
ABSTRACT

The main goal is a theory development of optimal

experimental design for the heat properties identification of a

solid. Sequential and methodical study of identification of a

specific heat and thermal conductivity are carried out. The

wide range of mathematical models are considered. The

model choice is determined by possibilities of analytical

analysis of design conditions.

The investigation answers to a number of principal

questions of thermophysical experimental realization and

design. Their practical significance is expressed in discovering

the existence of the experimental informatibility upswing

even of very small sample volume.

NOMENCLATURE

x Spatial coordinate
t Time
u(x,t) Temperature field
f Volume heat sources
u0 Initial temperature
v0,1 Boundary temperatures
a1 Specific heat coefficient
a2 Thermal conductivity coefficient

ε Noise of observations
δ Absolute error of observations
uδ Sample of observations
u Prototype state
ν Absolute error of identification
µ Relative error of identification
Ξ Optimal design
Ω Stabilizing functional
θ1 2, Form-factors of identification errors mode

R Indeterminacy power of model identification

INTRODUCTION

At the moment, despite a significant history of

experimental heat exchange researches, the theory of its

optimal design has not answers to the whole series of basic in

essence problems. The known solutions [1-3] were

considered for cases, which don’t allow to receive a full

picture of optimal design conditions.

We shall deliver and study the following questions.

What is the essence of optimal observations design: in

searching of locally-optimal points, individual for each

specimen and conditions of its thermal loading or in existence

of the common circuit of observations, identical for any

experiment, but updated on a number of conditions?

How to find identification errors dependence vs

observations allocation for any kind of an experiment?

Which measurements guarantee a minimum level of

identification errors of heat transfer properties? Which factors

and conditions of experimental realization ensure a decrease

of an identification errors level?

Are significant functional features like symmetry of

observations, heterogeneity of temperature distribution,

ratios between object properties, ratios between boundary

conditions and others for an optimal identification?

Whether statistical indeterminacy of observations has an

influence to an  identifiability of an experiment?

Is it possible to find as heat properties of specimen and its

boundary conditions using only one point of observation?

These questions on the whole bring out the principal

character of design peculiarities. Their solutions are carried

out below. The ones demonstrate the tools for the

informatibility analysis of a complex experiment.
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EXPERIMENTAL DESIGN METHOD

The determination of optimal observations must be

carried out in general with allowance for the methodological

characteristics of inverse problem. This can be accomplished

to the fullest extent by means of the Tikhonov regularization

principle [4]. We use such regularization below, invoking a

special procedure [5]. The one allows to achieve the best fit to the

observations and doesn’t require a regularization parameter.

Essential feature of the design method is a type and

character of obtained estimations. This investigation is based

on idea of a guaranteed error [6]. In this case a minimization

of identification error

ν νrms i
i

n

n=
=
∑ 2

1

/ .

is carried out. In addition to the rms norm, which provides a

means for analyzing observations from the standpoint of total

error, other forms of estimation error can be considered. The

most practical form here could be the absolute-error estimator.

The one requires a minimization of the error

ν | νabs
i

i= max | .

Let us define the factors of experimental realization,

which influences to the accuracy solution of inverse problem.

Definition 1. An indeterminacy power of mathematical

model identification is a factor determining a level of

identification error in accordance to the measurements

errors and the type and strength of a driving force.

The one is expressed a main conditions due to

identification errors is decreased to zero. To separate the

conditions of experimental realization which has an influence

to the sensors allocations it is necessary to introduce

Definition 2. A form-factor of identification error mode

is a factor determining the character of identification errors

distribution vs sensors allocations.

A significance of these two type of factors and their

comparison will be shown below.

ONE  UNKNOWN COEFFICIENT

We specify the mathematical model

du

dt
a u u t

u u

am

t

= − >

=
=

( ), ;0

0 0 (1)

with an unknown coefficient a = const>0.

The observation fitting equation [6] for the model (1) is

expressed in the final form

max|( ) exp( )[exp( ) ] |
t

amu u at at− − − + =0 1µ ε δ

whereµ = −( ) /a a a is the relative identification error, a is the

true value of the required coefficient. The identification error

is determined by the expression

µ = +1
1 2

at
atln[ exp( )]R ,

The corresponding graphs are show in Fig.1. Here

R =
−
δ

u uam 0

is the indeterminacy power of the model (1) identification.

