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ABSTRACT
Experimental conditions are studied to optimize transient

experiments for estimating temperature dependent thermal "B

conductivity and volumetric heat capacity. Thermal properties
are assumed to vary linearly with temperature; a total of four
parameters describe linearly varying thermal conductivity and
volumetric heat capacity. A numerical model of experimental
configurations is studied to determine the optimum conditions to
conduct the experiment. The criterion D-optimality is used to

study the sensor locations, heating duration and magnitude, andA

experiment duration for finite and semi-infinite configurations.
Results indicate that D-optimality is an order of magnitude
larger for the finite configuration and hence will provide
estimates with a smaller confidence region.

NOMENCLATURE
specific heat)/kg°C
volumetric heat capacity/m-°C

thermal conductivitpv/m2C
thicknessm
number of sensors

¢ number of discrete time measurements

zZ Z2 Z2 - = O ©

number of parameters

q" heat flux,W/n?

t time, sec
temperature?C

Tmax Maximum temperaturéC

boundary temperatur€C

T, initial temperatureSC

scaled sensitivity coefficient for parameper°C,

T temperature vecto?C

X sensitivity matrix

Xo characteristic dimensiom
Greek

B parameter

optimality criterion

At time stepsec
density,kg/ n?
Superscript

+ dimensionless

INTRODUCTION

It is becoming common practice to combine transient
experiments with parameter estimation techniques to estimate
thermal properties of solids. A sample of investigations using
this approach are Jin et al., (1998); Maddren et al., (1998);
Dowding et al., (1998); Dowding et al., (1996); Dowding et al.,
(1995); Scott and Beck (1992a and 1992b); Beck and Osman
(1991). Properly designing the experiment strongly influences
the accuracy of the parameters estimated from it. Considering
the duration of the transient experiment, boundary conditions,
and the impact of ancillary materials in the model are issues that
can have a significant impact on the accuracy of the estimated
parameters. Forethought, in particular using analysis to
investigate and design the experiment, is paramount to the final
success of the experiment. This statement applies for many
experimental endeavors, not only those intended for parameter
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estimation. than Beck and show later in this study that linearly varykng
Conditions to estimate one or more thermal properties have and C can be simultaneously estimated for the configuration
been studied for several one dimensional configurations; Beck studied in this paper.
and Arnold (1977), Taktak et al.,, (1993), and Emery and The objectives of this study are to investigate the optimal
Nenarokomov (1998) are examples. In cases where the goal is toexperimental conditions to estimate temperature dependent
estimatek and pc simultaneously, a known heat flux boundary thermal properties. We are presently interested in an
conditions is required (Beck and Arnold, 1977). Many of the experimental design to estimate temperature dependent
configurations addressed by Beck and Arnold (1977) and Taktak properties of relatively low conductivity materials, e.g.,
et al. (1993) have a known heat flux on one boundary. Emery polyurethane foams. However, results are presented in
and Nenarokomov (1998) studied other boundary conditions, dimensionless form and are not restricted to only low
such as convection. Two dimensional geometries have beenconductivity materials. Experiments are considered that utilize
studied by Emery and Nenarokomov (1998) and Taktak (1992). electric heaters providing a known heat flux on one surface of a
Taktak (1992) investigated conditions to estimate orthotropic specimen. The opposite surface is isothermal for a finite body,

thermal conductivity. Emery and Fadale (1996) studied the or the body approximates a semi-infinite domiibpth of
design of experiments while including the uncertainty of model \yhich can be realized in the laboratory for low conductivity
parameters that are not estimated; in all previous studies materials. The two cases (finite or semi-infinite) are studied to
additional parameters in the model are assumed to be exactlydetermine which is optimum. A single experiment is assumed
known. In all cited investigations, however, the thermal for estimating all parameter simultaneously to compare these
properties do not depend on temperature (constant properties). two cases. All references to experimental conditions are in the
Several investigators have presented formulations to estimatecontext of conditions in a numerical model of the experimental
variable (temperature or spatially dependent) thermal properties; configuration; no experimental data are discussed. However, the
see Lesnic et al. (1996); Woodbury and Boohaker (1996); Sawaf resuits presented here are being used to guide the design of an

etal. (1995); Huang and Yuan (1995); Huang and Ozisik (1991); experiment to estimate the thermal properties of polyurethane
Flach and Ozisik (1989). Experimental design to maximize the foam.

