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ABSTRACT
In this work the heat flux generated in a cutting process is

simulated using the inverse heat conduction technique based on
conjugate gradient method. A three-dimensional formulation is
used both to describe the physical phenomenon and to solve the
inverse problem. The machining process (turning) is simulated
and instrumented with nine thermocouples at the bottom face of
the tool, opposite to its main rake face. The signals are
automatically received and processed using a data acquisition
system and a PC-Pentium. The direct solution, adjoint equation
and sensitivity problem are numerically solved using finite
volumes method. With this technique the cutting temperatures
are estimated for various simulated cutting conditions. In order
to validate the method the IHCP is applied in a well-controlled
experiment where the heat flux input is known. An uncertainty
analysis is also presented.

INTRODUCTION
During machining, high temperatures are generated in the

region of the tool cutting edge, and these temperatures have a
controlling influence on the rate of wear of the cutting tool and
on the friction between the chip and the tool (Trent, 1984). The
use of efficient cooling methods may reduce wear and increase
tool life. However, direct measurement of temperature by using
contact type sensors at the tool-work contact surface is difficult
to implement due to the rotating movement of the workpiece
and the presence of the chip. Conventional methods such as of
infrared pyrometer (Lin et al., 1992), embedded thermocouple
(Lin, 1995) and tool-work thermocouple (Eu-Gene, 1995 and
Trent, 1984) usually present problems. The infrared pyrometer

can represent a good solution since some limitations, like
resolution of the sensor and interference of the chip near the
cutting zone, are alleviated (Lin et al, 1990). Some tool
materials such as ceramics, the high brittleness and electric
resistance usually make it difficult to implement contact type
sensor and impair the use of tool-workpiece thermocouples for
measuring temperatures at the chip-tool interface. In addition,
the tool-workpiece thermocouple does not measure the
temperature at a specific point, but average temperature at the
heat affected zone between the tool and workpieces. Therefore,
the use of inverse heat conduction techniques can be a good
alternative since this technique takes into account temperatures
measured from accessible positions, e.g., the surface opposite to
the rake surface of the tool.

The success of any experimental technique depends on the
physical model used. In this case, in spite of the application of
one-dimensional model in ellipsoidal coordinates (Alves et al.,
1998), a three dimensional model is more appropriated to
describe heat transfer in machining.

Inverse problem techniques are very well established for
one-dimensional case as presented by the sequential function
specified method presented by Beck et al. (1985), and the
gradient conjugated method presented by Özisik (1993).
Recently, an increase interest in appearing in the solution of
multidimensional problems is observed, as the two-dimensional
thermal problems presented by Alifanov et al. (1985), Beck, et
al. (1985), Alencar Jr. et al. (1997) and Lima and Guimarães
(1998), among others, and the three-dimensional problems
presented by Jarny et al. (1991) using the conjugated gradient
method and Colaço and Orlande (1998).
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One of the inherent difficulties of the inverse techniques,
besides the great sensibility to measurement errors, is the
establishment of ideal condition for the variables involved such
as measurement time, experiment time and spatial dimensions.
In practical conditions the possibilities of controlling these
variables are reduced. This fact turns the result analysis
extremely important. This work represents an initial step in the
direction of solving a three dimensional thermal problem in
machining. That is, an immediately previous step to determining
the cutting temperature in a real machining process. The cutting
tool, its geometry and the zone of heat generation are simulated
here. The heating and measurement times are chosen in a way to
reproduce conditions similar a machining process. A practical
experiment, in conditions similar to the simulated problem is
carried out for validation of the present methodology. The
gradient conjugated method applied to three-dimensional
problem presented in a generic form by Jarny et al. (1991) is
used here to derive the model of the machining process. This
model is an unknown heat flux imposed through its frontal
surface sample. The sample is also subject to the heat
convection on its remaining faces. This procedure drives to an
analysis of the physical limitations of the inverse methodology
and to the study of the design parameters such as the sample
cutting tool thickness, time of heat diffusion, and the thermal
diffusivity of the tool. The knowledge a priori of the
combination of those parameters is fundamental for the analysis
of the confidence of results, since the heat flux generated have
unknown behavior and magnitude.