The one determines main factors and conditions due to an

identification error level is established and reduced.

For any noise level | |ε| |< ∞ the coefficient a will be

determined with optimal error µ µ(C

t
t) min ( )= at the time

t
a

opt

C C
=

−
1 1

1µ µ( ) ( )
ln

The R-optimal and C-optimal designs [6] for the model (1)

identification are equivalent. The final expression for the minimum

guaranteed identification error is represented in implicit form

µ µ
µ

µ( ) ( )( )

( )
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C

C

1 2
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The behavior of the guaranteed error and the character of

the optimal observation time have the next peculiarities. First,

the identification error of the model (1) depends on the noise

level and the difference between initial and ambient

temperatures. Consequently, the condition for offsetting

growth of the observation errors and diminishing their

influence is to increase the temperature difference. Second,

the upper bound of the indeterminacy power of the model (1)

identification is Rmax = 1/2. Experiments, which have R ≥
Rmax, cannot to guarantee an identification accuracy. Third,

the lower bound of the optimal measurement time is the value

Tmin = 1/ a. This value establishes a certain barrier, below

which observations are not recommended, i.e., topt>Tmin.

Let the state of an object be described by following model
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Figure 1. IDENTIFICATION ERROR OF MODEL (6)
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In case v0,1 = const the observation fitting equation is

expressed as

max|
( ) ( ) ( )
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where µ = −( ) /a a a. From Eq.(3) follows that for any a and

| |ε| |< ∞ the minimum identification error is attained for the

optimal observation allocation xopt = l /2. The time

dependence of the identification error µ is expressed by the

equation
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where

R =
δ

v v u1 2 02+ −

is the indeterminacy power of the model (2) identification. The

appropriate optimal time is expressed as local-optimal

t Arg topt

t
= min ( )µ

The dependence of C-optimal identification error from the

conditions of experimental realization is represented in Fig.2.

The model (2) has following identification peculiarities.

The lower bound of the optimal measurement time is

T amin /= l
2 2π . The upper bound of the indeterminacy power

of  the model (11) identification is Rmax = 1/4.

TWO UNKNOWN COEFFICIENTS

Let us specify the next mathematical model
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It is required to find such pair of points

Ξ = ={ , } ,x ti
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i
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i 1 2 in which known sample of observations

u u x t ii i i i

δ ε= + =( , ) , ,12

can to define a specific heat a1 and a thermal conductivity a2

with a minimum guaranteed error on rms

µ
µ µ1

2
( )

,
minR
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or minimax

µ µ( )

,
min max| | ,C
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criteria. Here µ1 2 1 2 1 2 1 2, , , ,( ) /= −a a a are relative errors of

identification, a1,2 are unknowns defined the true state u, ε is

measurements noise.

We shall accept a number of the suppositions. At first, we

shall consider a1,2=const. Besides a specimen density is

included as known constant in coefficient a1. Secondly, we

shall limit an aspect of thermal loading conditions to values f,

u0 ,v0,1 = const. These restrictions will allow to simplify the

analysis of optimal designs dependence from conditions of

experimental realization. At the same time these restrictions

do not reduce number of ratios between boundary conditions.

They envelop a broad band of practical cases and all

characteristic ratios between thermal loading are reflected.

Note, that the volume of observations{ } ,u i i

δ
=1 2 is selected

from a condition of supporting of its admissible minimum.

This restriction of sample volume allows to analyze the

achievement of maximum experimental informatibiality,

rested minimum initial information [8].

The condition of the model state fitting with observations

is given by system
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The functions F s are represented by true values a of

unknowns, and the functions $Fs are expressed by values $a,

obtained in an outcome of identification.
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Figure 2. C-OPTIMAL IDENTIFICATION OF MODEL (11)



Optimal designs

Let us study a behavior of functions µ1 2, at variations of

their variables x,t. A term by term comparison of expression,

obtained by a difference for any t t' "< one of the equations (5)

allows to find the following conditions
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From them it follows that
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By virtue of it for any t t' "< and µ 2 <1 a condition ′ ′′µ > µ2 2 takes

place. It means, that the function µ 2 is monotonically decreasing

on time. Then the least identification error of a thermal

conductivity can be reached only at the stationary state

observation, i.e., t Topt

1 = ∞ .

