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ABSTRACT
The inverse problem associated with data measured to char-

acterize systems and processes are frequently ill-posed, and, con-
sequently, small errors in the measured quantities may transfer
into large errors in the desired estimates. Better accuracy may be
obtained by improving the experimental design. This paper deals
with experimental design and its importance in the field of pet-
roleum engineering. The experimental design studies described
in this paper are based on a linearized covariance analysis. We
utilize measures such as confidence intervals, contribution of in-
formation, and optimal design as ways of ranking different com-
peting measurement strategies (or designs). Among a series of
inverse problem applications within petroleum engineering, we
consider two cases: The first application deals with estimation of
properties defined within a set of partial differential equations,
namely those describing flow of fluids through porous media.
We show how experimental design can be utilized to select flow
experiments (both flow rates, types of data and when and where
to measure) to obtain accurate estimates in saturation regions im-
portant for reservoir exploitation. The second example deals with

�Address all correspondence to this author.

identification of the inflow profile of oil, water, and gas, for a
production well drilled into an underground reservoir.

1 INTRODUCTION
Inverse problems play an important role in petroleum engin-

eering. Several of the major problems associated with explora-
tion and exploitation of oil reserves, involve solution of inverse
problems. For exploration purposes, seismic surveys are utilized
to localize potential petroleum reserves, see, e.g, Jahn et al. (Jahn
et al, 1998). Furthermore, techniques based on repeated seismic
surveys are now emerging for determination of the movements of
the fluid in the reservoirs over time (socalled 4D seismic) (Jahn
et al, 1998). Such information may be important for selecting
optimal exploitation strategies. However, 4D seismic alone will
not be sufficent – typically the inverse problem associated with
the matematical model of fluid flow through porous media and
the historical data from the exploitation of the reserves (typically
time series of phase production, pressure drop, etc.), is solved
for this purpose. This usually involves solving a regularized,
linearly constrained non-linear least-squares problems for some
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uknown coefficients in the flow model (usually the permeability
and porosity). This process is known in the petroleum industry
as “history matching.” A huge number of other examples exists
– only within the integral equation niche of inverse problems, we
find several important petroleum engineering cases. These in-
clude determination of porous media pore size distribution from
NMR data (Chen et al., 1992), determination of the capillary
pressure function from centrifuge data (Nordtvedt and Kolltveit,
1991), estimation of the characteristics of non-stationary flow
in layered reservoirs (Virnovsky, 1979). For the formulation of
these integral equations as well as for additional examples, we
refer to Subbey (Subbey, 1997).

The inverse problem associated with data measured to de-
scribe systems and processes are frequently ill-posed, and, con-
sequently, small errors in the measured quantities may transfer
into large errors in the desired estimates. This characterizes sev-
eral of the inverse problems within petroleum engineering, as
continuous fuctions are estimated from discrete data (Watson et
al, 1993). For some cases the formulation of the inverse problem
is fixed, and bounded solutions are only obtained through a reg-
ularization in the parameter (and/or state) space. In other cases,
the types, amount, and accuracy of the data, can be varied. Thus,
the design of the experiment may be altered in such a manner
that more accurate estimates results. Also, as the different data
will have an associated cost, engineering applications typically
aim at obtaining adequate solutions balancing accuracy and cost
considerations. In this paper we study quantitative criterions for
designing experiments to meet the objectives of high accuracy
and low cost.

We will be investigating into experimental design for two in-
verse problems arising in petroleum engineering. The first prob-
lem is that of characterization of multiphase flow in porous me-
dia. Multiphase flow is typically modelled by a continuum rep-
resentation in space and time based on local volume averaging
(Slattery, 1981). Several properties will have to be specified in
such models, including the fluid viscosity and rock properties
such as porosity and permeability. In multiphase situations, e.g.,
when two fluid phases flow simultaneously in a porous medium,
some multiphase properties – the relative permeability and capil-
lary pressure functions – are introduced (see next section for de-
tails). These functions (collectively referred to as the flow func-
tions) are defined through the mathematical model for fluid flow
in porous media. They can thus not be measured directly, but
have to be determined through solutions of the inverse problems
associated with the model and the data. This is done utilizing
observations of the state variables (or functions thereof) meas-
ured during some displacement experiments. A series of differ-
ent types of data can be utilized for this purpose, and the experi-
ments may be conducted at different rates of injected fluids, and
also at different rate fractions when several fluids are injected
simultaneously. To select a design of the experiment leading to
accurate and simultaneous determination of the flow function is

an issue of great concern, as these functions provide the basis for
reservoir simulation used in selection of exploitation strategies.