information was not addressed in these studies. Temperature
dependent properties can also be obtained by conducting severaANALYSIS
experiments at different initial temperatures that are analyzed
independently assuming constant properties for each Optimality Criterion
independent experiment; this approach requires that the A criterion is needed to identify an optimum design. The
individual experiments cover a small temperature range. By criterion selected for this study is D-optimality, Beck and
combining the estimated properties from the individual Arnold (1977). It is selected because it relates to the volume of
experiments temperature dependent properties are obtainedthe confidence region for the estimated parameters. Emery and
Several investigations have used this approach: Dowding et al. Nenarokomov (1998) discuss several other optimality criteria.
(1995); Dowding, et al. (1996); and Loh and Beck (1991). All cited optimality criteria are related to the sensitivity
Experiments can also be combined in a sequential fashion coefficient matrixX
during the analysis to estimate temperature dependent oT oT oT
properties, Beck and Osman (1991) and Dowding et al. (1998). XT = Lﬁ B W} : (2)
Remarkably, the only known investigations to design an 12 Np
experiment to estimate temperature dependent properties ar@yvhich elements are the partial derivative of temperature
attributed to Beck (1964, 1966 and 1969) over thirty years ago. response with respect to the paramefer T . in Eq. (2) is a
Beck represented the thermal properties as varying linearly with vector (lengthN,N, ) of temperatures for each time and sensor
temperature location. Assuming there am¢;,  discrete measurements in time,
N. measurement locations, a arameters, the dimensions
k(T) = kl%l—TT TTlEJ’ szTrT TTIE (1) ofSX are NN, x N "o
271 27 "1 st p -
D-optimality maximizes the determinant of the information
matrix

where k; andk, are the values of thermal conductivity at
temperature§, and, |, respectively. Volumetric heat capacity
would have a similar temperature dependence with parameters A=XTX]. ®)

C, and C, . For a semi-infinite geometry with a prescribed |5 maximizing this determinant, it can be shown that this
surface temperature history, Beck (1969) proved that the four
parameterk,, k,, C;,C, cannot be simultaneously estimated for
certain conditions. He suggested that some parameters should b
set while others are estimated. We address different conditions

1. Semi-infinite means that the specimen is sufficiently thick such that the
ace opposite the heated surface does not experience any temperature rise for the
duration of the experiment.
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minimizes the hypervolume of the confidence region under To
certain assumptions. These assumptions are summarized as
additive uncorrelated normal errors with zero mean and constant
variance, with errorless independent variables, and no prior
information, Beck and Arnold (1977). Additionally, we impose
constraints on the criterion. It is subject to maximum X +
temperature rise andixed number of measurements. The

maximum temperature rise of the experiment is specified as _
Tmax TO introduce these constraints the optimality criterion is do’

modified as Figure 1 One dimensional thermal model

(4) experimental duration, i.e., the boundary temperature remains at
its initial value, T, = T; . Again, for low conductivity materials
this case can be closely approximated in the laboratory. The
applied heat flux can be quantified by using an electric heater
and symmetric design of the experiment, Dowding et al. (1995).

A+E (X+)Tx+ .
(THha) NNy

max:

Each entry in thgX*)TX* matrix is normalized as shown in Eq.
(4). The dimensionless sensitivity matrix is

nT B, aT B, aT By oT For the most accurate estimated properties, the thermal effects
(X7 = [(qo--xo/klyﬁ1 (49" %o/k1) OB, "'W@j’ ©) of the heater should be included in the model. However, for
generality in this study the thermal effects of the heater are not

and the maximum dimensionless temperature rise is included. Because the heater's effect should be secondary
T T compared to the specimen for a well-designed experiment,

Hox = % (6) neglecting the heater should not significantly change the

%o optimum design. It may be necessary to run secondary
In Eq. (5) and Eq. (6),T; is the initial temperatureg,” is a experiments to characterize thermal properties of the heater, as

constant heat fluxg, is a characteristic dimension, end s a discussed in Dowding, et al. (1995).

