
1

COMPUTATIONAL AND EXPERIMENTAL ESTIMATION OF BOUNDARY
 CONDITIONS FOR A FLAT SPECIMEN

S. Abboudi*,  E. Artioukhine**, H. Riad*

* LERMPS, EA 1701, Institut Polytechnique de Sévenans B.P. 449 - 90010 Belfort Cedex, France
Pfone†: (33) 03 84 58 30 36,  Fax†: (33) 03 84 58 30 30,  E-mail†:  saïd.abboudi@utbm.fr
**  Institut de Génie Energétique, 2, Avenue Jean Moulin, 90000 Belfort cedex, France
Pfone†: (33) 03 84 57 82 03, Fax†:  (33) 03 84 57 00 32,  E-mail†: artyukh@ige.univ-fcomte.fr

ABSTRACT
The objective of the proposed study is to analyze

numerically and experimentally transient heating of a
flat specimen. The analysis is based on the one-
dimensional heat conduction model. The main problem
of the analysis is to estimate the heat flux absorbed by a
specimen. Temperature evolutions measured inside the
specimen are used to solve the inverse heat conduction
problem, two methods are used : the iterative
regularization method (IRM) and the sequential function
specification method (FSM). The finite difference
method is utilized for solving the direct problem. These
two methods are first verified and compared for one
layer specimen by using simulated numerically data. The
influence of the dimensionless time step ( Foα number)
is analyzed and comparison results are demonstrated.
Then the methods are applied to analyze experimental
data obtained with the use of a thermal cycling device.

NOMENCLATURE
C specific heat
M  number of approximation parameters
NT number of time step
N   number of temperature sensors
T , aT , 0T temperature, ambient, initial temperature

j
iQ sensitivity coefficient at time jt and

position iX

e thickness of the specimen

if measured temperature at position iX
h heat transfer coefficient
t , t f time, final time
q , exactq heat flux density, exact heat flux

÷ adjoint variable
γ temperature variation
± density
↔ thermal conductivity
∼ thermal diffusivity

2
≤ estimated error or criterion

tα time step
Foα dimensionless time step number
qα heat flux step

WIR with iterative regularization

KEYWORDS
Inverse problem, regularization, heat flux,

experimental analysis, numerical simulation, estimation.

INTRODUCTION
The ill-posed inverse problem of estimating the

surface heat flux from transient temperature histories
measured in a heat conducting solid is constantly of a
great interest during three last decades. A literature
review and a presentation of different methods is given,
for example, in Tikhonov and Arsenin (1977), Beck et
al. (1985), Hensel (1991), Murio (1993), Alifanov et al.
(1995). Different applications of various methods are
presented, in particular, in Zabaras et al. (1993) et
Delaunay et al. (1996).

In this paper, results of an experimental and
numerical analysis are reported, the goal of which is to
estimate the heat flux absorbed by a flat specimen
cooled at the back side and insulated at its lateral
surface.

We use the iterative regularization method (IRM)
(Alivanov et al., 1995) and the function specification
method (FSM) (Beck et al., 1985) to solve this inverse
heat conduction problem. The first numerical algorithm
is based on the minimization of the residual functional
which is the integrated difference between temperature
histories measured and those calculated by solving the
direct problem. The conjugate gradient method is used
to solve the inverse problem. The residual functional
gradient is computed by solving the adjoint problem and
the optimal descent parameter is calculated by solving
the problem for temperature variations. The heat flux
evolution is approximated by cubic B-splines (Alivanov
et al 1987).   The second numerical algorithm is based
on the minimization of the discrete least square criterion
by taking into account a few future time steps. The finite
difference method is utilized for solving the direct
problem. These two methods are first verified and
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compared between them for one layer specimen by using
simulated numerically data. The influence of the
dimensionless time step ( 2/ etFo αΖα ∼ ) is analyzed.

Then the methods are applied to analyze
experimental data obtained with the use of a thermal
cycling device. A description of experimental setup and
first results of the experimental data processing are
reported.

INVERSE PROBLEM FORMULATION
The specimen is heated by a heat flux of unknown

density at the active surface and cooled by a forced
convection flow at the opposite surface.

The following hypotheses have been taken into
account:
 thermophysical properties are supposed to be constant,
  heat transfer is one-dimensional.
 heat transfer coefficient is constant at the cooled
surface.

Under these conditions, the heat transfer process in
the specimen can be described by the following system
of equations :
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In the model (1)-(4), the heat flux density )(tq  is
unknown. To get  additional information about the
temperature distribution in the specimen, temperature
histories are measured in the specimen at a certain
number of points N with coordinates nXx Ζ ,

Nn ,...,2,1Ζ :

)(),( tftXT nnmeas Ζ , Nn ,...,2,1Ζ                 (5)

This information, together with the model (1)-(4), is
used to solve the inverse problem.

