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EXP07
ABSTRACT
Experimental conditions are studied to optimize transie

experiments for estimating temperature dependent therm
conductivity and volumetric heat capacity. Thermal properti
are assumed to vary linearly with temperature; a total of fo
parameters describe linearly varying thermal conductivity a
volumetric heat capacity. A numerical model of experiment
configurations is studied to determine the optimum conditions
conduct the experiment. The criterion D-optimality is used
study the sensor locations, heating duration and magnitude,
experiment duration for finite and semi-infinite configuration
Results indicate that D-optimality is an order of magnitud
larger for the finite configuration and hence will provid
estimates with a smaller confidence region.

NOMENCLATURE

specific heat,J/kg-oC

volumetric heat capacity,J/m3-oC

thermal conductivity,W/m-oC

thickness,m

number of sensors

number of discrete time measurements

number of parameters

heat flux,W/m2

time, sec

temperature,oC

maximum temperature,oC

boundary temperature,oC

c

C

k

L

Ns

Nt

Np

q''˙

t

T

Tmax

T0
1

l

d

initial temperature,oC

scaled sensitivity coefficient for parameter ,oC

temperature vector,oC

sensitivity matrix

characteristic dimension,

Greek
parameter

optimality criterion

time step,sec

density,kg/ m3

Superscript
dimensionless

INTRODUCTION
It is becoming common practice to combine transie

experiments with parameter estimation techniques to estim
thermal properties of solids. A sample of investigations usi
this approach are Jin et al., (1998); Maddren et al., (199
Dowding et al., (1998); Dowding et al., (1996); Dowding et al
(1995); Scott and Beck (1992a and 1992b); Beck and Osm
(1991). Properly designing the experiment strongly influenc
the accuracy of the parameters estimated from it. Consider
the duration of the transient experiment, boundary conditio
and the impact of ancillary materials in the model are issues t
can have a significant impact on the accuracy of the estima
parameters. Forethought, in particular using analysis
investigate and design the experiment, is paramount to the fi
success of the experiment. This statement applies for ma
experimental endeavors, not only those intended for parame
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estimation.
Conditions to estimate one or more thermal properties ha

been studied for several one dimensional configurations; Be
and Arnold (1977), Taktak et al., (1993), and Emery an
Nenarokomov (1998) are examples. In cases where the goal i
estimatek andρc simultaneously, a known heat flux boundar
conditions is required (Beck and Arnold, 1977). Many of th
configurations addressed by Beck and Arnold (1977) and Tak
et al. (1993) have a known heat flux on one boundary. Eme
and Nenarokomov (1998) studied other boundary conditio
such as convection. Two dimensional geometries have b
studied by Emery and Nenarokomov (1998) and Taktak (199
Taktak (1992) investigated conditions to estimate orthotrop
thermal conductivity. Emery and Fadale (1996) studied t
design of experiments while including the uncertainty of mod
parameters that are not estimated; in all previous stud
additional parameters in the model are assumed to be exa
known. In all cited investigations, however, the therm
properties do not depend on temperature (constant propertie

Several investigators have presented formulations to estim
variable (temperature or spatially dependent) thermal propert
see Lesnic et al. (1996); Woodbury and Boohaker (1996); Saw
et al. (1995); Huang and Yuan (1995); Huang and Ozisik (199
Flach and Ozisik (1989). Experimental design to maximize t
information was not addressed in these studies. Tempera
dependent properties can also be obtained by conducting sev
experiments at different initial temperatures that are analyz
independently assuming constant properties for ea
independent experiment; this approach requires that
individual experiments cover a small temperature range.
combining the estimated properties from the individu
experiments temperature dependent properties are obtai
Several investigations have used this approach: Dowding et
(1995); Dowding, et al. (1996); and Loh and Beck (1991
Experiments can also be combined in a sequential fash
during the analysis to estimate temperature depend
properties, Beck and Osman (1991) and Dowding et al. (1998

Remarkably, the only known investigations to design a
experiment to estimate temperature dependent properties
attributed to Beck (1964, 1966 and 1969) over thirty years ag
Beck represented the thermal properties as varying linearly w
temperature

(1)

where and are the values of thermal conductivity
temperatures and , respectively. Volumetric heat capac
would have a similar temperature dependence with parame

and . For a semi-infinite geometry with a prescribe
surface temperature history, Beck (1969) proved that the fo
parameters cannot be simultaneously estimated
certain conditions. He suggested that some parameters shoul
set while others are estimated. We address different conditi
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than Beck and show later in this study that linearly varyingk
and C can be simultaneously estimated for the configurati
studied in this paper.