characteristic thermal conductivity value (taken as the value at Constant Properties.Optimal experimental conditions to

the low temperature in this case). D-optimality used in this study estimate constant thermal properties for the configuration in

is essentially a discrete version of the criterion applied in Taktak Figure 1 are well known and given in Table 1. Two cases are

etal. (1993). listed. The two cases are for a semi-infinite and finite geometry,
Prescribing a maximum temperature constraint provides as specified in the second column which refers to the thickness

consistency when comparing experiments that may otherwise of the body. For the semi-infinite case the sensors (column

have different temperature ranges. Normalizing by the three) are located at the surface of the applied heat flux and

maximum temperature gives all experiments a maximum value below the surface; the finite case is optimal with sensors only at

of unity. A large, fixed number of measurement$N; , are the heated surface. It is impossible to estimate kathdC with

assumed to be available from an experiment. Normalizing in Eq. measurements only at the surface of a semi-infinite body. The

(4) by N;N, means the criterion is not influenced by the specific optimum (dimensionless) heating duratiap, in column four,

number of measurements. Consequently, the criterion is notis the time that the applied heat flux is equaktp  , after which

increased by taking smaller time steps (increasing ) or having the applied heat flux is zero. The value of D-optimality with

multiple sensors at the same location (increasifig ). Both constraints is given in column five for the dimensionless

situations should not reasonably provide more information or experimental duration listed in the sixth column. Dimensionless

produce a better experiment. optimal experiment duratiomf  is the time that the maximum
The configuration studied in this paper is shown in Figure 1. yajye of D-optimality is achieved. The dimensionless times are

Two variations of the configuration are addressed. The first gefined as

variation is a finite slab of thickneds heated with a constant

heat flux (q,") on one surface while the opposite surface is o = (kiC)ty, %

isothermal(T,) . Although Figure 1 represents an idealized case, h x3

the configuration can be closely approximated in the laboratory

for relatively low thermal conductivity materials. For low = WO )

conductivity materials the isothermal boundary condition is f x3

achieved by placing a high conductivity material in intimate

contact with the surface. The second variation approximates a

semi-infinite domain; the length is taken to be large enough

such that thermal effects do not reach= L for the
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properties, but is commonly used in general purpose thermal

Table 1: Optimum conditions to estimate constant analysis codes. Two cases (semi-infinite and finite) discussed
thermal properties  k, C previously for constant properties are studied.
Sensor | Heating M Optimal Thermal Model
Case| Geom| Locations| Duration ?X time One can write the describing mathematical equations for the
X/ t+ A th(ah temperature of the model in Figure 1, assuming thermal
h f properties vary linearly with temperature, as
Semi- 0 x/x> 0
! Semi- ox* ky Or,—-T Hox g C, Hr,-T,Hlat+
o | 0.x>0 15 0.0055 1.72
infinite 9)
) Finite? 0 7 0.012 7
. D . uX
Finite? 0 2.25 0.020 2.98 _{1+ k2_k1[|T_T1 D}al _ E CI?( 0 (O0<t*<t?) (10)
a. Beck and Arnold (1977) ky Or=Tlaxt| g ™t _
x= g o otherwise

b. Taktak et al. (1993)
wheret, is the duration that the heating is applied, is the T..,=To (Finite),T\X+ =T (Semi-infinite)  (11)
duration of the experiment (to achieve the maximumain ),
(k, C) are the constant thermal properties, arg is a
characteristic dimension. For the configuration shown in Figure
1 the characteristic dimension is the thickness for the finite body
X, = L and the depth of the sensor from the heated surface for
the semi-infinite body. Temperature can be made dimensionless
by a group containing the heat flux,"x,/k to remove
dependence on the heat flux magnitude. Consequently, the X" = (XI%g) , (13)
optimal conditions depend only on the sensor location,
dimensionless heating time, and experiment duration.

