesary

condition for the uniqueness of the solution of eqn.(1) is

that the set

S =

�
x 2 [0; L] j

d2u

dx2
(x) = 0

�
(4)

is not empty. However, at the other extreme, if S is a subset

of [0; L] of non-zero measure then a(x) is not identi�able on

S.

Further, based on the physical argument that the prop-

erties of the beam, namely E and I, should be positive,

and considering only applications in which there is always a

positive �nite load acting on the beam, we can assume that

there are 0 < f1 � f2 < 1 such that f1 � f(x) � f2 and

that there are 0 < �1 � �2 < 1 and Q > 0 such that a(x)

belongs to the domain de�nition set

A = fa 2 L1(0; L) j �1 � a � �2; ka
0k � Qg (5)

where k:k denotes the L2(0; L)-norm. For the present anal-

ysis we restrict ourselves to homogeneous boundary condi-

tions to accompany the non-zero load f and the linear eqns

(1)-(3). Also, since a > 0 then the set S given by eqn.(4)

is S = fx 2 [0; L] j M (x) = 0g. Thus boundary condi-

tions which ensures that S 6= ; include u0(0) = u0(L) or

M (0)M (L) = 0. If only Dirichlet and/or Neumann type

boundary conditions for u and M are considered then there

are in total
P4

k=0C
k
4C

4�k
4 = 70 of these possibilities. How-

ever, half of these possibilities are equivalent, based on the

invariance of eqns (1)-(3) under the translation x 7! (L�x).
The aim of this study is not to investigate all these possi-

bilities but rather select realistic physical boundary condi-

tions associated with beams that naturally occur in elastic-

ity, such as beams supported at both ends, namely,

u(0) = u(L) = M (0) = M (L) = 0 (6)

Other types of boundary conditions have been investigated

elsewhere, see Lesnic et al. (1999).

The plan of the paper is as follows. In section 2 we prove

that the operator u 7! a is Holder continuous and thus in-

jective, i.e. the uniqueness and continuous dependence on

the input data of the inverse problem. Further, when ran-

dom noisy discrete input data is included, a regularization

algorithm is developed in section 3 and the numerically ob-

tained results are illustrated and discussed.

MATHEMATICAL ANALYSIS

We formally de�ne the operator U : A! L2(0; L)

U (a) := ua =

Z Z
M

a
; M =

Z Z
f; 8a 2 A (7)

as a formal general solution of eqns (1)-(3), where the inte-

gral sign
R
is understood in the sense that the constants of

integration are to be determined by imposing the boundary

conditions (6).

For convenience, and in order to simplify the algebraic

manipulations, a uniform load f � 1 was assumed which in

turn gives
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M (x) =
x(x� L)

2
(8)

ua(x) =

Z x

0

dt

Z t

0

� (� � L)

2a(� )
d� �

x

L

Z L

0

dt

Z t

0

� (� � L)

2a(� )
d�

(9)

Lemma 1. The following inequality holds

ku00a � u00bk
3=2 � kua � ubk

1=2ku000a � u000b k (10)

Proof: To evaluate the L2�norm ku00a � u00bk we use inte-

gration by parts, impose the boundary conditions (6) and

apply the Holder inequality to obtain

ku00a � u00bk
2 = �

Z L

0

(u0a � u0b)(u
000

a � u000b )dx

� ku0a � u0bkku
000

a � u000b k (11)

ku0a�u
0

bk
2 = �

Z L

0

(ua�ub)(u
00

a�u
00

b )dx � kua�ubkku
00

a�u
00

bk

(12)

Finally, combining the inequalities (11) and (12) yields the

inequality (21).

Lemma 2. If a 2 A then there is a positive constant C

such that ku000a k � C.

Proof: If we denote � = a�1, �2 = ��1
1 then we have 0 <

� � �2 < 1 and u00a = �M . Thus u000a = �0M + �M 0 and

using eqn.(8) we obtain the following estimates for ku000a k,
namely,

ku000a k � k�0k
L2

8
+ �2

�
L3

12

�1=2

(13)

Finally, since j �0 j=
ja0j

a2
� �2

2 j a
0 j and thus k�0k �

�2
2ka

0k � �2
2Q, from eqn.(13) it follows that there is a pos-

itive constant C > 0 such that ku000a k � C, which concludes

lemma 2.

