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P.-Å. Wedin

Department of Computing Science
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ABSTRACT
We consider a new idea for solving Tikhonov regularized

discretized ill-posed problems. The optimization problem is for-
mulated as a nonlinear least squares problems containing the
Tikhonov regularization parameterλ. In order to find the size of
the regularization parameter and attain good convergence in the
optimization method we use the nonlinear L- and a-curve. The
nonlinear L-curve is a direct generalization of the linear L-curve
and can be used to find a good regularized solution. The a-curve
is the Tikhonov function as a function of the regularization pa-
rameter and is most useful in monitoring the global convergence
of the method.

Our model algorithm for solving the Tikhonov problem is
to use a linearization around the best attained pointxk (possibly
given by the nonlinear L-curve) giving a linear L- anda-curve.
Following the trajectory of the solution to this linear problem the
new point chosen is the one that gives sufficient decrease in the
size of the residual.

NOMENCLATURE
λ The regularization parameter.
α Step length in optimization method.
xc The center for the regularization.
xk Approximation of the Tikhonov problem at iterationk.
t(x);y(x) Size of the residual and solution.

�Address all correspondence to this author.

J(x) The Jacobian∂ f=∂x.
tk;yk; fk;Jk Abbreviations fort(xk);y(xk); f (xk) and ∂ f

∂x (xk).
λ̄k The regularization parameter used as an upper limit for the

choice of regularization parameter in stepk.
t̄k; ȳk The point on the linear L-curve minimizing determining

λ̄k.

INTRODUCTION
We consider nonlinear equations of the form

f (x) = 0; f : Rn ! R
m: (1)

In our case (1) is a discrete version of an ill-posed infinite di-
mensional problem. Characteristic for such ill-posed problems
are that the singular values of the JacobianJ = ∂ f=∂x decrease
rapidly to zero without any useful gap. This fact prevents the effi-
cient use of standard methods such as the Gauss-Newton method.

Therefore, we will use theTikhonov problem

min
x

T (x;λ); T (x;λ) = t(x)+λy(x) λ� 0 (2)

where

t(x) = ν( f (x)) � 0; y(x)� 0 (3)

1 Copyright  1999 by ASME



are convex functions that attain their minima forf =0 andx= xc,
respectively. Then-vectorxc is called the center and is chosen a
priori (or just zero). The difficulty is to choose the regularization
parameterλ � 0 giving both a reasonably smallt(x) as well as
ν( f (x)) small.

Obviously, the choice ofλ is of great importance. In the lin-
ear case wheref (x) = Ax+b there are many different well an-
alyzed strategies such as the discrepancy principle (10; 6), gen-
eralized cross validation (12), and the linear L-curve (9; 7; 11;
8).

For the nonlinear case treated here we propose to use the
nonlinear L-curve to find a suitable regularization parameter (1;
5; 4). We make the following definition of the L-curve that is a
generalization of the linear L-curve in (8) to nonlinear problems.

Definition 0.1. Let x(λ) solve problem (2), i.e.,

x(λ) = arg
n

min
x

t(x)+λy(x)
o
; λ� 0:

The L-curve is defined as the curve(t(x(λ));y(x(λ))).

The L-curve is monotonically decreasing and convex as shown
in (5).

To construct the L-curve in an efficient way and find a good
solution there is a need for a robust and efficient method to solve
the Tikhonov problem for severalλ. However, close to a cor-
ner of the L-curve the Tikhonov function varies much and there
may be a need for a second order optimization method. We will
not consider this aspect here and refer to (2) for special quasi-
Newton methods.

Another important curve useful for monitoring the conver-
gence of methods for solving the Tikhonov problem is thea-
curve.

Definition 0.2. The a-curve is defined as the curve(λ;a(λ))
where

a(λ) = min
x

t(x)+λy(x); λ� 0: (4)

Thea-curve is monotonically increasing and concave as shown
in (5).

In our earlier implementations, see (1; 3), we used a Gauss-
Newton method directly on the Tikhonov problem choosingλ
adaptively and monotonically decreasing depending on the size
of the step length. This approach seems inefficient since it is
quite difficult to safely choose a smallλ in each step. Fur-
ther, we do not use the global information attainable from the
L-curve. This is also true for a trust-region method applied on
the Tikhonov problem.