Two variations of each case (semi-infinite and finite) are
shown in Table 1. In the first variation, the heating duration
continues for the entire experiment duratigy, =t;) . The ¢ = (ky/Ct
second variation has a heating duration that is shorter than the x§
experiment duratiorft{ >t}) . By comparing the two variations
we see that continuing the experiment after the heat flux ends

(t7 >t}) significantly increases the value af  for both cases. : N .
A greater value ofA* indicates that the finite case is better than For thermal properties varying linearly with temperature
9 the mathematical formulation shows the following three

the Semi'inﬁnite for constant properties. The rat|(ﬂjf fOI’ the parameter groups describe the therma' properties:

two cases is approximately four. This means the volume of the

confidence region is four times larger for a semi-infinite body kp—k3 C,-Cy T-T (15)
than it is for a finite body; more accurate estimates of the kp ' Cp TT,-Ty

properties are expected with a finite body.

Thooo=Ti- (12)

The boundary condition in Eq. (11) on the surface opposite the
applied heat flux depends on whether the body is finite or semi-
infinite. Distance has been made dimensionless with a
characteristic length

which is taken as the thickness of the body for the finite case or
depth of a sensor below the heated surface for the semi-infinite
case. Dimensionless time is defined as

(14)

Property values at the lower temperatyfig ) are used in this
definition.

. . N The properties depend on the normalized variation over the
Temperature Dependent PropertiesOptimum conditions to  linear segment. We also see a (normalized) temperature
estimate temperature dependent properties are less clear thag@ependence; the group contains the temperature change of the

those for constant properties. In this study we will address experiment,(T-T,) , divided by the temperature variation of
estimating linearly varying temperature dependent properties the properties(T,~T,)

W'thzm th'.s réstrlclt|or|1_|. we atshsume th(tawproperUestare gescr]ge d Because the properties depend on the temperature variation,
as shown in Eq. (1). Hence there are two parameters descri NYihere is a dependence on the heating magnitude

the temperature dependence of thermal conductikifyk.) and .

two for the volumetric heat capacitZ,, C,) ;whefie, C;) are Yo' %o _ (16)
values of the properties at the prescribed temperatpre . Linear Ky

variation is the simplest description of temperature variable This group is indicative of the temperature magnitude. Ideally,
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we would like to explicitly specify all parameter groups describing heat conduction equation. These sensitivity
describing the properties in Eqg. (15) and study sensor locations equations are numerically solved with the control-volume,
and durations (heating and experimental) that are optimum. But finite-element procedure. The temperature and sensitivity
the last parameter group in Eq. (15) can not be explicitly set. calculations are used to calculate the optimality criterion in Eq.
Consequently, by varying the group in Eq. (16), we can adjust (4).
the temperature magnitude so that the last parameter group in
Eq. (15) can be implicitly set. RESULTS AND DISCUSSION

The optimum conditions to estimate temperature dependent

properties for the configuration in Figure 1 will be characterized Temperature anq Sensmwt_y C(_)eff|C|.ent.s L .
by the following parameter groups Prior to studying an optimality criterion it is instructive to

observe sensitivity coefficients for the two cases. Transient
ky—k; C,-Cy ot Ao " Xo (17) temperature and heating magnitude are shown in Figure 2 for
k, © Cp T kg experiments representative of a finite and semi-infinite body.
) ) o Temperature rise at the surface of the applied heat flux is
Ltitirc?riatgljra?gggggdr:z:g(r)]]i(ttﬁzz g;?ﬁ:raiza\(t?;gt;g,atIT(raleSeedr:esdor comparable to the temperature range of the property variation;
to describe conditions when properties vary linearly with th'e:'group,(TmaX—Tl)/(Tz—'I.'%). IS near unity for both cases.
. o igure 3 shows the sensitivity coefficients for the temperature
temperature. For convenience the initial temperature and in Figure 2 at the surface of the applied heat fixt = 0)
boundary temperature are set to be equal to the lower Sensitivity will have the largest magnitude at* = 0 in

temperature at which F’“’per“es gre defingf= T, = T, _* general, sensitivity decreases as we move inside the body. The
Consequently, the optimum design depends on the five peating conditions selected for the simulations shown in Figure
parameter groups in Eq. (17). There are actually six design 3 5nq Figure 2 are shown later in this paper to provide the most
parameters because two dimensionless times are of interest. The,sormation about the thermal properties for each case.