Accordance to this fact for the optimal time of

measurements the spatial dependence of the function µ 2 from

a sensor coordinate is expressed as

µ µ

δ

2 2 2

2
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1
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−
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The one is obtained in case of absolute norm using for the

model state fitting with observations.

From expression (6) we define the least guaranteed error

µ µ2 2
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¥
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. It is reached in the point x1
opt = l/2 and

matters
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where

R =
δa

f

2

2| |l

is the indeterminacy power of the model (4) identification.

Any experiments cannot to guarantee an identification

accuracy in case R ≥ Rmax = 1/32, because µ 2 1− > .

We shall remark that the function µ 2 T
¥

has the second

minimum

µ 2

16

16 1

+ =
+

R

R
.

The one for R>0 does not express guaranteed level of thermal

conductivity identification, but this error is necessary for

taking into account hereinafter at error minimization.

The character of the error µ1 is determined by a stage of

the thermal process and ratios between a source function and

boundary conditions {f,u0,v0,1}.

On an initial stage of the process, when t~0, sharp growth

of values µ1 is supposed, since the exponential terms in

functions F1,2,3 linearly depend from t. Then the restriction of

growth of exponential terms of the series (15) is reached by a

choice such x, for which as the function sin(2k-1)π x/l , and

sin(2kπx/l ) approach to zero. It means, that on an initial stage

of the thermal process the error µ1 is descreased when

observations asymptotically approach to the boundaries of a

specimen, x → 0, x → l. In themselves boundary x = 0, x =l,

the function µ1 , as follows from (15), suffers a discontinuity

of the second kind. According to this fact the designs
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are as R-, and C-optimal if the condition for example is

fulfilled

| ( )| | |2 0 0 1 1 0u v v v v− + = −
and the function f does not exceed a value, which installs a

significance of terms of function F1 in (5).

In case t>>0 the restriction of µ1 growth at the expense of

parameters variations in exponential terms (5) is unsufficient.

Then an identification error decreasing can be reached, if the

observation is fulfilled in a point, where there is the maximum

of harmonics of the series (5).

In view of the series (5) convergence only first terms as

significant can to ensure the restriction of µ1 growth.

Therefore the extreme of µ1 is localized in areas, which

centers should place in one of points {0.25l; 0.5l; 0.75l}. A

deviation of optimal coordinate from indicated points will be

less significant with thermal diffusivity a = a2/a1 growth

because a convergence velocity of the series (5) depends from

a value of a thermal diffusivity.

The time for the second optimal observation in these

cases is determined as locally-optimal

t Argopt

x t
=

- +
min max( , )

,
µ µ

µ µ1 1
2 2

Characteristic cases of rms error dependence vs sensor

allocation  minimized on time are shown in Fig.3 and 4.

It should be mentioned, that all optimal designs are

obtained despite essential nonlinearity of a model state

dependence from unknowns, and in the supposition of any

nature of measurements noise. This result shows that even

essentially nonlinear design problem supposes its aggregate

and has strictly defined circuit of measurements.
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Let us consider optimal design of the controlled

experiments. It should be assumed, that the thermal loading is

not fixed, and one is modified in desirable direction. There is

the thermal loading condition

v v0 1= (8)

which may be to define as the best guaranteed condition. The

one means independence of a position of the optimal point

x2
opt from ratio between factors {f, u0, v0,1}.

For a determination of an optimal observation at

realization of the condition (8) we shall subtract one from other

the equation (5) for different values x' and x". We obtain
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From it follows

sin
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sin
( )2 1 2 1k

x
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x
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Then at any {f, u0, v0,1} for the error µ1 minimization the

observations would be selected when |sin( ) / |2 1k x− π l have

a maximum. From all such points only one x = l/2 ensures a

required maximum in each term of the series (5).