The objectives of this study are to investigate the optim
experimental conditions to estimate temperature depend
thermal properties. We are presently interested in
experimental design to estimate temperature depend
properties of relatively low conductivity materials, e.g
polyurethane foams. However, results are presented
dimensionless form and are not restricted to only lo
conductivity materials. Experiments are considered that utili
electric heaters providing a known heat flux on one surface o
specimen. The opposite surface is isothermal for a finite bo

or the body approximates a semi-infinite domain,1 both of
which can be realized in the laboratory for low conductivit
materials. The two cases (finite or semi-infinite) are studied
determine which is optimum. A single experiment is assum
for estimating all parameter simultaneously to compare the
two cases. All references to experimental conditions are in
context of conditions in a numerical model of the experimen
configuration; no experimental data are discussed. However,
results presented here are being used to guide the design o
experiment to estimate the thermal properties of polyuretha
foam.

ANALYSIS

Optimality Criterion
A criterion is needed to identify an optimum design. Th

criterion selected for this study is D-optimality, Beck an
Arnold (1977). It is selected because it relates to the volume
the confidence region for the estimated parameters. Emery
Nenarokomov (1998) discuss several other optimality criter
All cited optimality criteria are related to the sensitivity
coefficient matrixX

, (2)

which elements are the partial derivative of temperatu
response with respect to the parameter . in Eq. (2) is
vector (length ) of temperatures for each time and sen
location. Assuming there are discrete measurements in tim

measurement locations, and parameters, the dimens

of X are .

D-optimality maximizes the determinant of the informatio
matrix

. (3)

In maximizing this determinant, it can be shown that th

1. Semi-infinite means that the specimen is sufficiently thick such that the
face opposite the heated surface does not experience any temperature rise fo
duration of the experiment.

XT T∂
β1∂

-------- T∂
β2∂

-------- . . .
T∂

βNp
∂
------------=

βi T
NtNs

Nt

Ns Np

NsNt Np×

∆ XTX≡
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minimizes the hypervolume of the confidence region und
certain assumptions. These assumptions are summarized
additive uncorrelated normal errors with zero mean and const
variance, with errorless independent variables, and no pr
information, Beck and Arnold (1977). Additionally, we impose
constraints on the criterion. It is subject to amaximum
temperature rise andfixed number of measurements. The
maximum temperature rise of the experiment is specified
Tmax. To introduce these constraints the optimality criterion
modified as

. (4)

Each entry in the matrix is normalized as shown in E
(4). The dimensionless sensitivity matrix is

, (5)

and the maximum dimensionless temperature rise is

. (6)

In Eq. (5) and Eq. (6), is the initial temperature, is
constant heat flux, is a characteristic dimension, and i
characteristic thermal conductivity value (taken as the value
the low temperature in this case). D-optimality used in this stu
is essentially a discrete version of the criterion applied in Takt
et al. (1993).

Prescribing a maximum temperature constraint provid
consistency when comparing experiments that may otherw
have different temperature ranges. Normalizing by th
maximum temperature gives all experiments a maximum va
of unity. A large, fixed number of measurements, , a
assumed to be available from an experiment. Normalizing in E
(4) by means the criterion is not influenced by the speci
number of measurements. Consequently, the criterion is
increased by taking smaller time steps (increasing ) or hav
multiple sensors at the same location (increasing ). Bo
situations should not reasonably provide more information
produce a better experiment.

The configuration studied in this paper is shown in Figure
Two variations of the configuration are addressed. The fi
variation is a finite slab of thicknessL heated with a constant
heat flux on one surface while the opposite surface
isothermal . Although Figure 1 represents an idealized ca
the configuration can be closely approximated in the laborato
for relatively low thermal conductivity materials. For low
conductivity materials the isothermal boundary condition
achieved by placing a high conductivity material in intimat
contact with the surface. The second variation approximate
semi-infinite domain; the lengthL is taken to be large enough
such that thermal effects do not reach for th
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experimental duration, i.e., the boundary temperature remain
its initial value, . Again, for low conductivity materials
this case can be closely approximated in the laboratory. T
applied heat flux can be quantified by using an electric hea
and symmetric design of the experiment, Dowding et al. (199
For the most accurate estimated properties, the thermal effe
of the heater should be included in the model. However, f
generality in this study the thermal effects of the heater are
included. Because the heater’s effect should be second
compared to the specimen for a well-designed experime
neglecting the heater should not significantly change t
optimum design. It may be necessary to run seconda
experiments to characterize thermal properties of the heater
discussed in Dowding, et al. (1995).