firstis the duration of the heat flug;  in Eq. (10). The secondis  There are two notable differences between the sensitivities for
the duration of the experiment. We noted previously that for the finite and semi-infinite cases. Overall, the finite body has
constant thermal properties we can describe the optimal
conditions independent of the properties and heating magnitude; 1

the design only depends on dimensionless sensor location and o.9f (x*=0)
(two) dimensionless times. > osf ]

In the results that follow, property variation is specified as 7 o7} o' Xo/Kq {2000
(ky—kp)/ky = 066 and (C,-C;)/Cy = 1.2. The variation is = oef g
typical of polyurethane foam from room temperature up to E;. o5r (x* = 0.5) 150.*2
150°C, Jin et al. (1998). Specifying the property variation | ©°4f g
assumes a given temperature range of the propefTigs;T, 2 oos Finite Case T 100%
Groups representing the sensor locatioxy , heating@ifpe 02 (L =2.54 cm) s
and magnitude(q,"x,/k;) , and experiment durati¢rj)  are 0'(1)' (X = 2.54cm) 0T
studied to maximize D-optimality for estimating the four © 8 2 o+ s 4 5

parameters describing temperature dependent conductivity and
volumetric heat capacity. 1

Because the ultimate objective of the experiment is to estimate o Semi- infinite Case
thermal properties, the design process must proceed with ogl (L=343cm)
approximate values of the properties. Consequently, if the —~ | (%= 2.54cm) 05
approximation is poor the design may not be appropriate. L ook o (x* = 1) @
Fortunately, the design does not depend on the specific :, osl do"xo'ky 1503
magnitudes of the thermal properties. Instead, it depends on — =
relative change in the properties over the linear segment as }T .l 5
shown in Eq. (17). = Zz 1°°§,
Solution ProceduresCalculations are performed with a o1 s T
control-volume finite-element based code. In addition to solving o ) ) )
the heat conduction equation for the temperature, sensitivity ° 05 1 15 2

N
calculations have been incorporated directly into the code, t

Blackwell et al. (1998) and Dowding and Blackwell (1999). Figure2 Normalized temperature and heating magnitude
Sensitivity equations are derived by differentiating the for the finite and semi-infinite cases
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these values are fixed at 0.66 and 1.2, respectively.

(L=2.54 cm) " " " The other design variables (sensor location, duration of
(Xo = 2.54cm) heating, magnitude of the heating, and experiment duration) are
Finite Case studied to determine the optimum. The search for a maximum in
ot Xc, | the optimality criterion is easily done by trial-and-error; we
x* \ + believe additional insight is possible with this approach. An

N Xc, optimization code could be used in the search, but is not used in
this study. In the search process we assumed and selected two
sensor locations. Then we varied the heating duration and
magnitude to determine which combination resulted in the
largest magnitude of D-optimality. Because the maximum will

—0.4 . . . . occur after the heating ends, we get the optimal duratipn,
t+ from the simulation; the duration of the numerical simulation is
set to be long enough such that we get a maximum in the
02 (L=34.3cm) " " optimality criterion.
(%o = 2.54cm)
Semi- infinite Case

0.2

+
Xkl

Semi-infinite Case
The transient variation of the optimality criterion for the

) X; Xél ] semi-infinite geometry is shown in Figure 4 for different heating
x* /_1%’_‘ durations and magnitudes. Sensors are located at the surface of
the applied heat flux and 2.54 cm below the surface. A larger
-0.2f 1 magnitude of heating for a shorter duration produces larger
\7<(+ magnitudes ofA* . The approach taken to investigate the
Xk, = optimal conditions is to select a heating durati¢t) and
~0.4t — B — ) magnitude(q,"x,/k;) such that the temperature variation during
t+ the experiment would cover the temperature range of the
Figure 3 Dimensionless sensitivity coefficients at xT=0 property variation as indicgted by the last group in .Eq. (15),
for the finite and semi-infinite cases (T-T/(T,-T,). The maximum allowable value of this group

is unity; the temperature can not exceed the temperature range

sensitivities which are larger in magnitude than the semi-infinite ; . : . .
. . ...~ for which the properties are defined. The maximum normalized
case. The second difference is that the shapes of the sensitivity

coefficient curves for the four parameters are more different for tempe.rature(Tmax—Tl)/(Tz-—Tl) varied from 0'95 ol The
the finite case than for the semi-infinite case. Larger sensitivity Magnitude of this group is a result of the heating magnitude
means there is more information about the thermal properties in Sélécted. In general, the optimality criterion is shown to increase
the measurement. Different shapes mean the effect of each@S this group increases. The effect of this parameter group is
parameter on the temperature is independent. The more differentdiscussed further in the next section.