The second problem is connected to fluid flow in wells. Well
technology used for oil production has been advancing rapidly
over the last decade. New technology now give the possibility
of controlling the production of hydrocarbons using surface ad-
justable downhole valves, and to obtain more information about
the production characteristic using downhole instrumentation.
The cost of the downhole instrumentation is varying, and ex-
tensive instrumentation is a source of operational problems. It
is therefore important to be able to evaluate the usefulness of
the downhole instrumentation. By combining the information
provided from measurements in the well with a wellflow sim-
ulator it is possible to estimate the inflow profiles for each of
the three phases oil, water, and gas. If this inflow estimate is
reliable it can be useful for instance to detect water producing
zones. The accuracy of an estimate of the inflow profile depends
on the quantities measured, where in the well the quantities are
measured, and on the accuracy of the measurements.

In this paper we will describe methodologies for designing
experiments leading to accurate determination of the porous me-
dia flow functions and for assessing the necessary instrumenta-
tion for estimating the inflow profile to a well from downhole
measurements (such as pressure, temperature, etc.).

2 FORWARD MODELS
We first briefly describe the two forward models, namely

that of fluid flow through porous media and in the wells.

2.1 Fluid flow through porous media
We study a macroscopic model for immiscible two-phase

fluid flow in porous media. In porous media there exists, as the
name indicates, an interconnected matrix of pores and channels
through which fluids may flow. The fraction of space available
for fluid flow is called the porosity φ of the medium. An em-
pirical relation describing the connection between flow rate and
pressure drop for single-phase flow was discovered by Darcy
(Darcy, 1856):

q =�
k
µ
(∇p+ρg∇z): (1)

In this equation, q is the fluid flow vector, giving the flow rate
across a cross-section with area A and normal n as Aq �n. Fur-
thermore, p is the fluid pressure, ρ the fluid density, µ the vis-
cosity, g the acceleration of gravity, and z the vertical coordinate.
The proportionality factor k is called the permeability.

The single phase equation is intuitively extended to im-
miscible two-phase flow by postulating that the individual fluid
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phases follow a relation similar to Eq. 1 (Dullien, 1992):

qi =�
k kri(Si)

µi
(∇pi+ρig∇z): (2)

The quantity kri, called the relative permeability, is introduced to
account for the observed fact that the presence of one phase re-
duces the effective permeability of the other. Relative permeab-
ility is a function of the respective fluid saturation, Si, i.e., the
fraction of pore space occupied by phase i.

Due to interfacial tension, two phases may coexist in the
porous medium at different phase pressures, pi. The pressure
difference is given by the capillary pressure, Pc = p2� p1, which
is a function of fluid saturation. With a nonzero Pc, the process
of fluid flow in porous media is not symmetrical with respect to
the two phases. The flow functions are monotonic in S1; typical
examples are given in Figure 1.

In the model used in this work, we assume constant densit-
ies and viscosities of the phases, and constant porosity and per-
meability of the porous medium. Furthermore, we study one-
dimensional flow in the horizontal direction. We combine the
one-dimensional version of Eq. 2 with one-dimensional continu-
ity equations for each phase,

φ
∂Si

∂t
=�

∂qi

∂x
; (3)

and add the capillary pressure relation and an equation stating
that the two fluids fill the pore space completely: S1 + S2 = 1.
This leads to

φ
∂Si

∂t
=

∂
∂x
(

k kri(S1)

µi

∂pi

∂x
); i = 1;2; (4)

p2� p1 = Pc(S1); (5)

S1+S2 = 1: (6)

The solution of these equations for given boundary conditions
constitutes the forward model used in this work.

2.2 Fluid flow in wells
Calculation of fluid flow in the well is based on conservation

of mass, momentum, and energy (Alves et al., 1992). We utilize
a steady-state formulation. The conservation of mass is given by
the following system of equations

∂
∂s

�
Aαo

ρoSC

Bo
uo+AαgRv

ρoSC

Bg
ug

�
=

ρoSC

Bo
qo+Rv

ρoSC

Bg
qg;

∂
∂s

�
Aαg

ρgSC

Bg
ug+AαoRl

ρgSC

Bo
uo

�
=

ρgSC

Bg
qg+Rl

ρgSC

Bo
qo;(7)
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Figure 1. Example of relative permeability (upper) and capillary pressure

(lower) functions.