Therefore, if the condition (8) take place then the second

optimal observation coincides with first point. The middle of a

specimen appears the unique point, measurements in which

guarantee the identification of heat properties with a minimum

error. The appropriate optimal design is represented as

Ξ
v v

optt T
0 1

2
= ∞= { / , , }l

Thus the analysis of extreme properties of the

observation fitting equation (5) allows to specify in analytical

form the wide range of design characters.

Basic properties of optimal design

The model (4) investigation has allowed to place the

following features of heat properties identification.

1. The optimal design is expressed by the strictly defined

circuit of measurements of a specimen temperature field.

2. In general the representation of a volume heat source,

boundary temperatures and two interior observations are

enough for identification as constant specific heat and thermal

conductivity.

3. The consideration of individual properties of a

specimen and its thermal loading does not change this circuit,

but requires to make more accurate the position of one of the

sensor and time of a measurement. A noise level does not

influence to an aspect of the optimal design, but defines a

magnitude of the identification errors.

4. The optimal position of the first interior observation

does not depend on a character of thermal loading of a

specimen and its heat properties. A sensor should be installed

in the middle of a specimen.

5. The optimal observation time into the middle of a

specimen for any experiments is a measurement of a

stationary temperature of a specimen.

6. The optimal allocation of the second interior

observation is localized in five limited areas. The significance

any of them depends on conditions of experimental realization.

7. There is the broad band of boundary conditions

variations, at which the position of the second interior

observation is optimum only near to one of specimen

boundaries, and the best time of measurements is determined
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by the beginning of the heat process. The similar experiments

are characterized by low difference between initial and one of

the boundary temperatures.

8. Optimal observations may be carried out in one of the

points {0.25l; 0.5l; 0.75l} or their neighborhoods. The range

of a deviation from these points is determined by magnitude

of a specimen thermal diffusivity and ratios between

boundary conditions. The optimal time of second

measurement can be found as locally-optimal.

9. A design of the conditions of experimental realization

allows to reduce volume of the observations to its minimum.

The requirement of the boundary temperatures equality among

themselve is the important condition for the measurements

decreasing. In this case the number of observations for the

model (4) identification is defined only as one interior point

(not counting observations for deriving boundary conditions).

EXPERIMENTAL PECULIARITiES

Now we shall give attention to the influence of the

experimental conditions on an identification accuracy.

Identifiability violation

The uniqueness solution of the system (5) requires a

samples getting, which does not reduce equations to the linear

dependence in points {xi, ti}i=1,2. The one leads to the

following condition
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Then the model (4) state is an unidentifiable on discrete

sample u *

δ only when the observations will be carried out in

any two points x*1,2 such, that x*1 + x*2 = l, and the

measurements will be executed at the same moment, t1 = t2.

The existence of unidentifiable state of the model (4) was

shown earlier in [11]. The condition (9) expresses the

additional unidentifiability, when the one-to-one

correspondence is away only in separate points.

Threshold level of noise

As it is possible to see if µ1 → ∞ then the system (5) is

degenerated. Then the usage of observations, for which δ>δ*,

is meant a violation of domain of admissible values of system

(5). By virtue of it the threshold level of noise δ* is existed.

Exceeding of this level will not allow to solve inverse problem.

The reason of the identifiability violation in this case is a

degeneration of sample approximation by the model state. The

one appears independent from coefficient a1. A behavior of R-

optimal error at variations of a noise level is represented inFig.5.

The existence of a threshold δ* testifies, that there is a

value f1* , lower from which f < f1* it is impossible to guarantee

a satisfactory identification. The conditions of experimental

realization, including function f1*, which caused a loss of an

identifiability due to exceeding of some level of

measurements noise, we shall define as threshold conditions.

Singular observations

From (6) follows, that for any f it is possible to specify

such points 0 < <x *
l in which the minimization of an

identification error on time does not allow to get restriction of

its values, i.e., µ 2 x T*,
¥

→ ∞. The determination of heat

properties on such observations is impossible, and

temperature measurements in points

x* = ± −l l

2 2
1 16R

cannot to identify unknowns a1,2. Measurements in the

optimal point x = l / 2, fulfilled in experiment which satisfies

to the condition R = 1/16, not allow to find heat properties.