the effect of each parameter, the more easily we can estimate  1he transient plots in Figure 4 demonstrate that the
multiple parameters. In Figure 3 for the semi-infinite case the maximum ofA™ is attained after the heating ends. At the time

sensitivity for pairsk;, C; and, C, demonstrate very similar \hen the heat flux endg;) the valuesf increases and the
shapes. This indicates that the parameters are correlated to somgrye changes shape in Figure 4. This increase is due to the
degree. sensitivity coefficients changing shape after the heat flux ends;
see Figure 3.

i ! o o ) The optimum information is shown in the top of Table 2 for
To investigate whether a finite or semi-infinite. geometry is  the semi-infinite body. Reported in column two of the table are
better to estimate linearly varying thermal properties the e assumed sensor locations. All cases have a sensor at the
optimality criterion is studied. In the search for the optimum g face where the heat flux is applied and internal to the body.
conditions, sensor location, duration of heating, magnitude of we assume there are only two sensors. Conditions describing
the_ heating, _and_ experiment duration are vaned_to determine o applied heat flux are listed in columns three and four.
which combination produces the largest magnitude of the Heating timet? is the time that the applied heat flux goes to

optimality crlte_n_on._By pr_esentlng the result; In dlmensmnles_s zero. Prior to this time it is equal to the magnitude listed in
terms the specific size (thickness) of the specimen and properties

i ant. 1 h " desi il d q column four (see Eq. (10)). Conditions in columns two to four
are no mpor ant. oweve.r, ) € optimum design will depend on ¢ prescribed in the analysis; the remaining information in the
the magnitudes of the variatioik, —k,)/k;  ai@,-C;)/C;

table is data resulting from the analysis. The resulting maximum

Experimental Design
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Table 2: Optimum conditions to estimate linearly varying
temperature-dependent thermal properties

Sensor Heating Optimal

Xo | Locations < Thmax=T1 Max time

+ | % Xol Ky T -7 +
cm) | x/x, t . 271 A "
(°C) f
Semi-infinite Body
2.54 0,10 1.68 120 1.0 4.81E-1p 1.86
1.27 0,1.0 1.68 120 0.99 4.45E-10 1.84
3.81 0,1.0 1.68 115 0.98 4.87 E-10 1.89
Finite Body

2.54 0,0.5 2.79 156 0.98 8.23 E-Q9 3.87
2.54 0,0.25 2.33 156 0.97 7.91 E-Q9 3.55
2.54 0,0.75 2.79 156 0.98 3.95 E-(Q9 3.87
2.54 0, 0.5 2.79 71.9 0.51 1.73 E-Q9 3.74

temperature of the experiment is listed in column five. The
maximum of the optimality criterion and the dimensionless time
when the maximum is achieved are listed in the remaining
columns.
Because
(T-T)/NT,-T;), we cannot the

completely remove

temperature variable properties depend on

X = 1.27, 2.54 and 3.8dm, respectively. Furthermore, the
magnitude ofA* is not sensitive to the sensor location; moving
the in-depth sensor from a location gf = 2.54cm  to 1.27 or
3.81cm changea* -7.0 and +1.2 percent, respectively.

Finite Case

The transient variation of* is shown in Figure 5 for sensors
located at the surface of the applied heat flux and at one-half the
thickness of a finite body. The heating magnitude is the same for
all cases shown because the temperature field essentially
approaches steady-state. The maximum temperature for all
heating durations is approximately the same and comparable to
the range of the temperature for the property variation;
(Trax—T1)/(T,—T,) is near unity.