∂
∂s

�
Aαw

ρwSC

Bw
uw

�
=

ρwSC

Bw
qw:

Here, A is cross sectional area of the well, ui and αi are the phase
velocities and fractions, respectively (i = w (water), g (gas), and
o (oil)). ρiSC and Bi are the fluid density at standard condition and
the formation volume factors, respectively. Rv and Rl controls the
relative volume of gas and oil when brough to surface, and s is
a coordinate along the well trajectory. This way of representing
the fluids is referred to as the black-oil model (Alves et al., 1992).
qi is a space dependent source term in these equations – and the
desired quantity to be determined from measurements in the well
and at surface.

Based on PVT data (e.g, densities, viscosities), the super-
ficial velocities (i.e., αiui) can be calculated in all locations in
the well by solving Eqs. 7. This will define the flow regime
at all locations. Then, from the conservation of momentum, the
pressure loss in the well can be calculated (Alves et al., 1992).
Thus, the measurable quantities such as pressure drop, flow rates,
and phase fractions may then be calculated for all s. If desired,
conservation of energy yields the temperature distribution. For
further details on formulation and solution techniques, we refer
to Alves et al. (Alves et al., 1992).

3 EXPERIMENTAL DESIGN
When designing experiments to meet certain objectives

(such as high accuracy, low costs, or combination thereof), it is
of great importance to have quantitative criterions to guide the
selection of the designs. We here utilize three different measures
to help selection of quantitative criterions – confidence intervals,
D-optimal design, and contribution of information – all arising
from a linearization of the model function around a point of in-
terest in the parameter space. For the porous media model, the
nonlinearity assumption has been investigated by Grimstad et al.
(Grimstad et al, 1999), indicating that in many cases the linear-
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ization results in accurate and conservative confidence intervals
for those parts of the flow functions that are well determined by
the data. A similar analysis is not available for the well flow
model, although our experience indicate a similar behavior. The
three measures are briefly discussed in this section. The consid-
erations for selection of specific criterions are discussed in the
context of the examples in the next section.

The linearized covariance analysis (LCA) is the basis for
confidence interval calculations and for D-optimal design. In
the LCA, it is assumed that the mathematical model is capable
of describing the physical process (i.e., negliglible modeling er-
ror) and that the selected functional representation of the desired
quantity (here; flow functions or inflow profiles) is adequate (i.e.,
negliglible bias error (Kerig and Watson, 1986)). Also, it is as-
sumed that the model function F(p) may be reasonably well ap-
proximated by a function linear with respect to the parameters p
near the point of investigation in parameter space. Finally, the
measurement errors are assumed additive (Y = F+ e) for some
parameter vector p and error vector e, with error elements ei hav-
ing a normal distribution with zero mean and covariance matrix
Σ. The covariance matrix of the estimated parameters P is then
given by (Kerig and Watson, 1986)

Pn�n = (AT Σ�1A)�1
; (8)

where n is the number of parameters in the representation of
the desired quantities, and the matrix A is given by the sensit-
ivity of the simulated data F(p) to the parameters. Note that,
since the vector of data values (Y) does not appear in this ex-
pression, no experimental data are required to compute P. Thus,
provided that a reasonable value of p can be selected, a statistical
analysis of the estimation problem for a specific experimental
design can be performed before actually conducting any experi-
ment (Nordtvedt et al., 1992).

Of greater interest than the covariance matrix P for the para-
meters, is the covariance of the desired quantities themselves at
specified values of the independent variable in the representation
(here; saturation for the flow functions, and spatial coordinate for
the inflow profiles). The covariance, C, of the desired quantities
can be written as

C = DT PD; (9)

where the matrix D is the sensitivity of the desired quantities with
respect to the parameters p at a specified value of the independent
variable in the representation. Using the diagonal of C, point-
wise confidence intervals can be constructed

r� = r�q
p

cii; (10)

where r is the collection of desired quantities and q is the appro-
priate quantile for the given confidence level and distribution.