Therefore, we propose a special variant of the Gauss-
Newton method used on a linearization of the Tikhonov prob-
lem (2). The main feature of the method is that the regulariza-
tion is made relative the centerxc but the linearization is made
around the current iteration pointxk (possibly chosen as the best
attainable point given by the nonlinear L-curve). This idea com-
bines the regularization effect restricting the size ofxk with the
minimization of the size of the residualν( f (x)). The method is
more efficient than a Gauss-Newton or trust-region directly on
the Tikhonov problem since we use more information from the
linear subproblem of the Gauss-Newton method and we have the
possibility to safely choose the smallest possibleλ in each step.

A LOCAL TRUST-REGION METHOD
Geometrical motivation

For simplicity, but without loss of generality, we will in this
section assume thatν( f ) = 1=2k fk2 and t(x) = 1=2kx� xck

2

wherek �k is the 2-norm. Thus, the Tikhonov problem (2) can be
written as

min
x

1
2
k f (x)k2+

1
2

λkx�xck
2: (5)

We start by describing the general idea in thek’th step of the
algorithm. If we linearize the Tikhonov function in (5) aroundxk
we get the linear least squares problem

min
p

1
2
k fk+Jkpk2+

1
2

λkp+xk�xck
2: (6)

Using the normal equations we easily attain the solution to (6) as

p(λ) =�(JT
k Jk+λI)�1

�
JT

k ;λ
1=2I

�� fk
xk�xc

�
: (7)

The trajectoryxk(λ) = xk+ p(λ) is seen in Figure 1 and asλ is
decreasingxk(λ) is moving fromxc with a decreasing residual
kJkp(λ)+ fkk.

To show more of the implications and possibilities of our
idea we reformulate the linear problem (6) usingx = xk+ p to
get

min
x

txk(x)+λyxk(x) (8)

where we define the functions

txk(x) =
1
2
kJk(x�xk)+ fkk

2; yxk(x) =
1
2
kx�xck

2: (9)
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xk

p(λ)

xk(λ̄k)xk(λ)

fx : kJk(x�xk)+ fkk= k fkkg

xc

fx : kx�xck= kxk�xckg

Figure 1. LEVEL CURVES FOR THE LINEAR PROBLEM.

The solution to (8) isxk(λ) = xk+ p(λ) and the linear L-curve
associated to (8) is(txk ;yxk(txk)) as seen in the left part of Figure
2. Following the L-curve from(tk;yk) minimizing the residual

y

t λλ̄k

(tk;yk)

Slope�
1

λ̄k

Shortest distance

(t̄k; ȳk)

(txk ;yxk)
(λ; t(xk)+λy(xk))

(λ;axk(λ))

Figure 2. THE LINEAR L- AND a-CURVES CORRESPONDING TO

THE LINEAR PROBLEM (6.

y(x) we find the point

(t̄k; ȳk); t̄k = txk(xk(λ̄k)); ȳk = yxk(xk(λ̄k))

where the L-curve has slope�1=λ̄k. Apart from the fact that this
is the point closest to(tk;yk) keepingt(x) = tk constant we will
see that this point has some interesting and useful properties.

The trust-region idea
Following More’ (10) we accept the pointxk(λ) as our new

approximation of the solution to the Tikhonov problem if the in-
equality

k f (xk)k
2�k f (xk(λ))k2 < δ

�
k f (xk)k

2�kJkp(λ)+ fkk
2	

(10)

is satisfied forλ < λ̄k and 0< δ < 1. Combining this condition
with a strategy for choosingλ gives the following model algo-
rithm where we assume thatxk is a given point.

1. Solve the linear problem (6) withλ < λ̄k.
2. while The condition in (10) is not satisfiedand λ < λ̄k.

(a) Setλ = µλ, µ> 1.
(b) Solve the linear problem (6) getting the solutionp(λ).
(c) Updatexk(λ) = x+ p(λ).

3. if λ > λ̄k

(a) Solve the nonlinear problem (2) withλ = λ̄k to a cer-
tain accuracy.

The last step in the algorithm is to find a point closer to the solu-
tion of the Tikhonov problem forλ= λ̄k. As we will see later this
will make xk closer to the linear approximation of the Tikhonov
problem and make it possible to find a smaller residual.

