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ABSTRACT J(X) The Jacobia@f /ox.

We consider a new idea for solving Tikhonov regularized t,,y,, fi,J. Abbreviations fort (%), y(%), T (X¢) and%(xk).
discretized ill-posed problems. The optimization problem is for- Xk The regularization parameter used as an upper limit for the
mulated as a nonlinear least squares problems containing the choice of regularization parameter in step
Tikhonov regularization parametgr In order to find the size of .Yk The point on the linear L-curve minimizing determining
the regularization parameter and attain good convergence in the )_\k.
optimization method we use the nonlinear L- and a-curve. The
nonlinear L-curve is a direct generalization of the linear L-curve
and can be used to find a good regularized solution. The a-curve NTRODUCTION
is the Tikhonov function as a function of the regularization pa- We consider nonlinear equations of the form
rameter and is most useful in monitoring the global convergence
of the method.

Our model algorithm for solving the Tikhonov problem is f() =0, f:R"—R" 1)
to use a linearization around the best attained pgijpossibly
given by the nonlinear L-curve) giving a linear L- aecurve. In our case (1) is a discrete version of an ill-posed infinite di-

Following the trajectory of the solution to this linear problemthe ensional problem. Characteristic for such ill-posed problem:

new point chosen is the one that gives sufficient decrease in the gre that the singular values of the Jacohlaa df /dx decrease

size of the residual. rapidly to zero without any useful gap. This fact prevents the effi-
cient use of standard methods such as the Gauss-Newton meth

NOMENCLATURE Therefore, we will use th@ikhonov problem

A The regularization parameter.
a Step length in optimization method. mxin TXA), TN =t(X)+Ay(x) A>0 2
Xc The center for the regularization.
xx Approximation of the Tikhonov problem at iteratitn
t(x),y(x) Size of the residual and solution. where
t(x) =v(f(x) >0, y(x) >0 ®3)
*Address all correspondence to this author.
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are convex functions that attain their minima foe 0 andx = xc,
respectively. Tha-vectorx; is called the center and is chosen a
priori (or just zero). The difficulty is to choose the regularization
parametei > 0 giving both a reasonably smallx) as well as
v(f(x)) small.

Obviously, the choice of is of great importance. In the lin-
ear case wheré(x) = Ax+ b there are many different well an-

Therefore, we propose a special variant of the Gauss
Newton method used on a linearization of the Tikhonov prob-
lem (2). The main feature of the method is that the regulariza
tion is made relative the centgg but the linearization is made
around the current iteration poirt (possibly chosen as the best
attainable point given by the nonlinear L-curve). This idea com-
bines the regularization effect restricting the sizegoWwith the

alyzed strategies such as the discrepancy principle (10; 6), gen-minimization of the size of the residua{f(x)). The method is

eralized cross validation (12), and the linear L-curve (9; 7; 11;
8).

more efficient than a Gauss-Newton or trust-region directly or
the Tikhonov problem since we use more information from the

For the nonlinear case treated here we propose to use thelinear subproblem of the Gauss-Newton method and we have tt

nonlinear L-curve to find a suitable regularization parameter (1;
5; 4). We make the following definition of the L-curve that is a
generalization of the linear L-curve in (8) to nonlinear problems.

Definition 0.1. Let XA) solve problem (2), i.e.,
X(A) = arg{mxin t(x) +)\y(x)}, A>0.

The L-curve is defined as the curfté€x(A)),y(x(A))).

The L-curve is monotonically decreasing and convex as shown
in (5).
To construct the L-curve in an efficient way and find a good

possibility to safely choose the smallest possibie each step.

A LOCAL TRUST-REGION METHOD
Geometrical motivation

For simplicity, but without loss of generality, we will in this
section assume that f) = 1/2]|f(|? andt(x) = 1/2]]x — X¢||?
where||- || is the 2-norm. Thus, the Tikhonov problem (2) can be
written as

min 2 1091+ SAIx - x| 2 )

We start by describing the general idea inktth step of the

solution there is a need for a robust and efficient method to solve @lgorithm. If we linearize the Tikhonov function in (5) arouxd

the Tikhonov problem for severdl. However, close to a cor-
ner of the L-curve the Tikhonov function varies much and there
may be a need for a second order optimization method. We will

not consider this aspect here and refer to (2) for special quasi-

Newton methods.

Another important curve useful for monitoring the conver-
gence of methods for solving the Tikhonov problem is #he
curve.

Definition 0.2. The a-curve is defined as the curf®ea(}))

where

al\) = mXin t(x) +Ay(x), A>0. 4

The a-curve is monotonically increasing and concave as shown
in (5).