EXPERIMENTAL DEVICE
The experimental study was realized on a thermal

cycling device with a one-layer specimen (gray cast
iron). The heating device uses a heat source of a
relatively weak heat flux (a hotwind). The cooling fluid
used is the pressurized water circulating in channels.
Two sensors have been incorporated in the specimen to
record the temperature evolutions when the specimen is
subjected to different types of thermal cycling. In order
to limit lateral heat losses, the sample is coated with a
ceramic resin. A fluxmeter (heat flux sensor), placed at
the back surface of the specimen, allows one to estimate
the flux density applied on the former.

The experimental device is composed of the
following elements (figure 1) :
  heat source system : hot air with the temperature
measured by the thermocouple 0TC ,
  specimen in witch the temperatures histories are
measured by 1TC  ( 1X = 1.6 mm) and 2TC  ( 2X = 7.8
mm) respectively,

Figure 1. Simplified scheme of experimental device
  water cooling system : one input ( 4TC ), two outputs
( 53 ,TCTC ).

  Insulating ceramic ring with three thermocouples
( 6TC , 7TC , 8TC ) located at different positions. The
purpose of this ring is to limit thermal losses in radial

=0.037m

Heat Flux

0TC

0

x

e l

Inlet of fluid ( 4TC )

Gray cast iron
1TC

        2TC

Outlet of fluid ( 3TC )
Outlet of fluid ( 5TC )

Ceramic coat
Heat flux sensor

( 9TC , 10TC )

Ceramic resin
( 6TC , 7TC , 8TC )



3

direction in order to consider the heat transfer as
monodimensional.
  heat flux sensor consisted of in alumina coating (1
mm thickness and 5mm radius) deposited on the back
face of the sample. Temperatures ( 9TC , 10TC ) inside
this coating are measured at two locations separated by
0.5� 0.1 mm. Numerical simulations show that the time
response of the heat flux sensor is very weak and the
temperature profile inside the system is linear.

The type of the thermocouples iTC )8,...,0( Ζi  is K
and E for 10,9Ζi .

ITERATIVE REGULARIZATION METHOD
(IRM)

To build a computational algorithm, we use the
variational formulation of the inverse problem of
interest. The problem is to find such unknown function

)(tq  for which temperature histories computed from the
mathematical model (1) to (4) at the sensor locations are
close to measured histories. That leads to the problem of
minimizing the residual functional  :
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where );,( qtXT n , Nn ,...,2,1Ζ , are temperature
histories computed at the sensor locations with the heat
flux density )(tq  given.

Unknown function is parametrized in the form of a
cubic B-spline
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where mp , Mm ,...,2,1Ζ , are unknown parameters,
)(tm♥ , Mm ,...,2,1Ζ , are given basis cubic B-splines.

The number of approximation parameters M  is usually
fixed a priori. As a result, the inverse problem is
reduced to the estimation of a vector of parameters

T
Mpppp ],...,,[ 21Ζ .

Unknown function is considered as an element of the
function space ],0[2 ftL  of parametrized functions. We
use the unconstrained conjugate gradient method of
optimization. The residual functional gradient as well as
the descent direction in L2  space have the form :

〈=J q Ζ
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So, the gradient is characterized by the vector
T

Mgggg ],...,,[ 21Ζ  and the descent direction by the

vector T
Mdddd ],...,,[ 21Ζ . It is easy to show that the

residual functional minimization with respect to desired
parametrized functions is reduced to those with respect
to unknown parameters. The successive improvements
of desired parameters are constructed as follows :

ssss dpp ƒΗΖ
Η1 ,  ,...1,0Ζs (10)

where s is the number of the iteration under way, ƒ s  is

the descent parameter, p0  is an initial guess for the
vector of unknowns parameters given a priori. The

vector d s  is computed as follows :
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The realization of the iterative procedure (10) is
based on computing the vector g at each iteration. This
vector is determined by the relationship for the residual
functional variation :

2
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where pJ 〈  is the residual functional gradient in MR
space of approximation parameters and qJ 〈  is the

gradient in 2L  space of parametrized functions, ),(  is
the scalar product.

By using the parametric form (7), it can be shown
that (Alivanov et al., 1987):

GgJ p Ζ〈                      (14)
where G is the Gram's matrix for basis functions :

≡ …MmjGG Lmjmj ,...,2,1,,),(
2, ΖΖΖ ♥♥ (15)

This matrix is symmetric and positive definite. The
Cholesky decomposition is used to solve the system
(14).