The choice of λ̄k.
Our aim is to find the next pointxk(λ̄k) not very much further

from xc but with a smaller residual. Imaginingxk on the linear L-
curve(txk ;yxk) we have that∇xT = ∇xt +λxy= 0 and the level
curvest(x) = tk;y(x) = yk are tangential, see Figure 1. Thus,
there will be no decrease in the residual forλ greater than thēλk
defined by the relationt(xk(λ)) = t(xk) or

kxk(λ)�xck= kxk�xck: (11)

If we havexk not on the linear L-curve it seems reasonable to
have the same criterion for choosingλ̄k. From Figure 1 it is seen
that p(λ) will always be a descent direction tot(x).

Further, we define the lineara-curve

axk(λ) = min
x

txk(x)+λyxk(x)

shown in the right part of Figure 2. The lineara-curve can be
used to find̄λk but first we present a useful lemma.

Lemma 0.3. Assume that(t̃;y(ỹ) is a point on or above the L-
curve. Then the solution of

min
λ

t̃+λỹ�a(λ)

is given by

λ̃ =�
1

dy
dt
(t̃)

: (12)
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Moreover, the slope at̃λ is given by

da
dλ

(λ̃) = ỹ:

Proof. DefineF(λ) = t̃+λỹ�a(λ). We have

dF
dλ

= ỹ�
da
dλ

and
d2F
dλ2 =�

d2a
dλ2 > 0:

Hence,y = da=dλ = ỹ at the closest point, i.e., the tangent of
a(λ) has the same direction as the linet̃+λỹ. Obviously,

da
dλ

(λ̃) = ỹ

if y(t̃) = ỹ and hence

dy
dt
(t̃) =�

1

λ̃
:

From Lemma 0.3 we get that the line(λ; t(xk)+λy(xk)) above
the linearaxk-curve is as close as possible to thea-curve atλ̄k

suggesting a way to find̄λ if we can approximate thea-curve
efficiently.

Approximating the L- and a-curve
The convexity of the L-curve and the concavity of thea-

curve are direct consequences of the fact that the curves describe
the solution of a sequence of optimization problems. It is natural
to try to keep these properties when information at a finite point
setM in Rn is used to approximate the functionsy(t) anda(λ).
We define the functionypol(t) as a polygon approximation of
y(t) if ypol(t) is a strictly decreasing convex function. To every
curveypol(t) there should also exist a concave, strictly increasing
polygon approximationapol(λ) of a(λ).

The first step towards smooth approximating curves is to find
a subsetfxig

p
i=1 in M such that 0� t1 < t2 < :: : < tp; ti = t(xi)

and the function

ypol(t) = yi
ti+1� t
ti+1� ti

+yi+1
t� ti

ti+1� ti
; (13)

ti � t � ti+1, yi = y(xi), i = 1; : : : ; p� 1 is a strictly decreasing
convex function fort1 � t � tp. If we add the points(t1;y);y�
y1 to the points defined by(t;ypol(t)) the setM defines points
((t(xi);y(xi)) that are inside the convex set defined by (13) as
shown in Figure 3. For a given finite setM the polygon curve

y

t
t2 t3 t4t1

y1

y2

y3
y4

Figure 3. THE SHAPE OF THE ypol-CURVE.

constructed in this way is unique. But the point setfxig
p
i=1 need

not be unique, since there may exist a point ˜x2 M ; x̃ 6= xi such
thatt(x̃) = t(xi) andy(x̃) = y(xi).

There is also a polygon approximating curveapol(λ) of a(λ)
that corresponds to the polygon curveypol(t) constructed in (13).
Defineλi;i+1 as the point where the two straight linesti +λyi and
ti+1+λyi+1 intersect. Hence,ti +λi;i+1yi = ti+1+λi;i+1yi+1 and

λi;i+1 =�
ti+1� ti
yi+1�yi

: (14)

The definition (13) implies thatλ1;2 < λ2;3 < :: : < λp�1;p. Also
defineλp;∞ as the point where the straight linetp+λyp cuts the
asymptotea= t(xc), i.e.,λp;∞ = t(xc)� tp=yp: The definition of
apol is now

apol(λ) =

8<
:

t1+λy1; 0� λ� λ1;2
ti +λyi; λi�1;i � λ� λi;i+1
tp+λyp; λp�1;p� λ� λp;∞

The functionapol(λ) is the unique strictly increasing concave
function such that for all points ˜x2M the straight lines(λ; t(x̃)+
λy(x̃)) lie above the curve(λ;apol(λ)).