Such violation of identification difference from as an

unidentifiability in a whole and in a small [7,8]. As it appears

the existence of some errors corridor reduces a choice of

thermal conductivity to arbitrary value. It is possible to

specify such f a2 2

216* /= δ l , for which the required fitting

between observations and model states in limits of a specific

errors corridor is reached, if a line, if the boundary

temperatures is connected by line. In an outcome the

functional representation of a model state is degenerated and

doesn't depend from a coefficient a2. If f f≠ 2

* , then the

approximation of observations depends on a2.

We shall mark also existence of the low bound of a heat

source strength. As it is follows from (7) the use | | *f f< 2

reduces the identification error to values| |µ 2 1− >> . Consequently

it is impossible to guarantee satisfactory identification.

For the determinancy, and also underlining the special

influence of measurements error to full loss of an

identifiability, it is offered to distinguish observations as an

δ-unidentifiable. Conditions of experiment, and in particular

function f2*, generating unlimited growth of identification

error under degeneration of a sample approximation, we shall

define as a singular.
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Self-compensating conditions of thermal loading

It is always can to specify the value f = F*, for which the

sum of negative terms of F1 will be of one order of the sum of

positive terms F2 (F3 = 0). Then at values f variations the

considerable growth of exponential terms of the system (5) is

possible in consequence of self-compensating of factors {f,

u0, v0,1}. In this connection it is necessary to mean, that in

general there is not monotone decrease of a minimum of the

error µ1

− at magnification of a value f.

In case {v0+v1< u0, v0=v1, f >0} the evaluation is

F
a

u v* ~ ( ),

π2
2

2 0 0 1
2 l

−

The one expresses conditions of emerging of the function µ1

−

maximum at variations f > f1,2*. The unique factor,

permitting to limit a growth of the error µ1

− is variations of

observation time near the initial state.

The thermal loading detection, reducing to the

identification accuracy loss in consequence of self-

compensating of factors {f, u0, v0,1}, is necessary to consider

as the important design feature. We shall define similar

conditions as self-compensating loadings.

Factors of identification errors reduction

There are the following factors, which allow to decrease

the identification errors.

At first, the decrease is reached at the expense of a

diminution of noise level. From (5) implies, that ifδ → 0, then

µ1 2 0, → .

Secondly, from (7) it is followed, that for a diminution of

magnitude µ 2 it is necessary to increase a strength of heat

source. In according to the existence of δ-unidentifiable and

the self-compensatings conditions it is necessary to require,

that f f f> max( , )* *

1 2 and f F
v v0 1=

≠ *. There is the value

f u ag = +16 2

2( ) /maxδ l since which C-optimal

identification error of thermal conductivity will not exceed of

a relative level of measurements noise

µ δ2 0 0 1

−

≥
≤ =

f fg

u u u v/ , max( , )max max , .

Thirdly, a ratio between initial and boundary

temperatures {u0, v0,1} influences to the mode of

identification errors. Magnification of a difference between u0

and v0+v1 diminishes functionµ1 . If v0 1, → ∞, then we obtain

exp
( )

( )

( )
exp− −

−
−
















→a

a

k
t2 2

1 1

2
1

1

2 1µ
µ

π
l

− −
















a

a

k
t2

1

2
2 1( )π

l
.

The one shows, that at magnification of temperature

shock between the initial and boundary temperatures the

function µ1 tends to the value µ 2
− . From it follows that a

temperature shock doesn’t allow to achieve absolute decreasing

of identification errors to zero. This result establishes, that for

the model (4) the temperature shock as a factor of an

identification errors decreasing has only local significance.

Whereat such functional features of temperature fields as

the points of their maximum, inflection and others don't

explicitly determine an optimal allocation of measurements.

Let us express an operation of the indicated factors as

some generalized complexes. The system (5) has the

dimensionless variables τ = a t a2 1

2/ ( )l and ξ = x / l.

Therewith  dimensionless groups

θ θ1

0 0 1

2 2 2

0 1

2 2

2
=

− +
=

−u v v

f
a

v v

f
a

( )
,

l l

can be introduced. The ones determine a mode of

identification errors (Fig.3,4). By virtue of it the factors θ1,2

may be defined as form-factors of identification error mode.