We can see a more pronounced difference between an
experiment that heats continuously for a time of 5.59 with
experiments that heat for a shorter duration but stop the heat
flux prior to the end of the experiment. Comparing the curve for
a heating duration of 5.59 with the curves using durations from
1.86 to 3.73 demonstrates the significance of continuing the

experiment after ending the heat flgx >t;) . We get over a

600 percent increase i by terminating the applied heat flux
but continuing the experiment. The reason for this significant

dependence on the sensor location by nondimensionalizing. ,crease s that the sensitivity coefficients dramatically change

Consequently, three combinations of sensor locations are
selected and the optimum results are shown in Table 2. All have

one sensor located at the surface of the applied heatx¥lexp
The second sensor is located internal to the body, at

of the sensor from the heated surfecg)
change in the optimal time; optimal experiment duration is
t; = 1.84 1.86 and 1.89 for internal sensors located at

x 10°*°

T

. th
4o %o’k (°C)

1.68

120 1.86
110

1.40
125

Semi- infinite Case
[ Xg = 2.54cm

]

25 3

Figure 4 Optimality criterion for estimating linearly
varying thermal properties for the semi-infinite case.

Sensors are located at  (x = 0, Xg)

. A sensor
closer to the applied heat flux would respond at an earlier time
and require a shorter experiment than a sensor farther away.
However, when time is made dimensionless using the distance
there is only a small

shape after the heat flux ends; see Figure 3. We note that the

increase inA”  after heat flux ends is greater for the finite case
(Figure 5) than it is for the semi-infinite (Figure 4) case. The
sensitivity coefficients have a more pronounced change in shape
for the finite case.

The optimum conditions for a finite geometry are listed in the
bottom of Table 2. The characteristic dimension for the finite
body is taken as the thickness of the one dimensional body
X, = L. A sensor is located at the surface of the applied heat

flux, x* = 0, and internal to the body*>0 . Three locations

10~°

9 r r
233 2.79
ol . 3.17
t' = 1.86 2
7la,"%o/k, (°C) = 156
6.
+ 5r . \
A~ | Finite Case
XIxg = 0,0.5
3.
2.
1.
ol
-1 L L
[¢] 1 2 4 5 6

H+(A)-

Figure 5 Optimality criterion for estimating linearly
varying thermal properties for the finite case
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are investigated for the internal senséx; = 0.25 0.5 0.75 . conditions would be expected to change for different
Moving the internal sensor closer to the heated surface doesmagnitudes of the parameter variation.

not significantly changa® . Its value decreases about 4 percent Be€cause results were presented in dimensionless form, the
when the sensor is moved frorix, = 05  ®5.We note that specific magnitudes of the properties and dimensions of the

the optimal time listed in Table 2 is different for these sensor georr_u_atry are not important. The _Iaborato_ry expenmental
conditions can be selected by computing the dimensional values

chatlons: The-maX|mums for senso.rs .Iocated<aqto_ . 0;5) N of the durations (heating and experiment) and heating
Figure 5 is quite broad, however. Similar magnitude\of ~ are magnitude. Using the groups in Table 2, the anticipated
obtained for heating durations betwegn= 2.33  afp¢= 2.79 properties of the material, characteristic size of the geometry,
for (x/L=0,0.5 with the optimal time beingt{ =t +1.05 . dimensional experimental conditions can be calculated. Of

course this requires we know the properties of the material,

for sensors located atx, = 0,05 is not significant which we do not. Hence some iteration is require in this process.
Moving the internal Osenslor farther away from the heated The point is that the optimum conditions derived are applicable
for high, as well as low, conductivity materials. The restriction

surface reduces the magnitude of in Table 2. It decreases;q hat property variation with temperature is such that

over 50 percent when the internal sensor is moved from (k,—k,)/k; = 066 and(C,—C,)/C; = 1.2
. . . 1 1= > 1 1= =<
x/L = 0.5 to 0.75. The optimum heating time does not change, The outcome and optimum conditions obtained for

however. This decrease i is caused by moving the sensortemperature dependent properties are consistent with those for
closer to the isothermal boundary where the sensitivity is zero ¢onstant properties. The finite case is better than the semi-
for all parameters. Less information is available from the jnfinite for constant properties as well. Furthermore, heating and
internal sensor in this case. _ experiment duration for constant properties in Table 1 are not
As stated earlier, the thermal properties depend on the significantly different from those for temperature variable