Now there is a simple task to construct a smooth approxi-
mating L- anda-curve. Let a polygon curve(t;ypol(t)) be known
and let(t;ysm(t)) be a convex decreasing spline function that in-
terpolates the polygon curve at(ti ;yi); i = 1; : : : ; p. The function
ysm is our smooth function and by definition it is twice differen-
tiable. Defineλ at a given point(t;ysm(t)) from the derivative
dysm=dt = �1=λ and setasm= t + λysm as our smooth func-
tion corresponding to thea-curve. As before the differential
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λ
λ1;2 λ2;3 λ3;inf

t(xc)

t(x̃)

(λ; t(x̃)+λy(x̃))

(λ;apol(λ))

t(x1)

Figure 4. THE SHAPE OF THE apol-CURVE.

dasm= dt+λdysm+dλysm= dλysm giving

dasm

dλ
= ysm> 0

andasm is strictly increasing. Further,

d2asm

dλ2 =
dysm

dλ
=

dysm

dt
dt
dλ

=�λ�1 dt
dλ

where by definition we have

dλ
dt

=
d
dt

1
dysm

dλ

=

�
dysm

dt

�
�2 d2ysm

dt2
= λ2 d2ysm

dt2

and thus

d2asm

dλ2 =�(λ3d2ysm

dt2
)�1 < 0;

makingasm concave.

Approximating λ̄ using the smooth approximating a-
curve.

If we have computed the smooth approximatinga-curve as
well as the polygon approximating we can use these curves to
approximatēλ. In Figure 5 this idea is clearly seen whereλ̃k is
an approximation of̄λk.

The special case xk = xk(λ).
In this section we show that the search directionp(λ) is well

defined even ifxk is very close tox(λ̄k) with λ̄k defined by (11).

λ

asm

λ̃k

tk+λyk
asp

Figure 5. APPROXIMATING λ̄k.

By definition we havep(λ̄k) = 0 but the interesting quantity to
be investigated is

lim
λ!λ̄k

p(λ)
kp(λ)k

since this is the attainable search direction. We will need the
following lemma.

Lemma 0.4. Assume that xk = x(λ̄k). Then

dp
dλ

(λ̄k) =�(JT
k Jk+ λ̄kI)

�1(xk�xc): (15)

Proof. For (15) we have

dp
dλ

=�

�
d
dλ

J#
k fk+

d
dλ

PN (xk�xc)

�

where

J#
k = (JT

k Jk+λI)�1JT
k ; PN = λ(JT

k Jk+λI)�1:

Further,

d
dλ

J#
k =�(JT

k Jk+λI)�2JT
k

and after some algebra

d
dλ

PN = JT
k Jk(J

T
k Jk+λI)�2JT

k :
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Thus,

dp
dλ

=�(JT
k Jk+λI)�1(�J#

k fk+J#
kJk)(xk�xc): (16)

By using thatxk lies on the trajectoryxk(λ) we have

JT
k fk+ λ̄k(xk�xc) = 0

or by premultiplying with(JT
k Jk+λI)�1

J#
k fk+ λ̄k(J

T
k Jk+λI)�1(xk�xc) = 0: (17)

Inserting (17) into (16) and using that

λ̄k(J
T
k Jk+λI)�1+J#

kJk = 0

we get

dp
dλ

(λ̄k) =�(JT
k Jk+λI)�1(xk�xc):

The following theorem proves thatp(λ) is well defined and
a descent direction tok f (x)k at λ̄k.

Theorem 0.5. Assume that p(λ) is defined by (7) then

qk = lim
λ!λ̄k

p(λ)
kp(λ)k

=�
(JT

k Jk+ λ̄kI)�1(xk�xc)

k(JT
k Jk+ λ̄kI)�1(xk�xc)k

(18)

and

qT
k JT

k fk =�
λ̄k(xk�xc)

T(JT
k Jk+λI)�1(xk�xc)

k(JT
k Jk+ λ̄kI)�1(xk�xc)k

< 0: (19)

Proof. Using thatp(λ̄k) = 0 we have

p(λ)
kp(λ)k

=
p(λ)� p(λ̄k)

λ� λ̄k

λ� λ̄k

kp(λ)� p(λ̄k)k

and if we assume that̄λk > λ we get

p(λ)
kp(λ)k

=
p(λ)� p(λ̄k)

λ� λ̄k

1

kp(λ)� p(λ̄k)k

kλ� λ̄kk
:

Letting λ ! λ̄k and using Lemma 0.4 we get the first statement
(18) in the theorem.

The second statement (19) is attained directly from (18).
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