3.1 D-optimal design
One of the most widely used functions for evaluating an ex-

perimental design is the D-criterion (Pukelsheim, 1993; Fedorov
and Hackl, 1997). Using the D-criterion our measure on the per-
formance of an experimental design will emerge from the com-
putation of the determinant of the inverse of the covariance mat-
rix for the parameters, i.e.,

detP�1
= detAT Σ�1A: (11)

Large values of detP�1 secures small volumes of the confidence
ellipsoid around p. By introducing this measure we are able to
compare – through a single value – how well different experi-
mental designs are suited for accurate determination of the de-
sired quantities. With our assumption on normal distribution on
the measurement errors the D-criterion for experimental design
can be interpreted as a measure of the information contents in the
data (see (Bard, 1974) or (Pukelsheim, 1993)).

3.2 Contribution of information
When solving the inverse problem, the model parameters

are generally allowed to be different from the true parameters
within a certain range, provided that the required accuracy of
model application is assured. Let η j be the range, or resolu-
tion, of parameter p j. The parameter is interval identifiable (Sun
and Yeh, 1990a) if the estimated value p̂ j of the parameter sat-
isfies

��p̂ j� p0; j

��
< η j where p0; j is the true value of parameter

p j. The problem of whether a parameter p j is interval identifi-
able for a given η j depends upon the quantity and quality of the
observations. To evaluate the data requirements of a system in
connection with parameter identification, the concept of “contri-
bution of observation Fi in the identification of parameter p j,”
denoted CT B(Fi; p j), was introduced by Sun and Yeh (Sun and
Yeh, 1990a). The contribution of observation Fi for identification
of parameter p j in the experimental design can be represented as:

CT B(Fi; p j) =
η j

εi

����
Z

Ω j

∂Fi

∂p j
dΩ
���� : (12)

Here, Fi is a component of the model response, p j is a compon-
ent of the parameter vector, η j is a given admissible error of the
identified parameter p j, and εi is the upper bound of observation
noise associated with Fi. Finally, ∂Fi=∂p j is the sensitivity coeffi-
cient of observation F with respect to parameter p in a region Ω j

associated with parameter p j (i.e., an element in the sensitivity
matrix, A; see Eq. 8). A necessary condition for interval identifi-
ability is that there is at least one observation for each component
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for the unknown parameters whose contribution is larger than 1
(Sun and Yeh, 1990b). This can be used as a criterion for para-
meter identifiability.

4 DESIGN EXAMPLES
In this section, examples of design of experiments are con-

sidered for the two cases.

4.1 Determination of flow functions
A variety of experiments, flow scenarios (i.e., injection

strategies and rates / rate fractions), and data types may be
utilized for determining two-phase flow functions. Typical ex-
periments include flooding experiments (unsteady state (Watson
et al., 1988) or steady state (Urkedal et al., 1999)), centrifuge
(Nordtvedt et al., 1993), or porous plate / micro membrane (Guo
and Hammervold, 1993)). Examples of data are time series of
produced volumes and pressure drop as well as saturation pro-
files.

The many options for experimental design presents a di-
lemma. Wheras one generally accepts that more data can provide
for more accurate estimates, the relative costs for some types of
data or experimental scenarios can be quite high. For example,
while measurements of saturation profiles within the sample
would seem to be very desirable (Kulkarni et al., 1998), the cor-
responding equipment can be quite expensive. Thus, one aims at
experimental designs that balances the desire for accurate estim-
ates of the flow functions and the experimental effort (e.g., time
and costs) required.

In this work, we assume the absolute permeability and
porosity to be given quantities (note, however, that they may
be varying spatially), and that the fluid characteristics (viscos-
ity, densities) are constant and known. We represent the relative
permeability and capillary pressure by a linear expansion of basis
function, and evaluate the accuracy for one or several points in
the parameter space spanned by this representation. This can be
done for a series of competing experimental strategies, such as
flooding experiments, centrifuge, or porous plate / micro mem-
brane. For the selected strategy, we need to specify the type of
data, and the location (in time and/or space) where a data point
will be taken. We consider here flooding experiments. For these
type of experiments, one or several fluid phases are injected into
a core sample having some initial saturation. Constant injec-
tion rates for one phase or constant pressure drop experiments
are commonly utilized, although varying injection rates (and rate
fractions between two phases being injected) have proven to
be useful for simultaneous determination of the flow functions
(Urkedal et al., 1999). Here, we investigate two flow scenarios,
involving single or multiple constant rates, one of them with sim-
ultaneous injection of two phases – see next section for details.
Examples of data types for a flooding experiments are differen-

tial pressure over the entire core sample as a function of time,
volume produced from the outlet end as a function of time, sat-
uration profiles, and in situ phase pressures or saturation as a
function of time for one or several positions within the porous
media.