Constant Properties.Optimal experimental conditions to
estimate constant thermal properties for the configuration
Figure 1 are well known and given in Table 1. Two cases a
listed. The two cases are for a semi-infinite and finite geome
as specified in the second column which refers to the thickn
of the body. For the semi-infinite case the sensors (colum
three) are located at the surface of the applied heat flux a
below the surface; the finite case is optimal with sensors only
the heated surface. It is impossible to estimate bothk andC with
measurements only at the surface of a semi-infinite body. T
optimum (dimensionless) heating duration, in column fou
is the time that the applied heat flux is equal to , after whic
the applied heat flux is zero. The value of D-optimality wit
constraints is given in column five for the dimensionles
experimental duration listed in the sixth column. Dimensionle
optimal experiment duration is the time that the maximu

value of D-optimality is achieved. The dimensionless times a
defined as

(7)

, (8)

L

Figure 1    One dimensional thermal model
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where is the duration that the heating is applied, is th

duration of the experiment (to achieve the maximum in
are the constant thermal properties, and is

characteristic dimension. For the configuration shown in Figu
1 the characteristic dimension is the thickness for the finite bo

and the depth of the sensor from the heated surface
the semi-infinite body. Temperature can be made dimensionl
by a group containing the heat flux to remov
dependence on the heat flux magnitude. Consequently,
optimal conditions depend only on the sensor locatio
dimensionless heating time, and experiment duration.

Two variations of each case (semi-infinite and finite) a
shown in Table 1. In the first variation, the heating duratio
continues for the entire experiment duration . Th
second variation has a heating duration that is shorter than
experiment duration . By comparing the two variation
we see that continuing the experiment after the heat flux en

significantly increases the value of for both case

A greater value of indicates that the finite case is better th

the semi-infinite for constant properties. The ratio of for th
two cases is approximately four. This means the volume of t
confidence region is four times larger for a semi-infinite bod
than it is for a finite body; more accurate estimates of th
properties are expected with a finite body.

Temperature Dependent Properties.Optimum conditions to
estimate temperature dependent properties are less clear
those for constant properties. In this study we will addre
estimating linearly varying temperature dependent propert
without this restriction. We assume the properties are describ
as shown in Eq. (1). Hence there are two parameters describ
the temperature dependence of thermal conductivity a
two for the volumetric heat capacity ; where ar

values of the properties at the prescribed temperature . Lin
variation is the simplest description of temperature variab

Table 1: Optimum conditions to estimate constant
thermal properties

Case Geom.

Sensor
Locations

Heating
Duration Max

Optimal
time

1

Semi-

infinitea

a. Beck and Arnold (1977)

0, x/x0 > 0 1.5 0.00263 1.5

Semi-

infiniteb

b. Taktak et al. (1993)

 0, x/x0 > 0 1.5 0.0055 1.72

2
Finiteb 0 7 0.012 7

Finiteb 0 2.25 0.020 2.98

k C,

x/x0 th
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properties, but is commonly used in general purpose therm
analysis codes. Two cases (semi-infinite and finite) discus
previously for constant properties are studied.

Thermal Model
One can write the describing mathematical equations for

temperature of the model in Figure 1, assuming therm
properties vary linearly with temperature, as

(9)

(10)

 (Finite),  (Semi-infinite) (11)

. (12)

The boundary condition in Eq. (11) on the surface opposite t
applied heat flux depends on whether the body is finite or se
infinite. Distance has been made dimensionless with
characteristic length

, (13)

which is taken as the thickness of the body for the finite case
depth of a sensor below the heated surface for the semi-infin
case. Dimensionless time is defined as

. (14)

Property values at the lower temperature are used in t
definition.

