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ABSTRACT
An approach combining the use of the hot-wire method

with the solution of heat conduction inverse problems is
proposed for the thermal characterization of new polymeric
materials.

Due to the low thermal conductivity of the material, the
cross technique is used instead of the parallel technique. The
inverse heat conduction problem has been solved as a finite
dimensional optimization problem with the Levenberg-
Marquardt method.

Results are presented for phenolic foams with lignin
thermal conductivity and diffusivity estimation from a real set
of experimental data.

INTRODUCTION
A considerable amount of effort has been devoted for the

fulfillment of the ever-growing demand for new materials with
relevant applications in engineering and medicine. The recent
trend has been the development of specific materials for new
applications, with the latter coming first. It becomes mandatory,
then, the use of the adequate techniques to characterize the new
materials developed, through the determination of their
properties.

Besides that, the accurate modeling (physical,
mathematical and computational) of systems and components of
engineering interest, relies heavily on the use of the proper
values for the material properties.

For applications involving heat transfer by conduction, the
thermal conductivity and diffusivity are the most relevant
properties to be considered. Shai et al. (1993) measured the
thermal diffusivity of solids, and Trevisan et al. (1993)
measured the same property for saturated porous media.
Carvalho et al. (1996) measured the thermal conductivity of
polymers with the hot-wire method. This method was described
in 1888 by Schiermacher, but its first practical application was

reported in 1949 by Van der Held and Van Drunen, who used it
to measure the thermal conductivity of liquids (Davis, 1984).

Experimentalists use a lot of engineering skills trying to
control several degrees of freedom during the development and
operation of experimental apparatus and techniques to
determine the required material properties. Combining the
experimental activities with the solution of heat conduction
inverse problems, a larger number of degrees of freedom may
be taken into account, even allowing the simultaneous
estimation of new unknowns brought into the problem by the
more accurate mathematical modeling.

Using the solution of inverse conduction problems
Mikhalev and Reznik (1989) estimated the temperature
dependence of the thermal conductivity of orthotropic
materials, and Cheng and Zang (1994) estimated the spatially
dependent thermal conductivity in optically opaque solids.
Artyukhin (1976, 1982, 1982a), Tervola (1989) and Artyukhin
et al. (1984, 1993) have used the expansion of the temperature
dependence of unknown thermal conductivity, or thermal
diffusivity, in known functions such as polynomials or splines,
reducing the inverse problem of function estimation to that of
determining the expansion coefficients.

One of the most relevant applications of the inverse
analysis is related to the design of experimental apparatus and
techniques as well as the optimal use of existing equipment or
experimental data already acquired (Artyukhin and Okhapkin,
1984; Emery et al., 1993). The approach involving the solution
of inverse problems is well fit to perform those tasks. In some
of the techniques developed, sensitivity coefficients have to be
calculated during the procedure used for the solution of the
inverse problem (Beck et al., 1985), and the confidence bounds
for the estimated values are related to these sensitivity
coefficients. Going one step further, the criteria used for the
design of optimal experiments may be related to the
minimization of the confidence region (Taktak et al., 1993).
Therefore, through this approach a significant gain in
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experimental simplicity and productivity can be achieved
(Goryachev and Yudin, 1983).

In this work we present the first results of our efforts
towards the physical, mathematical and computational modeling
of the hot-wire method for the estimation of new polymeric
materials thermal properties, developing an improved use of the
method through the solution of inverse heat conduction
problems.

The hot-wire method has been successfully used for
ceramic materials thermal conductivity determination, being
now the worldwide standard for values up to 25 W/moC (Santos
et al., 1995). Its application to polymers had not been
demonstrated until 1989 (Thompson, 1989), and it seems to
have been addressed for the first time by  Carvalho et al.
(1996). For polymeric materials the hot-wire parallel technique
has been replaced by the cross technique, where a thermocouple
junction is welded to the hot-wire that works as the heat source
located in the middle of the material sample whose properties
are being determined.

We proceed now with a brief description of the hot-wire
method followed by the description of the inverse problem
approach. Results for a test case with real experimental data are
also presented.

THE TRADITIONAL EXPERIMENTAL APPROACH
(HOT-WIRE TECHNIQUE)

In Fig.1 is shown an schematic representation of the
experimental apparatus for the hot-wire cross technique used in
polymeric materials thermal conductivity measurement. An
electric resistance (hot-wire) is embedded in a sample of the
material. As an electric current of fixed intensity flows through
the wire, the electric resistance heats up and the sample of the
polymeric material around it works as an insulator. From the
transient measurements of the wire temperature, the thermal
conductivity of the sample is determined.

thermocouple

sample

Hot-wire
(electric resistance)

V

A

Reference

Figure 1 – Schematic representation of the experimental
apparatus.