The most effective method for calculating the
gradient pJ 〈  in MR  space is based on introducing an
adjoint problem. The following expression for the
gradient components can be derived :
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where ),( tx÷  is the solution of the following adjoint
problem (Alivanov et al., 1995):
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A linear approximation is used to estimate the
parameter s

ƒ  (Alivanov et al., 1995) :
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where ),( txγ  is the solution of the following boundary-
value problem :
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where )(tD  is the descent direction in 2L  space of
parametrized functions (9).

To obtain stable solutions of the inverse problem
under consideration, the iterative regularization is used
(Alivanov et al 1995). The main idea is to terminate the
iterative procedure with the residual criterion :
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)(2 tn″  is an estimate of the time-dependent standard
deviation for the nth temperature history measured. This
procedure gives the most stable solution. The number s*
of the last iteration is the regularization parameter of the
method.

It is necessary to note that the number of
approximation parameters M should be correctly chosen
for the desired function. This number has to be chosen
so that the residual criterion would be verified. In this
case, the flexibility of the solution is good enough for
using the iterative regularization method.

One iteration of the numerical algorithm is
composed by the following steps :
  solution of the direct problem and computation of the
residual functional,
  verification of the residual criterion,
  solution of the adjoint problem and computation of
the residual functional gradient in 2L space,

  computation of the descent direction,
  solution of the problem for temperature variations and
computation of the optimal descent parameter,
  calculation of the heat flux approximation.

FUNCTION SPECIFICATION METHOD (FSM)
To estimate transient heat flux, the sum of squares

function (Beck et al. 1985) :
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is minimized with respect 1Ηnq .
The first subscript refers to space where N is the sensor
number and the second to time where r is the future
times.

The temporal stabilization, for the function
specification method, is obtained through the temporary
assymption that flux is constant over the r futures
temperatures :
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leads to the expression of αq nΗ1 :
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i qTQ ⌡⌡  is the sensitivity coefficient
at time jnt Η

 and sensor locations iX . The sensitivity
coefficients are computed numerically by using the
following relation
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where ⁄  is a small coefficient.
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One iteration of the estimated algorithm is composed
by the following steps :
  computation of temperatures at the sensor locations
by solving the direct problem for nq  and nn qq ⁄Η

conditions.
  computation of the sensitivity coefficient jn

iQ Η ,

  computation of the flux variation 1Η
α

nq ,

  computation and test of heat flux 1Ηnq .

NUMERICAL SIMULATION AND COMPARISON
OF THE TWO METHODS

The first experimental study was carried out with
relatively low heating rate. But our future goal is to
analyze intensive heating with small enough Foα

numbers. That was a reason to compare the efficiency of
the analyzed methods with different Foα values. For our
purposes, the main criterion was the accuracy of
estimated heat flux evolutions. Results of such a
comparison are presented in this section.

To simulate the numerical solution and to compare
the methods, we have supposed in the problem (1) to (4)
that 1ΖΖΖ e∼↔ , 00 ΖΖ Th .  Two types of the heat
flux evolutions were studied :
  Step heat flux evolution (W/m2)

)(tq = 1000 if 20 ftt ΨΨ     and

)(tq = 0 if ff ttt ΨΨ2

 Sinusoidal heat flux evolution with decrease
amplitude:

ξ ζ xp(-at)e  t)sin(1)( 0 ΗΖ qtq ,  ftt Ψ0

0q =1000 W/m2, ft20Ζ∂ ,  srd / ,
a =0,05 for tα =0,1 to 0,001 and a =2 for tα =10.
In these conditions, the Foα  number is equal to the
time step that we have varied from 0.001 to 10.

In the above test cases the measured temperatures
evolutions was simulated numerically at the back surface
of the specimen with a random noise of 10% of the
maximal value of the temperature.

For the IRM, we have used M =51 parameters for to
estimate the unknown heat flux evolution. For the FSM,
the sensitivity coefficients were computed by using
⁄ =0.001.

For each particular case ( Foα ), the number of future
steps r was chosen by realizing numerical experiments
individually. This number was increased until
fluctuations in the solution would be minimum, that is
there would be no further stabilization.

In figures 2a and 2b, we show an example of
temperature evolutions at x =0 and x = e =1 for both
test cases analyzed.

In figures 3a, b, c and d for the first type of the heat
flux evolution and in figures 4 a, b, c and d for the
second one respectively, we present a comparison
between the two methods for Foα numbers varying
from 0.001 to 10. These results of comparison show that
for Foα >0.1 the estimated an exact heat flux evolutions
obtained by the both methods are in a good  agreement.
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Figure 2a. Temperature evolution at 0Ζx  and ex Ζ

for the first test case.
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Figure 2a. Temperature evolution at 0Ζx  and ex Ζ

for the second test case.