In our earlier implementations, see (1; 3), we used a Gauss-

Newton method directly on the Tikhonov problem choosing

adaptively and monotonically decreasing depending on the size
of the step length. This approach seems inefficient since it is

quite difficult to safely choose a small in each step. Fur-
ther, we do not use the global information attainable from the
L-curve. This is also true for a trust-region method applied on
the Tikhonov problem.

we get the linear least squares problem

1 1
min 3 |t Jepl|? + S|P+ 3= x| (6)

Using the normal equations we easily attain the solution to (6) a

Lo

The trajectoryx(\) = X + p(A) is seen in Figure 1 and asis
decreasingy(A) is moving fromx; with a decreasing residual
[15P(A) + fill.

To show more of the implications and possibilities of our
idea we reformulate the linear problem (6) using x + p to
get

POA) = — (T I+ AD~2 (J;,A1/2|) <

mxin ty, (X) 4+ Ayx, (X) (8)

where we define the functions

b0 = 3 13050+ T, v (0 = Skl (9)

Copyright 0 1999 by ASME



D 9O = ) + Al = 11l

XX =]l =[x~ xcll}

%) %)

Figure 1. LEVEL CURVES FOR THE LINEAR PROBLEM.

The solution to (8) is(A) = X+ p(A) and the linear L-curve
associated to (8) iy, yx (tx ) as seen in the left part of Figure
2. Following the L-curve fron(ty,yx) minimizing the residual

(A1) +Ay(%))

(txes Yx)

‘ (A, ax ()
- Shortest distance

t Ak A

Figure 2. THE LINEAR L- AND a-CURVES CORRESPONDING TO
THE LINEAR PROBLEM (6.

y(x) we find the point

(Vi) b=t (%(A))s Vi = Y (Xic(A))

where the L-curve has slopel/)_\k. Apart from the fact that this
is the point closest té, yx) keepingt(x) = tx constant we will
see that this point has some interesting and useful properties.

The trust-region idea

Following More’ (10) we accept the poirk(A) as our new
approximation of the solution to the Tikhonov problem if the in-
equality

1 (1 = 11 a2 < 311 () 1 = 1) + Fill}
(10)

is satisfied fol\ < )_\k and 0< 0 < 1. Combining this condition
with a strategy for choosing gives the following model algo-
rithm where we assume thgtis a given point.

1. Solve the linear problem (6) witkh < Xk. .
2. while The condition in (10) is not satisfiethd A < Ay.

(@) Seth = pA, u> 1.
(b) Solve the linear problem (6) getting the solutia).
(c) Updatex(A) =x+ p(A).

3.0 A > A

(a) Solve the nonlinear problem (2) with= )_\k to a cer-
tain accuracy.

The last step in the algorithm is to find a point closer to the solu:
tion of the Tikhonov problem fok = Ay. As we will see later this
will make x, closer to the linear approximation of the Tikhonov
problem and make it possible to find a smaller residual.

The choice of Ay. _

Our aim is to find the next poim(Ax) not very much further
from xc but with a smaller residual. Imagining on the linear L-
curve(ty,,yx ) we have thatlyT = Oyt + Ay = 0 and the level
curvest(x) = ty,y(X) = yk are tangential, see Figure 1. Thus,
there will be no decrease in the residual Xagreater than thay
defined by the relatiot(xc(A)) = t(xx) or

[1X(A) = Xell = I1x— el - (11)

If we havex, not on the linear L-curve it seems reasonable to
have the same criterion for choosikg From Figure 1 itis seen
thatp(A) will always be a descent directiont(x).

Further, we define the linearcurve

B (A) = Min t () + AYs ()

shown in the right part of Figure 2. The lineatcurve can be
used to find\y but first we present a useful lemma.

Lemma 0.3. Assume thaff,y(y) is a point on or above the L-
curve. Then the solution of

n}\in t+Ay—a(r)

is given by

1

A= —— .
dy
a(t”)

12)
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Moreover, the slope atis given by y

da -
d—)\o\) =Y.
Proof. DefineF (A\) =T+ Ay—a()A). We have it
d_F—N_%anddz_F—_d_za>0 2
an YT e T Tae T ya 1
Ya 7
Hence,y = da/dA = ¥ at the closest point, i.e., the tangent of th t, s t t

a(A) has the same direction as the line A\y. Obviously,

Figure 3. THE SHAPE OF THE Yp|-CURVE.

da -
d_)\()\) =Yy
if y(f) = y and hence constructed in this way is unique. But the point &t need
not be unique, since there may exist a poit M ,X # X such
dy thatt (%) =t(x) andy(%) = y(x,).