NOMENCLATURE
=c,b,a  Geometric parameters of the sample
=k  Thermal conductivity
=61,...,h  Mean surface heat transfer

=q  Heat flux

=t  Time
=ft  Total experiment time

=z,y,x  Plane coordinates

=J  Functional, Eq. (19)
=′J  Gradient of the functional, Eq. (29)
=P  Direction of descent, Eq. (33)
=T  Temperature
=Y  Measured temperature

Greck Letters
=α  Thermal diffusivity
=β  Search step size, Eq. (31)

=ε  Standard deviation of measurement errors
=γ  Conjugation coefficient, Eq. (34)

=λ  Lagrange Multiplier
=τ  New time coordinate
=ξ  Uncertainty

=ζ  Relative small number

=0F∆  Fourier number

=T∆  Sensitivity function, Eqs. (10-18)

NUMERICAL FORMULATION
The general procedure described by Jarny et al. (1991) for

a three dimensional generic problem for both heat flux and
parameter estimation is used here to derive the specific problem
similar to those appear in machining processes.

Direct Problem
The model of heat flux in a cutting tool is presented in the

Fig. 1. The physical problem is a three dimensional transient
heat conduction that occurs in a sample (simulated tool) due to
an unknown heat flux imposed at one of its upper edge. All
sample faces are subjected to heat loss by the heat transfer
coefficient, h1-6 = 20 W/m² K.
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Figure 1: Three dimensional simulation of heat flux in
a cutting tool.

The heat conduction problem for this sample can be
described by
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If the value of the heat flux, q(y,z,t), is known, the Eqs. 1-9
represents the direct problem related to the inverse problem
studied.

Sensitivity Problem
The sensitivity problem is obtained assuming that when

q(y,z,t) undergoes an increment ∆q(y,z,t), the temperature
T(x,y,z,t) changes by an amount ∆T(x,y,z,t) (Ozisik, 1993).
Then, to get the sensitivity problem that satisfies the function
∆T(x,y,z,t), T(x,y,z,t) is replaced by T(x,y,z,t) + ∆T(x,y,z,t) and
q(y,z,t) by q(y,z,t) + ∆q(y,z,t) in the direct problem (Eqs.1-9)
and subtract form the original problem. The sensitivity problem,
is then, obtained
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Adjoint Problem
The inverse heat conduction problem is solved as an

optimum control problem of finding the unknown control
function q(y,z,t) (Jarny et al., 1991),
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where T(a,y,z,t) is the computed temperature at x = a from the
solution of the direct problem, Eqs. (1-9), and Y(a,y,z,t) is the
measured temperature at x = a.

The adjoint problem is obtained by introducing a new
function λ(x,y,z,t), called the Lagrange multiplier (Alifanov,
1974). The Eqs. 1-9 is then multiply by λ(x,y,z,t)and the
resulting expression is integrated over the spatial domain and
then over the time domain. This mathematics manipulation
leaves to the adjoint problem
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Gradient Equation
As in the procedure of Alifanov (1974) the gradient

equation for the functional J(q) can be given by

( ) ( )t,z,y,t,z,yJ 0λ=′ (29)

Conjugate Gradient Method of Minimization
The unknown function q(y,z,t) can be determined by a

process based on the minimization of the functional J(q). If the
conjugated gradient method is used (Alifanov, 1974) the
recurrence equation for the determination of q(y,z,t) can be
given by

( ) ( ) ( ) �,,,nt,z,yPt,z,yqt,z,yq nnnn 2101 =−=+ β (30)

where the β n is the step size given by
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and P n(y,z,t), the direction of descendent, given by
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and the conjugate coefficient given by
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Stopping Criterion
The stopping criterion is taken using a small specified

number, ζ, as

( ) ζ<qJ (35)

Computational Algorithm
To start the iterations an initial estimation is made from the

function q(y,z,t)*, which may be chosen as a constant, or zero.
The direct problem is solved and T(x,y,z,t) is computed based
on q(y,z,t)*. The adjoint problem is then solved. The value of
λ(0,y,z,t) computed is used to calculate the J’(y,z,t), that for its
time is used to calculate γ n and Pn(y,z,t). Then the sensitivity
problem can be solved setting ∆q(y,z,t) = Pn(y,z,t). The resulting
∆T(a,y,z,t) is used to calculate the step size, β n, from Eq. (31).
The value of β n allows to calculate qn+ 1(y,z,t) and the new
value of T(a,y,z,t,q). The last step is to check the stopping
criterion. This procedure is general for any different functional
as a thermal property like thermal diffusivity or conductivity or
an unknown source term that can be presented in a heat
conduction problem. It can also be found in detail for one-
dimensional unknown source term in the work by Ozisik (1993)
or for a general three dimensional problem in the work by Jarny
et al. (1991).

