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ABSTRACT
In this paper a new regularization technique is introduced

and applied to the problem of retrieval of vertical temperature
profiles in the atmosphere from remote sensing data. This is a
key issue in Meteorology since it provides an important input for
weather forecasting models, mainly in the Southern Hemisphere,
where there are large areas uncovered by data collecting ground
stations. The new regularization technique is derived from the
well known Maximum Entropy method, and is based on the max-
imization of the entropy of the vector of second-differences of
the unknown parameters. Simulations using real satellite data
achieved a good agreement with radiosonde measurements. Nu-
merical simulations have also shown that the temperature pro-
files retrieved with the new technique are relatively independent
on the choice of the initial guess.

INTRODUCTION
Basic to most regularization techniques is the idea of restor-

ing the well-posedness of the original problem by restricting the
class of admissible solutions with the help of suitable a priori in-
formation. Prior knowledge is normally exploited under the form
of a stabilizing functional that impose constraints on the varia-
tions of the model parameters, bounding them to such a degree
that the final solution looks physically reasonable. Generally, this
rather vague notion of reasonable means in fact smoothness.

First proposed as a general inference procedure by Jaynes
(1957), on the basis of Shannon’s axiomatic characterization of
the amount of information (Shannon and Weaver, 1949), the
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maximum entropy (MaxEnt) principle emerged at the end of the
60’s as a highly successful regularization technique, mainly due
to the pioneering contributions of Burg (1967), Frieden (1972),
Wernecke and D’Addario (1977), and Gull and Daniel (1978).
Since then, the MaxEnt principle has successfully been applied to
a variety of fields, from computerized tomography (Smith et al.,
1991) or non-destructive testing (Ramos and Giovannini, 1995),
to pattern recognition (Fleisher et al., 1990) or crystallography
(de Boissieu et al., 1991).

As with others standard regularization techniques, such as
Occam’s razor (Constable, 1987) or Tikhonov’s regularization
(Tikhonov and Arsenin, 1977), MaxEnt searches for solutions
that display global regularity. Thus, for a suitable choice of
the penalty or regularization parameter, MaxEnt regularization
yields the smoothest reconstructions which are consistent with
the available data. However, in spite of being very effective in
preventing the solutions to be contaminated by artifacts, many
times explicit penalizing roughness during the inversion proce-
dure may not be the best approach to be followed. If, for in-
stance, it is realistic to expect spikiness in the reconstruction of
an image, or if there is prior evidence on the smoothness of the,
say, second-derivatives of the true model, imposing an isotropic
smoothing directly on the entire solution may lead to an unneces-
sary loss of resolution or to an unacceptable bias. In other words,
the solution so obtained may no longer reflect the physical real-
ity.

In this work, we describe a generalization of the standard
MaxEnt regularization method which allows for a greater flex-
ibility when introducing prior information about the expected
structure of the true physical model, or of its derivatives, into
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the inversion procedure. Also, we discuss a particular imple-
mentation of this generalization, called “second-order maximum
entropy (MaxEnt-2) regularization”, and applied it to problem of
retrieval of vertical temperature profiles in the atmosphere from
remote sensing data.

ENTROPIC REGULARIZATION OF HIGHER ORDER
We assumed that the inverse problem to be solved is defined

as follows (Ramos and Campos Velho, 1996; Campos Velho and
Ramos, 1997):

find x such that y = A(x) ; (1)

where x2R n denotes the unknown parameters, y2R m the data-
vector and A : R n ! R m is an operator, linear or not, modeling
the relation between x and y.

A traditional approach for solving (1) is to determine x in the
least square sense. Unfortunately, minimization of the distance
between computed and experimental data alone does not provide
a safe inversion technique, due to the presence of noise in y. A
better approach, is to formulate the inverse problem as:

min
x 2 R n

fρ(y;A(x))+ γr(x)g (2)

where ρ is a suitable norm, usually the Euclidean square
norm ρ(y;A(x)) = ky�A(x)k2, r is a regularization function and
γ is the regularization parameter. The function r(x) generally ex-
presses our prior beliefs about the unknown physical model. For
instance, the zero-th order Tikhonov regularization corresponds
to the case r(x) = kxk2, with γ > 0. In the case of MaxEnt regu-
larization, r(x) takes the form of Shannon’s missing information
measure:

r(x) = S(x) =�

n

∑
i=1

qi logqi with qi =
xi

∑n
i=1 xi

(3)

and γ < 0. S(x) attain its global maximum when all qi are the
same, which corresponds to a uniform distribution with a value of
Smax = logn. On the other hand, the lowest entropy level, Smin =

0, is attained when all elements qi but one are set to zero. MaxEnt
regularization selects the simplest possible solution, containing
the minimum of structure required to fit the data.

At this point, we propose a generalization of the stan-
dard MaxEnt regularization method (hereafter, called MaxEnt-0)
which allows for a greater flexibility when introducing prior in-
formation about the expected structure of the true physical model

– or its derivatives –, into the inversion procedure. The entropic
regularization function is defined as follows:

Sα(x) =�

n

∑
i=1

qi logqi ; qi =
pi

∑n
i=1 pi

(4)

and

p = Dαx ; (5)

where α = 0;1;2 : : : and D is a discrete difference operator. The
associated regularization parameter is denoted by γα. The stan-
dard MaxEnt-0 method can be derived from (4) and (5) impos-
ing α = 0 and γ0 < 0. For α > 0, equation (5) must be modified
in order to assure that the logarithm in (4) will always have a
definite value. Different formulations are possible and, whether
Sα(x) must be maximized or minimized (i.e., whether γα < 0 or
γα > 0), they give rise to different regularization approaches.