In the traditional experimental approach, the following
simplified model is constructed: consider an infinite line source
of constant intensity embedded in an infinite medium initially at
the temperature Tamb, that at time t=0 starts to release its energy.
At sufficiently long times and/or small radial distances from the
wire, r, the excess temperature, θ, presents the following time
dependence (Bejan, 1993)
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where T is the temperature, k is the thermal conductivity and q’
is the source linear power density. Due to the linearity in Eq.(1),
if we take two temperature measurements at t1 and t2, the slope
of the line in a plot θ x ln t is
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In a real experiment a set of noisy experimental data is
collected, ( ti , θi ), i = 1, 2, ..., N, with N >> 2. Therefore, the
slope of the line that fits the data (ln ti , θi), i = 1, 2, ...., N, is
obtained using the least squares algorithm, yielding the sample
thermal conductivity estimate k = q’ / (4 π . slope) .

As the experimental samples are always of finite size, at a
time t* heat begins to be transferred to the ambient by natural
convection.  When that happens a deviation of the linearity
predicted by Eq. (1) takes place. Therefore, experimental data
has to be acquired only for t < t* . For materials with high
values for  the thermal diffusivity (α = k / ρ cp  where ρ is the
density and cp is the heat  capacity ), t* may become too small,
consisting, on a severe limitation for the application of the hot-
wire method.

As Eq.(1) is derived considering a constant thermal
conductivity, the approach described here can not be used if this
property presents a variation with temperature.

THE INVERSE PROBLEM APPROACH
Using a more accurate physical and mathematical

modeling of the experimental apparatus, and stating the thermal
properties estimation problem as an inverse problem, we are
able to extract from the same experimental data given above, (ti,
θi), i = 1,2,..., N, not only the thermal conductivity, k, but also
the heat capacity, cp. An attempt may also be made in order to
estimate other unknowns brought into the problem by the
relatively more elaborate modeling. In this case one has to deal
with further data quality and sufficiency concerns. Through a
careful analysis of the model and/or a proper experiment
design, an evaluation can be done on the adequacy of using the
proposed approach for the estimation of additional unknowns. If
temperature measurements are taken for t > t* , we may even try
to estimate the heat transfer coefficient from the sample to the
ambient around it.

Consider a sample of finite size, i.e. radius R, with a line
source at r=0, and long enough such that heat conduction can be
considered only in the radial direction. The sample is initially at
the same temperature of the ambient, T = Tamb , and the heat
source, whose intensity may vary with time, g(t), starts to
release its energy at t = 0.

The mathematical formulation of the physical situation
described is given by
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where h is the heat transfer coefficient and the other symbols
have already been defined.

When the geometry, the material properties, the intensity
of the heat source, and the initial and boundary conditions are
known, the temperature distribution, T(r, t), can be calculated.
This is known as the direct problem. When any of these
quantities, or a combination of them, are unknown, we have an
inverse problem.

In the problem presented it may be of interest to estimate
k and cp , as well as h and g(t), being the latter a real concern
during the period of data acquisition because in the traditional
approach previously described, it must be kept constant. As
already mentioned in this section, extreme care and proper
analysis has to be used in order to perform such estimations.
Furthermore, as a rule of thumb, we may say that it is best to
estimate as few parameters as necessary.

As the real experimental data collected with the
experiments conducted so far, have considered only
measurements taken for t < t*, we will focus in this work only
on the estimation of the vector of unknowns

As the density is easily determined using other techniques,
it is considered given. Therefore, with the estimation of k and
cp, the thermal diffusivity, α is also estimated. If any of these
properties presents temperature dependence, say k (T), it can be
approximated by a polynomial

( )    
0=

=
L

l

l
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or any other set of  known functions, reducing the problem of
estimation in an infinite dimensional space to that of
determining the set of coefficients al , l = 0, 1,..., L, in a finite
dimensional space. The vector of unknowns would then be
enlarged to take into account the new unknowns to be estimated

            },,,,{ T
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A comment is in order. Other methods can be used for the
function estimation directly, without requiring the
parametrization given by Eq. (5). Silva Neto and Özisik (1994,
1994 a) used the Conjugate Gradient Method with an adjoint
equation for the solution of inverse problems involving function
estimation.