Lemma 3. If a, b 2 A then there is a positive constant C

such that

ka� bkL2 � Cku00a � u00bk
2=3

L2 (14)

Proof: If we denote � = a�1, � = b�1, �1 = ��1
2 and

�2 = ��1
1 , then we have 0 < �1 � �; � � �2 < 1 and

u00a = �M , u00b = �M .

The key idea of the proof is based on removing (similar

to a Cauchy �nite part evaluation of singular integrals) the

singularities of the function � = u00a=M (and similarly � =

u00b=M ) which, based on eqn.(8), is of the type x�1(L �
x)�1. Therefore we extend the functions ua, ub, � and �

to the whole real axis by de�ning them to be zero outside

of the interval [0; L]. Then, for any � > 0, using the Holder

inequality, we have the following identities and inequalities

k�� �k2 =

Z
(��;�)[(L��;L+�)

j �� � j2 dx

+

Z
(�1;��)[(�;L��)[(L+�;1)

j �� � j
j u00a � u00b j

jM j
dx

� 4��2
2 + �2ku

00

a � u00bk Z
(�1;��)[(�;L��)[(L+�;1)

4

x2(L � x)2
dx

!1=2

= 4�2
2�+

23=2�2

L
ku00a � u00bk�

2

�
�

2�

L2 � �2
+

2

L
ln

�
j L� � j

j L+ � j

��1=2

� 4�2(�2� + ku
00

a � u00bk�
�1=2=L) (15)

The right-hand side of expression (15), as a function of �,

attains its minimum at

�min =

�
ku00a � u00bk

2�2L

�2=3

(16)

and introducing this value into expression (15) we obtain

k�� �k2 � (24=3 + 21=3)L�2=3�
4=3
2 ku00a � u00bk

2=3 (17)

Finally, the estimate (14) is obtained using the inequality

j a� b j� ��2
1 j �� � j and eqn.(17).
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At this stage, using lemmas 1-3, we can conclude the

following theorem:

Theorem 1. (The Holder continuity of the inverse operator

U�1(u) = a)

If a, b 2 A then there is a positive constant C such that

ka� bk � Ckua � ubk
1=9 (18)

As an immediate consequence of this theorem we con-

clude the uniqueness and continuous dependence of the so-

lution a 2 A on the input data u.

REGULARIZATION ALGORITHM

In this section the solution of the inverse problem (1),

which consists of �nding a 2 A when the additional data

ua � z (19)

is given, is based on the �rst-order regularization method of

Tikhonov and Arsenin (1977), which requires the �nding of

the minimumwith respect to � = a�1 2 A of the functional

��(�) = kua � zk2 + �k�0k2 (20)

where � > 0 is a regularization parameter to be prescribed.

For simply supported beams subjected to a unit load

we can obtain the de
ection u(x) as the solution of the

second-order di�erential equation

u00(x) =
x(x� L)

2
�(x); u(0) = u(L) = 0 (21)

Integrating eqn.(21) twice we obtain

u(x) =

Z L

0

G(x; s)�(s)ds; 0 � x � L (22)

where the Greens function G(x; s) is given by

G(x; s) =

(
s2(s�L)(x�L)

2L
; s � x

sx(s�L)2

2L
; x � s

(23)

However, the transformation of the di�erential eqn.(21) into

the integral eqn.(22) does not eliminate the ill-posedness of

the problem, as such an equation is a Fredholm integral

equation of the �rst kind and constitutes a well-known ex-

ample of an ill-posed problem due to its instability of the

solution with respect to noise in the input data z as given

by eqn.(19), see e.g. Tikhonov and Arsenin (1977).

We now divide the interval [0; L] into N equal parts by

putting sj = jL=N for j = 0; N , and on each subinterval

[sj�1; sj] for j = 1; N , we assume that � is constant and

takes its value at the midpoint ~sj = (sj + sj�1)=2, i.e.