SECOND-ORDER MAXIMUM ENTROPY
REGULARIZATION

We discuss now a particular implementation of equations (4)
and (5), denoted MaxEnt-2 method, based on the maximization
of the entropy of the vector of second-differences of x. If we
assume that xmin < xi < xmax, i = 1; : : : ;n, and setting α = 2, the
elements of vector p are given by

pi = xi+1�2xi+ xx�1+2(xmax� xmin)+ ς ; (6)

with i= 2; : : : ;n�1 and γ2 < 0, ς being a small positive constant
(say, ς = 10�15).

Since the quantity being extremized corresponds to the
second-differences x, a MaxEnt-2 solution tends to the second-
order polynomial that better fits the data, when γ2 ! �∞. In
comparison, under similar conditions, MaxEnt-0 will yield a uni-
form distribution and the second-order Tikhonov regularization
will produce a straight line.

To illustrate the performance of the MaxEnt-2 method, we
applied it to the problem of retrieval of vertical temperature pro-
files in the atmosphere from remote sensing data. This is a key
issue in Meteorology since it provides an important input for
weather forecasting models, mainly in the Southern Hemisphere,
where there are large areas uncovered by data collecting ground
stations; for full details on the solution of this inverse problem
see Carvalho (1998).

The mathematical formulation of the problem of retrieving
vertical temperature profiles from remote sensing data is given
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by the integral radiative transfer equation, and leads to the so-
lution of a highly ill-conditioned Fredholm integral equation of
the first kind. Moreover, this inverse problem turns out to be
highly underconstrained since, due to technological limitations,
the number of observations corresponds to a fraction of the num-
ber of temperatures to be estimated. For instance, in the example
presented hereafter, 40 temperature values are estimated from 7
radiance measurements. In practice, operational inversion algo-
rithms reduce the risk of being trapped in local minima by start-
ing the iterative search process from an initial guess solution that
is sufficiently close to the true profile. However, the dependence
of the final solution on a good choice of the initial guess repre-
sents a fundamental weakness of such algorithms, particularly in
regions where less a priori information is available (Chedin et
al., 1985).

Simulations using both synthetic and real satellite radiance
data, from the High Resolution Radiation Sounder (HIRS-2) of
NOAA-14 satellite, have been performed to evaluate the accu-
racy and the applicability of the MaxEnt-2 method. HIRS-2 is
one of the three sounding instruments of the TIROS Operational
Vertical Sounder (TOVS). The MaxEnt-2 results are compared
to in situ radiosonde measurements and to temperature profiles
computed by ITPP-5, a TOVS processing package employed by
weather service research centers throughout the world. An initial
guess generated by ITTP-5, based on climatological considera-
tions, and a uniform profile have been used to start the computa-
tions.

Temperature versus atmospheric pressure plots, presented in
figures 1 and 2, illustrate the agreement between computed re-
sults and the radiosonde measurements. In the range of 20-1000
hPa, the average error of MaxEnt-2 and ITTP-5 results is, respec-
tively, 3.6 K and 2.0 K, when ITTP-5 initial guess is used to start
both inversion algorithms, and 3.6 K and 25.2 K, when a uniform
initial profile is employed. The salient feature of these results is
the relative independence of MaxEnt-2 retrievals on the choice
of the initial guess. This characteristic perfectly illustrates how
the use of a suitable regularization technique can compensate the
lack of information on the original data set. Moreover, it may
be used whenever necessary to generate a good initial guess to
processing packages like ITTP-5.

CONCLUSION
Many times, when solving an inverse problem, to impose

an isotropic smoothing directly on the unknown parameters
may lead to an unnecessary loss of resolution or to an unac-
ceptable bias. To overcome these difficulties, we presented a
generalization of the well-known Maximum Entropy regular-
ization method. Also, we derived a particular implementation
of this generalization, called “second-order maximum entropy
(MaxEnt-2) regularization”, based on the maximization of the
entropy of the vector of second-differences of the unknown pa-
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Figure 1. MaxEnt-2 and ITTP-5 atmospheric temperature retrievals

achieved using radiance data from the High Resolution Radiation

Sounder (HIRS-2) of NOAA-14 satellite; inversion procedure started with

TOVS initial guess.

rameters. For increasing values of the regularization parameter,
MaxEnt-2 solutions tend to the second-order polynomial that bet-
ter fits the data. Applied to the problem of retrieval of vertical
temperature profiles in the atmosphere from remote sensing data,
MaxEnt-2 results achieved a good agreement with radiosonde
measurements. The numerical simulations also have shown that
MaxEnt-2 retrievals are relatively independent on the choice of
the initial guess.
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Figure 2. MaxEnt-2 and ITTP-5 atmospheric temperature retrievals

achieved using radiance data from the High Resolution Radiation

Sounder (HIRS-2) of NOAA-14 satellite; inversion procedure started with

a uniform profile.
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