Once the flooding scenario and types of data with given ac-
curacy and time and position have been selected (i.e., the design),
the covariance analysis can be used to determine the expected ac-
curacy. Selecting several designs, one can investigate into which
of them would be preferable for a given application. In sum-
mary, the evaluation of the experimental designs comprises the
following steps:

1. Select core and fluid properties, and select relative permeab-
ility and capillary pressure functions (i.e., select a point in
parameter space);

2. Select an experimental design (i.e., flow scenario, types and
number of data and the accuracy of these data);

3. Perform the covariance analysis (i.e., calculate the confid-
ence intervals around the selected flow functions); and

4. Analyze the confidence intervals with respect to desired ac-
curacy in the flow functions.
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Figure 2. Pressure and production data for the two designs. Left: Pro-

duction data; Right: Pressure drop data.

4.1.1 Some results We consider here the design of a
drainage experiment (oil flood). We have investigated two dif-
ferent injection schemes, referred to as A-1 and A-2. Simulated
data for A-1 (one injection step) and A-2 (six injection steps)
are plotted in Figure 2; here only pressure drop and volume pro-
duced data are considered. The impact of measurement error on
estimated flow functions is represented by confidence intervals.
Figure 3 shows the confidence intervals around the true relative
permeability and capillary pressure curves resulting from utiliz-
ation data from the two scenarios. For A-1, the generally wide
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confidence intervals show that the data contain little information
about the relative permeability and capillary pressure functions
for water saturation from 1.0 down to 0.5. In A-2 the confid-
ence intervals are more narrow, showing that this design is pre-
ferred for accurate detremination of the flow functions. This is
due to the multi rate and fraction injection scheme in design A-2,
provides for data better reflecting all saturation values.

For both cases, the confidence intervals become very large
for Sw � 0:2 since saturation does not take on values in that range
during the experiments. The narrow confidence intervals in Fig-
ure 3 for A-2 show that production and pressure drop data from
an injection strategy with six rate fractions will provide accur-
ate estimates of the relative permeability and capillary pressure
functions.
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Figure 3. 95% confidence intervals for the two experimental designs

considered. Upper left: Water relative permeability; Upper right: Oil relat-

ive permeability; Lower: Capillary pressure.

The contribution of observations for determining each para-
meter is also addressed for cases A-1 and A-2. Figure 4 shows
the contribution of pressure drop data on the water relative per-
meability parameters. The left figure shows the results on pres-
sure drop data from experimental design A-1 (where only one
injection step has been used). Here, all the contributions are be-
low 1. This means that the computed observations F(u;p) are
unable to distinguish two parameters within the given resolution

η j and accuracy ε̄i on the observations. The right figure shows
that the A-2 design (with six injection steps) gives data where
CTB(Fi; p j)� 1 for several the parameters and high for the oth-
ers. Hence, the parameters are identifiable with the suggested
experimental design, resolution and measurement error.
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ter relative permeability. Left: Design A-1; Right: Design A-2.

4.2 Determination of inflow profile
The linear covariance analysis outlined in Section 3 allows

for evaluation of the accuracy of the estimated inflow profile for
a given design. If the accuracy is not satisfying, additional meas-
urements need to be included. If the accuracy is satisfying, the is-
sue of reducing the number of instruments used can be addressed.

To search for the best instrumentation of the well it is ne-
cessary to be able to compare different designs of instrumenta-
tion. A quantitative measure on the performance of each design
of instrumentation is needed. We here utilize the D-measure dis-
cussed in the previous Section.

To design the instrumentation of the well, we need a list of
potential measurements. This list must include the type, location,
and measurement errors for each sensor providing the measure-
ments. We must ensure that by using all the possible measure-
ments, we are able to achieve the required accuracy.

A common assumption in the design process is that some
measurements should be included in the design, either because
they are already implemented in the well, or because of the fact
that their relatively low cost makes them a good starting choice
for designing the instrumentation. Then we need to search for ex-
tra measurements to complement the set of measurements which
are already included in the design.