As previously said we will concentrate here on the
estimation of the unknown vector given by Eq. (4), i.e. in this
work no temperature dependence of the thermal properties will
be taken into account.

THE SOLUTION OF THE INVERSE PROBLEM
To solve the inverse problem of estimating the vector of

unknowns Z we have used the Levenberg–Marquardt method.
Silva Neto and Özisik (1993,1995) have used this method for
the solution of inverse problems involving radiative heat
transfer as well as the combined mode conduction–radiation.
The method will now be briefly described.

As the number of measured data, M, is larger than the
number of parameters to be estimated, the problem is
overdetermined. It can be solved, then, as a finite dimensional
optimization problem in which we want to minimize the norm
of squared residues
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with the elements of vector F  given by
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where Wi , i = 1, 2, ..., M are the measured temperatures,       Wi

= θi  + Tamb ,  and Ti are the calculated temperatures. The index i
represents the discretization of the time interval in which the
temperature measurements are taken.

To minimize Q we differentiate Eq. (7) with respect to
each of the unknown parameters yielding
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Using a Taylor’s expansion, keeping only the first order
terms,
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and plugging it into Eqs. (9), we get
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where the Jacobian elements correspond to the sensitivity
coefficients
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Observe that in our case we have just two unknowns, i.e.
L = 2. Therefore, JT J is a 2×2 matrix.

To help with convergence, a damping parameter λ is
added to the diagonal of the matrix JT J, leading to the
Levenberg–Marquardt method (Marquardt, 1963),

               ( ) ( )13                                     FJZ IJJ TT −=∆λ+

where  I represents the diagonal matrix.
We are now in a position to describe the iterative

procedure used for the inverse problem solution. Starting with
an initial guess for the unknowns, Zo , new estimates are
obtained
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with the corrections ∆ Zn computed from Eq. (13) as
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The iterative procedure is interrupted when a stopping
criterion established a priori is satisfied, e.g. ||∆Zn|| < ε with  ε
being a small number.

The damping parameter is varied along the iterative
procedure according to the algorithm proposed by Marquardt
(1963).

At every step of the iterative procedure we have to
calculate the temperatures at the positions where the
temperature sensors are located (see Eq. (7)). This computation
is done using Eqs. (3a–c) with the estimates obtained for the
unknowns at each iteration. To solve the direct problem, Eqs.
(3a–c), we have used the finite difference method with an
explicit formulation

CONFIDENCE BOUNDS
Following a procedure discussed by Huang and

Özisik(1990), the 99% confidence bounds for the estimates are
Z ± 2.576 σz,  with σz determined as
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RESULTS
We have already collected a large amount of experimental

data for new polymeric materials, mainly for phenolic resins
and foams with and without lignin. Lignin is obtained from
sugar cane bagasse and may be used as a co-monomer in
polymeric materials production (Carvalho,1997). All
experimental data has been taken for times t < t*, because so far

the main focus had been the use of the hot-wire method solely
for the thermal conductivity determination.

In Fig. 2 is shown one set of such experimental data, on a
plot Wi  x  ln ti , for a phenolic foam with lignin. In this case a
total of 26 temperature measurements were taken from t=60 s
up to t=110 s with a regular 2 s interval between every two
consecutive readings.
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xperimental data for a phenolic foam with lignin.
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Next step consists on an effective experiment design for
thermal properties estimation (Beck and Arnold, 1977). Using
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Table 2 - Estimates for k,  cp and norm Q at each iteration

Case 1 - Zo = (0.05,1000.0)
Iteration k (W/m oC) cp   ( J/kg  oC) Q (oC2)

0 0.05 1000.0 4285.75
1 0.06584 1361.6 262.53
2 0.07245 1537.7 2.63
3 0.07319 1563.0 0.12
4 0.07319 1563.0 0.12

Case 2 – Zo = (0.1, 2000.0)
Iteration k (W/m oC) cp   (J/kg  oC). Q (oC2)

0 0.1 2000.0 1169.01
1 0.06337 1446.3 324.97
2 0.07187 1557.0 3.87
3 0.07319 1563.2 0.12
4 0.07319 1563.0 0.12
5 0.07319 1563.0 0.12

CONCLUSIONS
The accuracy of the results presented demonstrate that a

step forward has been given by using an inverse heat
conduction problem solution to extract as much information as
possible from a set of experimental data that had already been
collected. More important, though, is the potential that we
devise for the development of knowledge intensive equipment
for thermal characterization of new materials.
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