parameter groups given in Eq. (15) and one of these group properties in Table 2. In general, the durations are longer for
depends on the temperature change of the eXpe“me”ttemperature variable properties.
(T-TpI/(T,-T,). Consequently, the optimal conditions depend ~ The fact that an experiment should cover the entire
on the magnitude of the applied heat flux in addition to the temperature range of the properties has implications concerning
heating and experimental duration. Studying the effect of the the use of a sequential analysis approach. One may decide to
normalized temperature indicated thér,,.-T,)/(T,-T,) , conduct several experiments, each addressing a portion of the
should be near unity; most cases presented used value. Fof€mperature range of the properties, and combine the
comparison, the value of this group is reduced to 0.51 for €xperiments during the analysis. Based on the results _of this
sensors located at/x, = 0,05 . The results are shown in the stuply, such an approach Wohl{ld not be ashgood as covegng thg
bottom of Table2. Although the magnitude oA* entire temperature range. This outcome, owever, may depen

: . on how the temperature dependence of properties are described.
considerably smaller than when the parameter group is 0.98, the, | . .

. . S If higher order functions represent the temperature dependence
conditions where the maximum occurs are similar. e )

. the sensitivities may be correlated. In such a case a sequential

ConsequentlyA™ increases @B

max— 1 1)/(T2=T1) increases. analysis of experiments covering a portion of the temperature
In other words, selecting heating magnitudes that result in the range may be better.

temperature covering the entire temperature range of the

properties produces larger magnitudesadf  and is desirable. CONCLUSIONS

However, the optimal heating times are similar for heating A study of conditions to optimize transient experiments for
magnitudes that cover different temperature ranges. estimating linearly varying temperature dependent thermal
properties was presented. Four parameters describing linearly
varying thermal conductivity and volumetric heat capacity were
to be estimated. Thermal property variation was assumed to be
(k,—ky)/k, = 0.66 and (C,-C;)/C; = 1.2. An optimality

nearly 20. Furthermore, selecting heating magnitudes so that thecrlter_mn was pr_esented ar_1d optimal cond|t_|0ns, mclud_lng sensor
location, heating duration, and heating magnitude (or

temperature covers the entire temperature range of the pmpertieﬁemperature range), were derived for a one dimensional finite
(Tmax—T1)/(T,—T,) — 1 produces larger magnitudes af . and semi-infinite body.

These conclusions are based on linear property variation such  The finite case produced larger values of D-optimality than
that (k, —k;)/k; = 066 and(C,-C,)/C; = 1.2 . We believe that  the semi-infinite case when estimating all four parameters
the outcomes (finite body is better than semi-infinite and larger simultaneously; the ratio was nearly 20 for the finite and semi-

temperature variation is better) will not change for other infinite cases. Sensors were located at the surface of the applied
magnitudes of the parameter variation. The specific optimum

With a broad maximum im* , the slight change in the optimum

Summary. If we compare the magnitudes of  for the semi-
infinite and finite case in Table 2 we can conclude that the finite
case would provide estimates with a smaller volume confidence

region. The ratio ofA” for the finite and semi-infinite cases is

8 Copyright[] 1999 by ASME



heat flux and below the heated surface. The semi-infinite caseHayes, J., 1995, “Estimation of Thermal Properties and Surface
was not sensitive to the location of the sensor below the heatedHeat Flux in a Carbon-carbon Composite Materidburnal of
surface. In the finite case, optimal conditions were comparable Thermophysics and Heat Transfgol. 9, No. 2, pp. 345-351.

for sensors located below the heated surface at one-half and one-

Dowding, K. J., Beck, J., V., and Blackwell, B. F., 1996,

fourth the specimen thickness; a sensor located at three-quartersEstimation of Directional-Dependent Thermal Properties in a
of the specimen thickness was less optimal. For both the finite Carbon-Carbon Compositdyiternational Journal of Heat and
and semi-infinite cases the optimality criterion increases as the Mass TransferVol. 39, No. 15, pp. 3157-3164.

temperature range of the experiment increases relative to the

temperature range of the property variation.
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