In the further discussion a data point is the information ob-
tained by measuring a physical quantity at a specified position in
the well with a certain accuracy. To obtain a data point one need
an instrument at the specified position which are able to measure
the quantity in question with the required accuracy.
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Let us give a short mathematical description of the optimiz-
ation problem we need to solve. Each data point corresponds to
a row, ai, in the sensitivity matrix (A) and a corresponding diag-
onal entry σ2

i in the covariance matrix Σ. Since we assume that
the measurement errors are uncorrelated, Σ is diagonal, and

AT Σ�1A =

M

∑
i=1

aT
i σ�2

i ai (13)

where the sum runs over the measurements included in the sim-
ulation.

Since we have made a decision that some instruments should
be used in the design, there is a set Q of data points that we have
access to, and we want to augment this set with N extra measure-
ments from M candidate measurements. The optimization prob-
lem is then formulated as

max
S

det

 
∑
Q

aT
j σ�2

j a j +∑
i2S

aT
i σ�2

i ai

!
: (14)

Here, S runs over all sets with N elements. Unfortunately, the
above optimization problem is very hard to solve. This force us
to look for solutions which are acceptable and fast to compute,
but not necessarily optimal. Acceptable solutions are obtained
utilizing a greedy algorithm which ranks the additional instru-
ments. For simplicity we assume that

det

 
∑
Q

aT
i σ�2

i ai

!
> 0: (15)

To rank the M candidate instruments, we use the following al-
gorithm:

1. Begin at iteration 1 with S0 as the full set of M data points.
2. At iteration i, find the element k 2 Si�1 which solves the

optimization problem

max
k2Si�1

det

 
∑

j2Si�1nfkg

aT
j σ�2

j a j +∑
Q

aT
j σ�2

j a j

!
(16)

Let the new set Si = Si�1nfkg.
3. The algorithm terminates when the set Si contains N ele-

ments.

Since the data points are thrown away in the same order in-
dependently of N we can run the algorithm with N = 1 and make
a ranking of the instruments. With this ranking the search for
a suitable design reduces to select the number of (additional)

measurements. This decission will be a trade off between the
reduction of the confidence intervals versus the cost of introdu-
cing extra measurements.

As a reference on the use of greedy algorithms in construct-
ing D-optimal designs we refer to (Robertazzi and Schwartz,
1989), but we must remark that our problem formulation is dif-
ferent from theirs. In the next section, the use of these algorithms
are exemplified.

4.2.1 Some results Using the algorithms above one
can assess the instrumentation in the well. Since the results refer
to a fixed inflow profile, these algorithms must be run for every
inflow profile of interest separately.

Before designing the instrumentation we need information
about the geometry of the well, a list of instruments (type and
position) we want to consider, the measurement errors of the in-
struments, the resolution of the well inflow, and a list of actual
inflow profiles.

Then, for each inflow profile on the list we compute the sens-
itivity matrix and use this to make a ranking of the instruments
for this inflow profile. After obtaining the rankings for all the
inflow profiles in the list, the rankings can be used as a guideline
for designing instrumentation for the well. The behavior of a
selected design should be tested on each of the inflow profiles,
to check that the confidence intervals of the inflow profiles are
satisfactory.

We have utilized this procedure to study how well the fluid
inflow profile may be determined from pressure, temperature,
fluid velocities, phase fraction, and total production of each
phase. A water, oil, gas case is considered. We consider how
809 data points may be utilized to determine the inflow of water
to the well. The well considered is a 2000m inclined well, di-
vided into four sections. Figure 5 shows the results. In the upper
left figure, we have plotted the true inflow profile along with the
pointwise confidence intervals when all data are utilized. In the
upper right figure, only 401 temperature data are utilized along
with the total production of each of the phases. As can be seen,
the accuracy is lowered for most of the inflow area. We then
utilize the above procedure to identify an appropriate number of
instruments to add to the temperature data. Four additional in-
struments are included, giving an accuracy as illustrated in the
lower figure of Figure 5.

5 CONCLUSIONS
We have discussed experimental design strategies for two in-

verse problems arising within petroleum engineering, namely the
estimation of flow functions from displacement experiments and
the inflow profile from distributed data in the well. We demon-
strate that confidence intervals, D-optimal design, and contribu-
tion of information, can be used successfully to obtain experi-
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Figure 5. Confidence intervals for different instrumentation strategies.

Upper left: All datapoints are included; Upper right: Only temperature and

total production data are used; Lower: Temperature and four additional

measurements are used.

mental designs yielding accurate estimates of these quantities.
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