SIMULATION OF THE THERMAL PROBLEM
Figure 2 shows a sample that simulates a tool used in

machining. The dimensions used are normally found in an
orthogonal insert. Two materials are considered in this
simulation. For both, cemented carbide (WC + Co) and ceramic
(Si3 N4) the dimensions are a = 0,0049m, b = 0.0127m and
c = 0.0127m.

Table 1 presents the thermal properties used. They are
considered constant and independent of the temperature. The
initial, T0, and room temperature, T∞, are equal to 300K. The

heat transfer coefficient is also considered constant and equal to
20 W/m² K in the reminiscent faces.
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Figure 2: Thermal problem.

Table 1: Samples thermal properties (Trent, 1984).

Sample Material
Thermal conductivity

(W/m K)
Thermal

diffusivity (m²/s)
ceramic (Si3 N4) 25.0 7.2×10-06

cemented carbide 100.0 2.7×10-05

Nine temperature history are simulated to be measured at
x = a as shown in the Fig. 3.
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Figure 3: Identification of experimental temperature
Y(a,y,z,t) at opposite surface x = a.

At x = 0, an unknown heat flux q(y,z,t) with spatial and
temporal variation is imposed. The value of the heat flux
simulated is of the same order of magnitude of those that occur
in a metal cutting process. Once known the heat flux value, the
Eqs. (1-9) can then be solved (direct problem). In this case, the
inverse problem is applied through the computational algorithm
already described, using the measured temperature at x = a. The
procedure used here simulates these measured temperature
introducing random errors ε  to the exact temperatures as

( ) ( ) ε+= t,z,y,aTt,z,yY exact (36)
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where the exact temperature Texact is determined from the
solution of the direct problem, Eqs. (1-9), by using the exact
values of the heat flux imposed. The value of ε is in within
± 1K.

The sensitivity, the direct and the adjoint problem are
solved by numerical algorithms based on the finite volumes in
Visual C++, (Patankar, 1991). The numerical integrations are
performed using the Simpson method, (Press et al., 1989).

Sensitivity Analysis-1D Test Case
An analysis of some physical characteristics should be done

before the application of the inverse method. Some design
parameters a, tf and α should then be studied in order to give
more confidence to the results. One relation of these
parameters, the Fourier number, can be defined by

20
a

t
F fα

∆ = (37)

This dimensionless number gives the diffusion time and
represents one good indicator to the sensibility of the measured
temperature at the opposite surface in relation to any changes in
the heat flux imposed at frontal surface of the tool. To verify its
influence an one-dimensional case is simulated. Due to its
simplicity the results can be shown with more clarity.

The geometry of the samples is the same to that presented
in Fig. 3, while the heat flux is imposed at the intire frontal
surface. In addition, a sample of stainless steel is also tested and
analyzed.

One characteristic of the conjugate gradient method is the
zero value of the heat flux at the final time. This fact is due to
the problem of final value represented by the adjoint problem,
Eqs. (20-28). Therefore, the last component of the heat flux
estimated should not be considered. In order to avoid this
problem the component of the heat flux is considered only
during 70% of the value correspondent to total time. Since, the
inverse problem has a great sensitivity to measurement errors,
the estimation in this analysis is considered successfully if the
value estimated is closed to the value imposed with a
uncertainty by difference between estimated and calculated
values, ξ, of 8 %.

This tolerance is acceptable considering the practical
results from metal cutting processes. Figure 4 presents the
behavior of the uncertainty, ξ, against ∆F0 for several materials.
Initially, for small values of ∆F0 the uncertainty, ξ, is high. It
decreases up to ∆F0 = 3.5and becomes practically constant (at
about 8%) for higher of ∆F0.