� j[sj�1;sj ]= �( ~sj) = �j; j = 1; N (24)

Then eqn.(22) can be approximated by

u(x) =

NX
j=1

�j

Z sj

sj�1

G(x; s)ds; 0 � x � L (25)

If the de
ection u(x) is recorded only atK discrete locations

xi = (2i� 1)L=(2K) for i = 1;K, then eqn.(25) gives

ui = u(xi) =

NX
j=1

Aij�j; i = 1;K (26)

where the integrals

Aij =

Z sj

sj�1

G(xi; s)ds; i = 1;K; j = 1; N (27)

can be evaluated analytically and their expressions are given

by

Aij = (2i� 1)(12j3 � 18j2 � 24Nj2 + 12j + 12jN2

+24Nj � 6N2 � 8N � 3)L4)=(48KN4); if i < j

Aij = (2i � 1� 2K)(12j3 � 18j2 � 12Nj2 +

+12j + 12Nj � 4N � 3)L4=(48KN4); if i > j

Aij = [(2i� 1)j2(3j2 � 8Nj + 6N2)

+(�2i + 1 + 2K)(j � 1)3(3j � 3� 4N )]L4=(48KN4)

+(2i� 1)3(2i � 4K � 1)L4=(384K4); if i = j(28)
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In order to accommodate for the physical reality that in

practice the measurements of u will never be exact or

smooth, the de
ection u is contaminated with some errors,

say � = �(xi) for i = 1;K, given by

z = u+ � (29)

Thus, we have transformed the in�nite-dimensional ill-

posed problem (22) into the �nite-dimensional problem of

�nding the vector � from the ill-conditioned system of linear

equations

z � u = A� (30)

In order to deal with the ill-conditioned system of linear

eqns (30), the minimization of the discretised version of

eqn.(20) results in a stable numerical solution given by

� = (AtrA + �R)�1Atrz (31)

where R is the �rst-order regularization matrix which has

the components Rii = 1 for i = 1 and i = K, Rii = 2 for

i = 2; (K � 1), Ri(i+1) = �1 for i = 1; (K � 1), Ri(i�1) =

�1 for i = 2;K and Rij = 0 otherwise.

For a simple typical benchmark example, namely that of

a simply supported beam of length L = 1 having a de
ection

u(x) = x5

20
� x3

6
+ 7x

60
, with the 
exural rigidity coe�cient to

be retrieved given by a(x) = 1
2(x+1)

, the solution given by

eqn.(31) has been employed. Also, in order to investigate

the stability of the numerical solution, p% = 1% noise has

been included in the measured de
ection z, as given by

eqn.(29), where the components of the noise vector � were

generated using the NAG routine G05DDF, as Gaussian

random variables with mean zero and standard deviation

� =
p

100
�max j u(x) j =

p

100
� 4� 10�2 (32)

The numerically obtained results for a(x) = ��1(x) given

by eqn.(31), when K = N = 20 and p = 0 and � = 0, and

when p = 1 and � = 5�10�5, 10�5, 5�10�6 and 10�6, are

shown in Fig.1 and also for comparison the exact solution

is presented. From this �gure it can be seen that when no

noise is included in the data, i.e. p = 0, then a simple inver-

sion � = A�1z retrieves very accurately the exact solution.
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0.25

0.3

0.35

0.4

0.45

0.5

x

a(x)

-5

-6
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Figure 1. THE NUMERICAL RESULTS (|) FOR VARIOUS VALUES OF

� WHEN p% = 1%, IN COMPARISON WITH THE EXACT SOLUTION

a(x) = 1
2(1+x)

(���). THE CIRCLES (�) REPRESENT THE NUMER-

ICAL RESULTS OBTAINED WHEN p = 0 AND � = 0.

However, when noise is included in the data then as � be-

comes very small, say � 10�6, oscillations start to develop

in the numerical solution which becomes unstable. Also as

� becomes large, say > 10�4, then the numerical solution

tends to a constant value. However, there is a wide range

of values of �, say 5 � 10�5 < � < 5 � 10�6 for which the

estimate of the solution is stable and reasonably accurate.

Nevertheless there is quite a signi�cant disagreement be-

tween the exact and the numerical solutions near the ends

of the beam, and in fact the numerical solution may be

considered a good estimate of the exact solution only in the

range 0:2 < x < 0:8.

Finally, it is reported that alternative numerical meth-

ods employed by the author, which are based on the singular

value decomposition or the molli�cation method, also failed

to produce accurate estimates of the solution near the ends

of the �xed beam. In a future study it is proposed that more

powerful numerical methods which are based on parameter-

isation and/or constrained minimization procedures should

be employed. Also, future work will be concerned with the

inverse coe�cient identi�cation problem associated with the

Euler-Bernoulli unsteady-state beam theory.
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