A variation of the mathematical model parameters

according to the conditions

R = =item item, ,θ1 2 (10)

and a choice of appropriate τ and ξ don’t change a solution of

the system (5). It means, that the errors µ1 2, are invariant

relative to the conditions (10) of experimental realization.

Singularities of experimental realization

1. Major factors of the identification error decreasing are

the raise of the heat source strength and the magnification of

the difference between initial temperature on the one hand

and boundary temperatures with other.

2. From two called factors the most significant is the

magnification of a heat source strength. For any specific noise

level the heat source can be indicated, since which it is guaranteed

that an identification error always will be less then a noise level.

3. At the same time boundless magnification of a

difference between initial and boundary temperatures doesn't

allow to reduct the identification error to zero. In this case an

asymptotic approach to the guaranteed identification error of

thermal conductivity is reached only.

4. At variations of conditions of experimental realization and

in particular magnification of a heat source strength it is necessary

to take into account a presence of some singularities cases.

A threshold level expresses a limiting measurements

noise. A mathematical model is unidentifiable when a sample

has measurements error higher then  threshold level.

A singular observations reduce to an identifiability loss

thereof an arbitrary choice of unknowns at a certain breadth of

a measurements error corridor.

A self-compensating loadings represents a significant

worsening of the identification accuracy because of a

counteraction each other of a specimen heat loading factors.

5. Alongside with uniqueness of a simultaneous

determination of all heat properties an unidentifiability

temperature fields as a whole, and in a small are existed.
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SIMULTANEOUS IDENTIFICATION OF HEAT

PROPERTIES AND BOUNDARY CONDITIONS

As it is proved above, the design of conditions of

experimental realization allows to reduce a volume of sample

to the minimum number of observations. The similar finding

are characteristic for the approach of observations processing,

based on inverse problems methodology [8]. This note from

the viewpoint of experimental informatibility puts a question

on a further research of uniqueness of simultaneous

identification as heat properties and boundary conditions.

Mathematical model

We specify the mathematical model (4) and shall

consider the measurements circuit with one point of

observation. It is required to find such design

Ξ = ={ , } ,...,x topt

i

opt

i1 1 4 for which known sample of observations

u u x t ii i i

δ ε= + =( , ) , , ...,1 1 4

can to define simultaneous a specific heat a1, a thermal

conductivity a2 and boundary temperatures v0,1 with a

minimum guaranteed error on rms

µ
µ µ µ µ1

2 2
4
2

( )

,
minR

x t
=

+ + +2

2

3

4

Here µ1 2 1 2 1 2 1 2, , , ,( ) /= −a a a and µ 3 4 0 1 0 1 0 1, , , ,( ) /= −v v v are

relative  identification errors.

The solutions of observation fitting equations are shown

in Fig.6. The one is expressed the rms error dependence from

sensor allocation minimizing on observation time.

There are three optimal allocation of a sensor. The global

minimum has allocation in the middle of a specimen. Other

optimal allocation is near from the specimen boundaries. The

variation of observations error doesn’t change this allocation.

Thus the using only one internal observation allows to

find as specimen properties and its loading factors. This result

shows that inverse problems can be considered as a powerful

extrapolation tool for experimental data processing. The

practical realization of such standpoint is reported in [9].

CONCLUSIONS

Among of observations it is possible to define the most

informatibility sample. A small volume of observations can to

ensure the identification of a significance number of

unknowns. The necessary volume of observation is defined

by identifiability conditions. If inverse problem peculiarities

are taking into account then it is possible to identify as

phenomenological object properties and its loading factors.

The heat properties identification has strictly defined

circuit of measurements of a specimen temperatures.

Optimal design must be carried out simultaneous at

several direction. Specimen loading, sensors allocation and

measurements time are the main characters of design.

A determination of the factors structure of identification

errors reduction has a doubtless interest. These factors define

the conditions of the identification error decreasing to zero

and its dependence mode from sensors allocation.

The analysis shows the existence of statistical

indeterminacy of inverse problem solution. The one is

described as a corresponding criterion, which has an upper

bound of its admissible value.

The further direction of investigation is a generalization

on a number of unknowns, nonlinear heat properties

identification and other type of boundary conditions.
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