Table 2 presents various tests considering different
experiment time (tf), sample interval ∆T and thickness, a, for a
sample of stainless steel AISI 304.

The experimental test in one-dimensional case will give
some directions for the three dimensional case to be shown in
the next section.
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Figure 4: Uncertainty between calculated and
estimated heat fluxes for different materials.

Table 2: Parameters a, tf e αα used for testing 1D.

Stainless steel AISI 304α= 4.0×10-6 m² /s k =15.1W/m oC
test a (m)  ∆T (s) tf (s)
A 0.015 0.1 40.0 to 360.0
B 0.015 0.5 40.0 to 320.0
C 0.011 to 0.030 0.5 212.0

Figure 5 presents the results for tests A, B and C. The
behavior of the curves are very similar to those presented in
Fig. 4 for different (cemented metal and ceramic). It can be
concluded that the way of changing of ∆F0 does not affect the
behavior of ξ. Note that tf, ∆T and a are changed while α is kept
constant (tests A,B, C). It suggests that Fourier Number
represents an important rule for success of the inverse problem
using the gradient conjugated and that for ∆F0 smaller than 3.5
poor results can be obtained.
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Figure 5: Percent difference between calculated and
estimated heat fluxes for different parameters a, tf e αα.

To check this behavior experimentally an one-dimensional
test for a 50 x 50 mm2 sample of AISI 304 stainless steel with
thickness of 9 mm was carried out. The heat flux imposed is
generated and measured by a transducer/electrical resistance
and compared with the estimated component. The tests for two
different values of ∆F0 1.2 and 3.2 are shown in Figs. 6 and 7
respectively. The heating time and total experiment time in test
A were 30s and 55s respectively. In this case a great deviation
among the estimated and measured values is observed.
However, once the value proposed for ∆F0 is of the order of 3.0
the experiment was modified to attend it. In the test b, the
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heating time and the total time of the experiment were altered
respectively for 80s and 105 s.
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Figure 6: Experimental test, 1D, ∆∆F0 = 1.2.

0 20 40 60 80 100 120

0

5000

10000

15000

20000

 experimental
 estimated

he
at

  f
lu

x 
 [ 

W
 / 

m
 ² 

] 

time [ s ] 

Figure 7: Experimental test,1D, ∆∆F0 = 3.2.

It is observed in the Fig. 7 a reasonable improvement
between the estimated and measured of the heat fluxes. Thus, as
verified in the Figs. 4-7, the number of Fourier is really an
important parameter for good estimations and the value of
∆F0 = 3.0 a good reference value for three-dimensional. This
test will be considered in the next section.

RESULTS AND DISCUSSIONS – 3D ANALYSIS
Figures 8 to 10 show the simulated results for a ceramic. In

these illustrations, the real and estimated evolutions of the heat
flux can be compared for different positions along the direction
y (Fig. 2). The results are presented in this way to facilitate the
visualization of the temporary and the space behavior in
discrete plans of the simulated tool. The Fig. 8, presents the
temporary variation and the space variation along the axis y for
the position z = 1 that can be identified in the Fig. 3. A good
agreement is verified among the real and estimated values for
positions at y = 1 and y = 2. For the position y = 3 the results
presents a slight discrepancy in relation to the real curve of heat
flux. This discrepancy can be attributed to position its below the
interface among the area that is subjected to heat flux and the
face that is subjected to the convection heat loss, Fig. (3)
position (1,3). Another fact that can deviate the estimated
results is the necessary minimum time of diffusion in the
directions  y and z.

It can be seen in the Fig. 9, position z = 2, that the results
are overestimated for the position y = 1 and y = 2, and it
presents a good agreement for y = 3. In this case, it can be
considered that the experimental temperatures in the positions

(1,2) and (2,2) have a great influence of the components of heat
flux in the adjacent positions. For the position (3,2) as the
position of the thermocouple is near to an area without
components of heat flux in a normal direction, the diffusion of
heat in the directions y and z does not affect the values.
Therefore, these results can be overestimated or subestimated
depending on the characteristic of the minimization method.
The conjugated coefficient, γ and step size, β are calculated by
triple integrals or represent average values. This effect can then
appear in multidimensional cases since each direction can affect
this coefficient in different ways. If this happens they will be
discarded when calculating the average value. An analogous
results can be observed in the Fig. 10 for position z = 3.
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Figure 8: Results for the ceramic sample in z = 2.
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Figure 9: Results for ceramic sample in z = 2.
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Figure 10: Results for the ceramic sample in z = 3.