—=({) = _i. There is also a polygon approximating cueyg(A) of a(A)
A that corresponds to the polygon cumg(t) constructed in (13).
Define; j;+1 as the point where the two straight lirtes- Ay; and
From Lemma 0.3 we get that the lirfi&,t(xc) + Ay(Xc)) above tiy1 +Ayipq intersect. Hencey 4+ A 1Y =tip1+Aj j+1Yi+1 and
the linearay -curve is as close as possible to #reurve atA,
suggesting a way to findl if we can approximate tha-curve N t
efficiently. Aijyg=——1

Yiel— Vi

(14)

Approximating the L- and  a-curve
The convexity of the L-curve and the concavity of the The definition (13) implies that; ; <Az3 < ... <Ap_1p. Also
curve are direct consequences of the fact that the curves describelefineAp .. as the point where the straight lige+ Ay, cuts the
the solution of a sequence of optimization problems. It is natural asymptotea=1t(xc), i.e.,Apw =t(Xc) —tp/Yp. The definition of
to try to keep these properties when information at a finite point @pol iS NOW
setM in R" is used to approximate the functiop$) anda()).
We define the functiolypq(t) as a polygon approximation of
y(t) if ypol(t) is a strictly decreasing convex function. To every
curveypol(t) there should also exist a concave, strictly increasing apol(A) = {
polygon approximatiomye|(A) of a(A).
The first step towards smooth approximating curves is to find
asubsef{x}?,in M suchthat 0K t; <tp < ... < tp,ti =t(x)
and the function

t1+Ay, 0<A<A2
ti+AY, Ai—i <A< Az
tp+)\yp, )\p,]_’p S )\ S }\pyoo

The functionayg(A) is the unique strictly increasing concave
function such that for all points€ M the straight linegA, t(X) +
Ay(X)) lie above the curvéA,ap(A)).
Ypol(t) =i % +yi+1%, (13) Now there is a simple task to construct a smooth approxi
I+17H i+17H mating L- anda-curve. Let a polygon curv, ypo(t)) be known
and let(t,ysm(t)) be a convex decreasing spline function that in-
t<t<ti1,Vi=y(),i=1,..,p—1is astrictly decreasing terpolates the polygon curve @t,y;),i =1,...,p. The function
convex function fot; <t <tp. If we add the pointsts,y),y > YsmiS our smooth function and by definition it is twice differen-
y1 to the points defined bit,y,q(t)) the setM defines points tiable. Define at a given point(t,ysm(t)) from the derivative
((t(x),y(x)) that are inside the convex set defined by (13) as dysn/dt = —1/A and setagm =t + Aysm as our smooth func-
shown in Figure 3. For a given finite skt the polygon curve tion corresponding to tha-curve. As before the differential
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(A t(X) +Ay(X))

dg p
Asm

A Ak

A2 A23 A3jin

Figure 5. APPROXIMATING Ay.
Figure 4. THE SHAPE OF THE @po|-CURVE.

By definition we havep(xk) = 0 but the interesting quantity to

dasm= dt + Adysm+ dAysm= dAysmgiving be investigated is
d
= = Yo > 0 jim P
A= [PV

andagny is strictly increasing. Further,

since this is the attainable search direction. We will need the

d?agm _ O¥sm _ dysmdt . _;dt following lemma.
dr® d dt dA dA Lemma 0.4. Assume thatx= x(Xk). Then
where by definition we have .
d—;\)(?\k) = — (I I+ M) T Ho = X%0)- (15)
% - g 1 _ [d¥sm 2 dzysm - )\ZdZYSm
dt  dtdysm | dt di2 — 7 dt?
dA Proof. For (15) we have
and thus dp d., q
- <d_)\‘]k fiet PN (Xk_xc)>
dzasm 3dZYSm -1
da2 - _()\ dr2 ) < 07

where

makingasm concave.
K= H+A)71], Py = A K +AD)7L

Approximating A using the smooth approximating  a-

curve, Further,
If we have computed the smooth approximatagurve as

well as the polygon approximating we can use these curves to

approximate\. In Figure 5 this idea is clearly seen wheigis

an approximation oky.

aJf: —(W R+

and after some algebra
The special case x = X(A).

In this section we show that the search directon) is well d

defined even i is very close to(Ay) with A, defined by (11). N = I (T I+ A2
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Thus,

D = () e I, (16)
By using thatx lies on the trajectoryy(A) we have
K it M4 —%e) =0
or by premultiplying with(J] J +Al)~2
F e+ M I+ A "L —Xe) = 0. 17)

Inserting (17) into (16) and using that

MO +AAN) T+ =0
we get

9P () = ~ (3 Je 4 A1) - o).

The following theorem proves tha(}) is well defined and
a descent direction thf (x)|| atAg.

Theorem 0.5. Assume that @) is defined by (7) then

_p(\) (3T Je+ M) 104 — %)
= | - _
TN R TRy T I
and
o f = MR ) g

113 I+ M) =L (% = Xe) |

Proof. Using thatp()_\k) = 0 we have

PA) _ PN -pA A
1P| A=Nc [IP(A) = p(A) |
and if we assume thg'k > A\ we get
PN _ PN — PN 1
1P| A=A IP(Y) = p(Aw) ||
A=Al

LettingA — )_\k and using Lemma 0.4 we get the first statement
(18) in the theorem.
The second statement (19) is attained directly from (18).
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