For numbers Foα = 0.1, results estimated by FSM
remain close to exact heat flux but, as the Foα number
decreases, the difference between exact and estimated
values is increased.

For the IRM, the difference between exact and
estimated heat flux evolutions is also increased but less
than that obtained by the FSM. These results show that,
for the test cases analyzed in this paper, heat flux
evolutions estimated by the IRM are more accurate that
those obtained by the FSM. This is a direct consequence
of the use of the regularizing residual criterion (28). For
all considered cases, the residual values 2

≤  were
computed by using the formula (29). These values are:

Foα 2
≤ )10( 6

⌠

10 1.33
0.1 1.83

0.01 2.34
0.005 4.03
0.001 4.1
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 Figure 3a. Foα =10
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Figure 3b. Foα =0.1
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Figure 3c. Foα =0.01
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Figure 3d. Foα =0.005
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Figure 3e. Foα =0.001
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Figure 4a. Foα =10
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Figure 4b. Foα =0.1
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Figure 4c. Foα =0.01
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Figure 4d. Foα =0.005
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Figure 4e. Foα =0.001

We note that the comparison results obtained in this
paper differ from those presented for example, in Beck,
1993. An explanation is that we use another realization
of the IRM based on a spline-approximation of the
unknown heat flux evolution. In particular, the residual
functional gradient is not equal to zero at the final time
with this approximation.

In terms of computing time (we used a PC of 260
MHz) , the FSM is more effective that the IRM, that is
the FSM takes less time that the IRM. For the one
dimensional test cases considered in this paper the
computing time is rather small. So, the computing time
is not the best criterion to compare the methods in this
case. For two and three dimensional problems this
criterion may be much more important. This question
should be carefully analyzed.

It should be underlined that the realized comparison
of the two methods was rather restricted. It is necessary
to continue this analysis to establish the domains where
each of the methods is more effective.

EXPERIMENTAL DATA ANALYSIS
The experimental tests were realized with a

relatively low heat flux with a specimen of the gray cast
iron ( e =0.0097 m, ↔ =50 W(m.K), ± =7200 kg/m3,
C =670 J/(kg.K) to obtain a significant difference
between the temperature histories measured. The heat
transfer coefficient is determined, in steady state regime,

by a heat balance equation at the interface specimen-
fluid.

)./( 880
945

31700 2 CmW
TT

qh
fs

Ζ
ϑ

Ζ
ϑ

Ζ

hα =ΝΘΟ W/(m2°C), Tα =ΜΚΡ=°C, qα =ΘΚΤ=kW
where Ts is  the temperature of the back surface of the
sample, Tf  is the mean fluid temperature and q is the
steady heat flux estimated by the Fourier law.

2/k 7.31
5.0
98.232.5 mW

e
Tq ΖΖ

α
Ζ ↔

Tα =0.5=°C, ↔α =3 W(/m°C),= eα =0.1=mm,
qα =6.45 kW.

M =21, NT =350, Foα =40,5
The experimental data analysis confirms that heat

transfer coefficient h remains practically constant.
In figures 5a and 5b, we present measured and

estimated temperatures at sensor locations X1 =1.6 mm,
X2 =7.8 mm respectively and, in figure 6, we present
the estimated heat flux evolutions. Measured and
estimated temperature histories show a good agreement
and the difference between them remain less 4%.
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Figure 5a.Temperature histories measured and estimated
at location 1X =1.6 mm,
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Figure 5b. Temperature histories measured and
estimated at locations 2X =7.8 mm
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Figure 6. Estimated heat flux density.

These results were obtained with the use of the both
methods under consideration. Practically, there is no
difference between the both solutions. This fact
confirms that there are domains of applications where
different methods give practically the same results (Beck
et al., 1996).

CONCLUSIONS
To estimate the heat flux evolution from measured

internal temperature histories, the IRM and FSM was
studied. A comparison between these two methods was
realized for different dimensionless time steps
( Foα numbers) by analyzing two test cases. This study
shows that for Foα >0.1, the both methods gives
practically the same results. For Foα <0.1, the IRM
gives more accurate results and the errors in the
estimated solution are increased much faster for the
FSM that for the IRM in the test cases considered.
The use of the first experimental results allows to obtain
the similar estimated heat flux evolutions for the two
methods.

The first experimental study was realized by using a
thermal cycling device with a one-layer specimen (gray
cast iron). This study was carried out with relatively low
heat flux. Two temperatures histories were measured
inside the specimen. The heat flux evolution at the
active surface was estimated  with the use of the IRM
and FSM. The results obtained by both methods are
practically identical.

The present study is a preparation for an
experimental study of thermal regimes of multilayer
specimens wish are typical thermal barriers heated
intensively during short period of time.
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