For thermal properties varying linearly with temperatur
the mathematical formulation shows the following thre
parameter groups describe the thermal properties:

. (15)

The properties depend on the normalized variation over
linear segment. We also see a (normalized) temperat
dependence; the group contains the temperature change o
experiment, , divided by the temperature variation

the properties, .
Because the properties depend on the temperature variat

there is a dependence on the heating magnitude

. (16)

This group is indicative of the temperature magnitude. Ideal
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we would like to explicitly specify all parameter groups
describing the properties in Eq. (15) and study sensor locatio
and durations (heating and experimental) that are optimum. B
the last parameter group in Eq. (15) can not be explicitly s
Consequently, by varying the group in Eq. (16), we can adju
the temperature magnitude so that the last parameter grou
Eq. (15) can be implicitly set.

The optimum conditions to estimate temperature depend
properties for the configuration in Figure 1 will be characterize
by the following parameter groups

. (17)

The relative magnitudes of the property variation, the sens
location, duration,and magnitude of the heating are all neede
to describe conditions when properties vary linearly wit
temperature. For convenience the initial temperature a
boundary temperature are set to be equal to the low
temperature at which properties are defined
Consequently, the optimum design depends on the fi
parameter groups in Eq. (17). There are actually six des
parameters because two dimensionless times are of interest.
first is the duration of the heat flux, in Eq. (10). The second

the duration of the experiment. We noted previously that f
constant thermal properties we can describe the optim
conditions independent of the properties and heating magnitu
the design only depends on dimensionless sensor location
(two) dimensionless times.

In the results that follow, property variation is specified a
and . The variation is

typical of polyurethane foam from room temperature up
, Jin et al. (1998). Specifying the property variatio

assumes a given temperature range of the properties,
Groups representing the sensor locations , heating time
and magnitude , and experiment duration a

studied to maximize D-optimality for estimating the fou
parameters describing temperature dependent conductivity
volumetric heat capacity.

Because the ultimate objective of the experiment is to estim
thermal properties, the design process must proceed w
approximate values of the properties. Consequently, if t
approximation is poor the design may not be appropria
Fortunately, the design does not depend on the spec
magnitudes of the thermal properties. Instead, it depends
relative change in the properties over the linear segment
shown in Eq. (17).

Solution Procedures.Calculations are performed with a
control-volume finite-element based code. In addition to solvi
the heat conduction equation for the temperature, sensitiv
calculations have been incorporated directly into the cod
Blackwell et al. (1998) and Dowding and Blackwell (1999)
Sensitivity equations are derived by differentiating th
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describing heat conduction equation. These sensitiv
equations are numerically solved with the control-volum
finite-element procedure. The temperature and sensitiv
calculations are used to calculate the optimality criterion in E
(4).

RESULTS AND DISCUSSION

Temperature and Sensitivity Coefficients
Prior to studying an optimality criterion it is instructive to

observe sensitivity coefficients for the two cases. Transie
temperature and heating magnitude are shown in Figure 2
experiments representative of a finite and semi-infinite bod
Temperature rise at the surface of the applied heat flux
comparable to the temperature range of the property variati
the group, , is near unity for both cases.

Figure 3 shows the sensitivity coefficients for the temperatu
in Figure 2 at the surface of the applied heat flux
Sensitivity will have the largest magnitude at ; in
general, sensitivity decreases as we move inside the body.
heating conditions selected for the simulations shown in Figu
3 and Figure 2 are shown later in this paper to provide the m
information about the thermal properties for each case.

There are two notable differences between the sensitivities
the finite and semi-infinite cases. Overall, the finite body h

Figure 2 Normalized temperature and heating magnitude
for the finite and semi-infinite cases
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sensitivities which are larger in magnitude than the semi-infin
case. The second difference is that the shapes of the sensit
coefficient curves for the four parameters are more different
the finite case than for the semi-infinite case. Larger sensitiv
means there is more information about the thermal properties
the measurement. Different shapes mean the effect of e
parameter on the temperature is independent. The more diffe
the effect of each parameter, the more easily we can estim
multiple parameters. In Figure 3 for the semi-infinite case t
sensitivity for pairs and demonstrate very simila
shapes. This indicates that the parameters are correlated to s
degree.