The results for the ceramic tool are also presented by the
uncertainty between the calculated and estimated temperature at
x = 0 as shown in Fig. 11. In all positions, the same behavior
was verified but position y = 3 showed smaller percent
variation. It can also be observed that the peak of deviation is
near the time region that there is no changing in the behavior of
the heat flux. Once the heat flux becomes constant the error
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tends to decrease. The same experiment and heating time were
also used for a cemented carbide sample. Figures 12 and 13
present the results.
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Figure 11: Uncertainty variation between exact and
measured temperatures at x = 0 for ceramic.

Figure 12 shows that the same conclusions can be obtained
in relation to the position of the component of heat flux.
However the results are worse than those presented by the
ceramic sample. The main difference is the Fourier number that
are equal to 13.5 for the cemented carbide while for the ceramic
sample it was approximately 3.0. While the influence of time
diffusion in the y and z directions can affect the results as
previously mentioned the higher conductivity of the cemented
carbide can increase this problem. In order to minimize this the
Fourier number was diminished up to 3.5 by decreasing the
total experiment time. The results for position z = 2 are shown
in the Fig. 13. A good agreement can be observed between the
real and estimated heat fluxes. The position z = 1 and z = 3 were
omitted here but they have presented similar results.
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Figure 12: Heat flux for the cemented carbide sample
in z = 2, ∆∆F0 = 13.5.
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Figure 13: Heat flux for the cemented carbide sample
in z = 2, ∆∆F0 = 3.5.

Figure 14 presents the uncertainty between the estimated
and calculated temperature at x = 0 for the cemented carbide
and ∆F0 = 3.5. The agreement in this case is better than for the
ceramic tool. The same behavior is observed in the region of
changing of the heat flux.
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Figure 14: Uncertainty variation between real and
measured temperatures at x = 0 for cemented carbide

sample,  ∆∆F0 = 3.5.

EXPERIMENTAL TEST
An experimental test was carried out in order to analyze the

algorithm efficiency. The Fig. 15 shows the apparatus. In this
case, the dimensions a, b, c, y1 and z1 were established for a
sample of 1020 steel and a double sensor - transducer/electrical
resistance of heat flux. 0.1 x 0.1 x 0.001 m3 were the
dimensions of the 1020 steel sample (a, b and c) while the
double sensor had lateral dimensions of 0.05 x 0.05 m2 (y1 × z1)
and 0.001m of thickness. The double sensor is responsible for
supplying and measuring the heat flux. The heat flux transducer
is based on thermopiles with a time response smaller than 10
ms. The Fig. 15a shows the apparatus.

Nine thermocouples were brazed on the bottom surface of
the sample opposite to the surface that receives the heat, at the
points shown in Fig. 15b.
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Figure 15: Experimental apparatus:
a) transducer/electrical resistance b) thermocouple

attached.

The Figs. 16 and 17 present the heat flux obtained for ∆F0

in the direction of 2.2 (test C) and 3.5 (test D) respectively.
It should be mentioned that the comparison among

experimental and simulated results for the components of heat
flux can only be made in the area covered by the double sensor,
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transducer/electrical resistance of heat flux, as indicated in Fig.
2. In areas outside y1 × z1 the components of heat flux were not
measured therefore it can only be estimated. It is observed that,
as found in the one-dimensional experimental test, the results
are better for the test D, with the number of Fourier around 3.0.
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Figure 16: Experimental test, 3D,  ∆∆F0 = 2.22.
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Figure 17: Experimental test, 3D, ∆∆F0 = 3.55.

CONCLUSIONS
The conjugate gradient method with adjoint equation for

solving inverse problems represents an encouraging alternative
for application in three-dimensional problems. However, the
analysis of the suitable time of diffusion for the number of
Fourier is fundamental to be successful. In a real problem, such
as in a machining process the control of the time is extremely
difficult and parameters as the final and time of experiment and
sampling intervals can strongly affect the heat flux estimation.
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