Experimental Design
To investigate whether a finite or semi-infinite geometry

better to estimate linearly varying thermal properties th
optimality criterion is studied. In the search for the optimum
conditions, sensor location, duration of heating, magnitude
the heating, and experiment duration are varied to determ
which combination produces the largest magnitude of t
optimality criterion. By presenting the results in dimensionle
terms the specific size (thickness) of the specimen and proper
are not important. However, the optimum design will depend
the magnitudes of the variation, and
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Figure 3 Dimensionless sensitivity coefficients at x+ = 0
for the finite and semi-infinite cases
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these values are fixed at 0.66 and 1.2, respectively.
The other design variables (sensor location, duration

heating, magnitude of the heating, and experiment duration)
studied to determine the optimum. The search for a maximum
the optimality criterion is easily done by trial-and-error; w
believe additional insight is possible with this approach. A
optimization code could be used in the search, but is not use
this study. In the search process we assumed and selected
sensor locations. Then we varied the heating duration a
magnitude to determine which combination resulted in t
largest magnitude of D-optimality. Because the maximum w

occur after the heating ends, we get the optimal duration,
from the simulation; the duration of the numerical simulation
set to be long enough such that we get a maximum in t
optimality criterion.

Semi-infinite Case
The transient variation of the optimality criterion for the

semi-infinite geometry is shown in Figure 4 for different heatin
durations and magnitudes. Sensors are located at the surfac
the applied heat flux and 2.54 cm below the surface. A larg
magnitude of heating for a shorter duration produces larg
magnitudes of . The approach taken to investigate t
optimal conditions is to select a heating duration an

magnitude such that the temperature variation duri
the experiment would cover the temperature range of t
property variation as indicated by the last group in Eq. (15

. The maximum allowable value of this group
is unity; the temperature can not exceed the temperature ra
for which the properties are defined. The maximum normaliz
temperature varied from 0.95 to 1. The
magnitude of this group is a result of the heating magnitu
selected. In general, the optimality criterion is shown to increa
as this group increases. The effect of this parameter group
discussed further in the next section.

The transient plots in Figure 4 demonstrate that t

maximum of∆+ is attained after the heating ends. At the tim

when the heat flux ends the value of∆+ increases and the
curve changes shape in Figure 4. This increase is due to
sensitivity coefficients changing shape after the heat flux en
see Figure 3.

The optimum information is shown in the top of Table 2 fo
the semi-infinite body. Reported in column two of the table a
the assumed sensor locations. All cases have a sensor a
surface where the heat flux is applied and internal to the bo
We assume there are only two sensors. Conditions describ
the applied heat flux are listed in columns three and fo
Heating time is the time that the applied heat flux goes
zero. Prior to this time it is equal to the magnitude listed
column four (see Eq. (10)). Conditions in columns two to fou
are prescribed in the analysis; the remaining information in t
table is data resulting from the analysis. The resulting maximu

t f
+

∆+

th
+( )

q̇0''x0/k1( )

T T1–( )/ T2 T1–( )

Tmax T1–( )/ T2 T1–( )

th
+( )

th
+
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temperature of the experiment is listed in column five. Th
maximum of the optimality criterion and the dimensionless tim
when the maximum is achieved are listed in the remaini
columns.

Because temperature variable properties depend
, we cannot completely remove the

dependence on the sensor location by nondimensionalizi
Consequently, three combinations of sensor locations
selected and the optimum results are shown in Table 2. All ha
one sensor located at the surface of the applied heat flux,
The second sensor is located internal to the body at . A sen
closer to the applied heat flux would respond at an earlier tim
and require a shorter experiment than a sensor farther aw
However, when time is made dimensionless using the distan
of the sensor from the heated surface there is only a sm
change in the optimal time; optimal experiment duration

for internal sensors located a

Table 2: Optimum conditions to estimate linearly varying
temperature-dependent thermal properties

(cm)

Sensor
Locations

Heating
Max

Optimal
time

Semi-infinite Body

2.54 0, 1.0 1.68 120 1.0 4.81E-10 1.86

1.27 0, 1.0 1.68 120 0.99 4.45E-10 1.84

3.81 0, 1.0 1.68 115 0.98 4.87 E-10 1.89

Finite Body

2.54 0, 0.5 2.79 156 0.98 8.23 E-09 3.87

2.54 0, 0.25 2.33 156 0.97 7.91 E-09 3.55

2.54 0, 0.75 2.79 156 0.98 3.95 E-09 3.87

2.54 0, 0.5 2.79 71.9 0.51 1.73 E-09 3.74

Figure 4    Optimality criterion for estimating linearly
varying thermal properties for the semi-infinite case.
Sensors are located at x 0 x0,=( )

t
+

∆+

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

x 10
−10

1.68

2.24
1.86th

+
1.40=

2.79
x0 2.54cm=

q̇0''x0/k1 °C( ) 125= 120
110

95.8

86.3
Semi- infinite Case

x0

x/x0

Tmax T1–

T2 T1–
------------------------

∆+

t f
+ ∆+( )th

+
q̇0''x0/k1

°C( )

T T1–( )/ T2 T1–( )

x 0=
x0

x0( )

t f
+

1.84 1.86 and 1.89, ,=
7

n

.
e
e
.
r

y.
e
ll

, respectively. Furthermore, the

magnitude of is not sensitive to the sensor location; movi
the in-depth sensor from a location of to 1.27 o
3.81cm changes  -7.0 and +1.2 percent, respectively.

Finite Case

The transient variation of is shown in Figure 5 for senso
located at the surface of the applied heat flux and at one-half
thickness of a finite body. The heating magnitude is the same
all cases shown because the temperature field essent
approaches steady-state. The maximum temperature for
heating durations is approximately the same and comparabl
the range of the temperature for the property variatio

 is near unity.
We can see a more pronounced difference between

experiment that heats continuously for a time of 5.59 wi
experiments that heat for a shorter duration but stop the h
flux prior to the end of the experiment. Comparing the curve f
a heating duration of 5.59 with the curves using durations fro
1.86 to 3.73 demonstrates the significance of continuing

experiment after ending the heat flux . We get over

600 percent increase in by terminating the applied heat fl
but continuing the experiment. The reason for this significa
increase is that the sensitivity coefficients dramatically chan
shape after the heat flux ends; see Figure 3. We note that
increase in after heat flux ends is greater for the finite ca
(Figure 5) than it is for the semi-infinite (Figure 4) case. Th
sensitivity coefficients have a more pronounced change in sh
for the finite case.

The optimum conditions for a finite geometry are listed in th
bottom of Table 2. The characteristic dimension for the fini
body is taken as the thickness of the one dimensional bo

. A sensor is located at the surface of the applied he
flux, , and internal to the body, . Three location

x0 1.27 2.54 and 3.81cm, ,=

∆+

x0 2.54cm=

∆+

∆+

Figure 5    Optimality criterion for estimating linearly
varying thermal properties for the finite case

0 1 2 3 4 5 6
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0
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5
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9
x 10

−9

t
+

∆+

th
+

1.86=
2.33 2.79 3.17

3.73

5.59

x/x0 0 0.5,=

q̇0''x0/k1 °C( ) 156=

Finite Case

Tmax T1–( )/ T2 T1–( )

t f
+

th
+>( )

∆+

∆+

x0 L=

x+ 0= x+ 0>
Copyright 1999 by ASME



oe

e

or
in

re

m

d

se
m
e

so
ro
e

th
u
en
d
e

he
,
F
or
he

th
r.

s
th
th

le
g

i-
ite
c

is
th
rti

.
uc

e
r
m

nt

the
the
tal
ues
ng
ed
try,
Of
ial,
ss.
le
n
at

r
for

mi-
nd
ot

le
for

re
ing
e to
the

the
his
the

end
bed.
nce
ntial
re

r
al

arly
re
be

sor
or
ite

n
rs
i-
lied
are investigated for the internal sensor: .
Moving the internal sensor closer to the heated surface d

not significantly change . Its value decreases about 4 perc
when the sensor is moved from to0.25.We note that
the optimal time listed in Table 2 is different for these sens
locations. The maximums for sensors located at

Figure 5 is quite broad, however. Similar magnitudes of a
obtained for heating durations between and

for with the optimal time being .

With a broad maximum in , the slight change in the optimu
for sensors located at  is not significant.

Moving the internal sensor farther away from the heate

surface reduces the magnitude of in Table 2. It decrea
over 50 percent when the internal sensor is moved fro

to 0.75. The optimum heating time does not chang

however. This decrease in is caused by moving the sen
closer to the isothermal boundary where the sensitivity is ze
for all parameters. Less information is available from th
internal sensor in this case.

As stated earlier, the thermal properties depend on
parameter groups given in Eq. (15) and one of these gro
depends on the temperature change of the experim

. Consequently, the optimal conditions depen
on the magnitude of the applied heat flux in addition to th
heating and experimental duration. Studying the effect of t
normalized temperature indicated that
should be near unity; most cases presented used value.
comparison, the value of this group is reduced to 0.51 f
sensors located at . The results are shown in t

bottom of Table 2. Although the magnitude of is
considerably smaller than when the parameter group is 0.98,
conditions where the maximum occurs are simila

Consequently, increases as increase
In other words, selecting heating magnitudes that result in
temperature covering the entire temperature range of

properties produces larger magnitudes of and is desirab
However, the optimal heating times are similar for heatin
magnitudes that cover different temperature ranges.

Summary. If we compare the magnitudes of for the sem
infinite and finite case in Table 2 we can conclude that the fin
case would provide estimates with a smaller volume confiden

region. The ratio of for the finite and semi-infinite cases
nearly 20. Furthermore, selecting heating magnitudes so that
temperature covers the entire temperature range of the prope

produces larger magnitudes of
These conclusions are based on linear property variation s
that and . We believe that
the outcomes (finite body is better than semi-infinite and larg
temperature variation is better) will not change for othe
magnitudes of the parameter variation. The specific optimu

x/x0 0.25 0.5 0.75, ,=

∆+

x/x0 0.5=

x/x0 0 0.5,=( )

∆+

th
+ 2.33= th

+ 2.79=

x/L 0 0.5,=( ) t f
+ th

+ 1.05+≈

∆+

x/x0 0 0.25,=

∆+

x/L 0.5=

∆+

T T1–( )/ T2 T1–( )

Tmax T1–( )/ T2 T1–( )

x/x0 0 0.5,=

∆+

∆+
Tmax T1–( )/ T2 T1–( )

∆+

∆+

∆+

Tmax T1–( )/ T2 T1–( ) 1→ ∆+

k2 k1–( )/k1 0.66= C2 C1–( )/C1 1.2=
8

s
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conditions would be expected to change for differe
magnitudes of the parameter variation.

Because results were presented in dimensionless form,
specific magnitudes of the properties and dimensions of
geometry are not important. The laboratory experimen
conditions can be selected by computing the dimensional val
of the durations (heating and experiment) and heati
magnitude. Using the groups in Table 2, the anticipat
properties of the material, characteristic size of the geome
dimensional experimental conditions can be calculated.
course this requires we know the properties of the mater
which we do not. Hence some iteration is require in this proce
The point is that the optimum conditions derived are applicab
for high, as well as low, conductivity materials. The restrictio
is that property variation with temperature is such th

 and .

The outcome and optimum conditions obtained fo
temperature dependent properties are consistent with those
constant properties. The finite case is better than the se
infinite for constant properties as well. Furthermore, heating a
experiment duration for constant properties in Table 1 are n
significantly different from those for temperature variab
properties in Table 2. In general, the durations are longer
temperature variable properties.

The fact that an experiment should cover the enti
temperature range of the properties has implications concern
the use of a sequential analysis approach. One may decid
conduct several experiments, each addressing a portion of
temperature range of the properties, and combine
experiments during the analysis. Based on the results of t
study, such an approach would not be as good as covering
entire temperature range. This outcome, however, may dep
on how the temperature dependence of properties are descri
If higher order functions represent the temperature depende
the sensitivities may be correlated. In such a case a seque
analysis of experiments covering a portion of the temperatu
range may be better.

CONCLUSIONS
A study of conditions to optimize transient experiments fo

estimating linearly varying temperature dependent therm
properties was presented. Four parameters describing line
varying thermal conductivity and volumetric heat capacity we
to be estimated. Thermal property variation was assumed to

and . An optimality
criterion was presented and optimal conditions, including sen
location, heating duration, and heating magnitude (
temperature range), were derived for a one dimensional fin
and semi-infinite body.

The finite case produced larger values of D-optimality tha
the semi-infinite case when estimating all four paramete
simultaneously; the ratio was nearly 20 for the finite and sem
infinite cases. Sensors were located at the surface of the app

k2 k1–( )/k1 0.66= C2 C1–( )/C1 1.2=

k2 k1–( )/k1 0.66= C2 C1–( )/C1 1.2=
Copyright 1999 by ASME
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heat flux and below the heated surface. The semi-infinite c
was not sensitive to the location of the sensor below the hea
surface. In the finite case, optimal conditions were compara
for sensors located below the heated surface at one-half and o
fourth the specimen thickness; a sensor located at three-qua
of the specimen thickness was less optimal. For both the fin
and semi-infinite cases the optimality criterion increases as
temperature range of the experiment increases relative to
temperature range of the property variation.
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