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ABSTRACT

A method is developed in order to determine the drying
curves for sludge thin-layer drying. Since mass balance is very
difficult to measure for thin-layer drying, these curves are
obtained through energy balance. An experimental device is
built up, in order both to provide and to estimate the heat flux
density at the interface between a hot metallic plate and the
drying sample. An analytical direct model is made using the
quadripole formalism, and the system transfer function is
calculated. The inverse problem is solved using the beck's
sequential function specification method, and the corresponding
drying curve is deduced by a simple energy balance. Real
experiment results are presented.

INTRODUCTION

Among contact drying technologies, drum drying is widely
used in the food industry, to treat heat-sensitive products. It also
presents a great interest for sludge drying. The product is
sprinkled or coated on a hot rotating cylinder. The wall
temperature is above boiling temperature. Absence of mixture
and agitation constitutes an advantage for viscous products like
sludge, enabling a good control of residence time, averaged
water content and thermal efficiency. For contact dryer’s design,
it is important to predict drying rates, but this rate is limited by
internal conductive transfers. It is then necessary to find a
maximum ideal reference, not driven by internal transfers, but
by the intrinsic product’s thin film boiling rate : this is the main
scope of this paper. The present study’s application is for sludge
drying.

In a previous work, it was shown by Vasseur (1983) that
very high heat flux are exchanged during the first instants for
viscous foodstuff thin film drying, due to the low product’s
thickness.

NOMENCLATURE

A, B, C, D Quadripole elements
F(s) Transfer Function
X Moisture content
Y Measured temperature
M Dry matter load
f(t) Inverse transfer function
dt Time step
q Interface heat flux density
T Computed Temperature
a Thermal diffusivity
lv water latent heat
r Future time steps number
s Laplace variable
t Time
b Thermal effusivity
e1 Sensor location
e Plate thickness
ε2 e – e1

λ Thermal conductivity
ϕ Heat flux density
φ Laplace Tr. heat flux
θ Laplace Tr. temperature
ρcp Volumetric thermal capacity

Mass rate drying, when involved in a vaporization thin film
process, is very difficult to measure :

• Boiling transfer is a rather stochastic and violent
phenomena, and highly fast for thin film boiling

• Mass losses are difficult to measure, because very little
material is coated on the wall
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• Product’s sampling is made impossible, because
drying rate is too high.

Since mass balance can’t be directly known, a way to
estimate the drying rate is doing an energy balance, assuming
that the amount of energy involved in vaporization drying is
known. It is thus necessary to obtain reliable values of the
interface heat flux between the drying product and the heated
surface.

The experimental device, developed for this study, is
presented in next section.

1. Experimental device

The first objective of this experimental device is to produce
thermal conditions for thin film vaporization contact drying.
The product's thin-layer (about 0.7 mm thickness) is coated on a
hot metallic plate. The plate must be thick enough in order to
store the energy amount necessary for complete drying (58 mm
thickness). It must be highly diffusive in order to ensure high
heat flux densities at the interface. The heat is stored at a
temperature above boiling temperature and suddenly discharged
when the product is coated. Initial temperature is provided by
placing the plate in a drying loop.

The second main goal is to estimate the interface heat flux
between the drying product and the heated surface. It must be
emphasized that no direct surface temperature can be made : a
sensor located on the front side would perturb the material
coating, as well as heat transfer…Thus wall temperature and
flux must be estimated using interior location temperature and
an inverse heat conduction method.

A thin thermocouple with separated contacts is dulled
inside the plate, near the surface, laid in a direction parallel to
isothermal curves. With this particular method, the sensor
location is precisely known (fig. 1). Another sensor is laid out
on the plate's bottom side (T2 on fig. 2).

Sludge layer

Copper plate

Thermocouple lead

1 mm
0,7 mm

Figure 1 - Sensor dulled inside the plate

2. Direct model

A direct model is built in order to calculate the sensor
temperature evolution, when a given heat flux is applied to the

plate’s surface. The system is shown on fig.2. An analytical one
dimensional conductive model is built, assuming that the plate’s
bottom is insulated. The quadripole formalism (Degiovanni,
1988) is used, and the transfer function F1(s) between the
interface heat flux φ and temperature T1 is calculated.

Sludge layer

Plate

Insulating media
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Thermocouple lead

T, q
T1, ϕ1

T2, ϕ2

Back side sensor
Figure 2 - Schematic Experiment

Heat transfer is here assumed to be purely conductive and
the sample homogeneous :
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with a known heat flux density at the plate surface x=0 and
insulated bottom at x=e.

Initially, the whole system is assumed to be at uniform
temperature T0. A new variable is then considered such as T=T*

- T0.
To write the previous system in a quadripole form,

Laplace transform is applied. Equation (1) becomes an ordinary
differential equation :

θ=θ
a
s

dx
d

2

2

(2)

with heat flux definition such as

dx
)s,x(d)s,x( θλ−=φ (3)

Expressions (2) and (3) are then equivalent to a quadripole
presentation (Batsale, 1994) such as
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where (i=1,2) :

)e.k(chDA iii == (6)

λ
=

k
)e.k(shB i

i (7)

)e.k(shkC ii λ= (8)

and                      
a
sk = (9)

It is then easy to determine the transfer functions Fi(s)
between the Laplace transformed superficial heat flux φ, and the
temperatures θi to be calculated by

φ=θ ).s(Fii (10)
Inverse method allows to calculate the superficial heat flux

density q(t) from the measured temperatures Y1 (t) at sensor
location, and corresponding temperature T1 (t) from the direct
model. Inverse transfer function fi(t) are obtained from Fi (s)
through a numerical Laplace inversion (Stehfest, 1970).

The temperature Ti(t) is then calculated by a convolution
product :

τττ−=
t

0
ii d)(f).t(q)t(T (11)

Of particular interest is  the transfer function between q(t)
and the computed temperature T1(t) at sensor location :
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The insulated boundary condition will be validated from
back side measurements Y2 (T2 location). Nevertheless, it
would be possible to integrate these values in the boundary
condition’s knowledge.

3. Inverse method

In the case of one dimensional problem with fast and high
heat flux changes, a sequential method is adapted. The function
specification method, with a sequential constant heat flux
functional form is used (Beck, 1970).

For that method (Beck, 1985) , q(t) is approximated in a
discrete form :

[ ]n1ii21 q..........qq........qqq += (13)

where qi = q(ti) = q(i.dt). Equation (11) can be expressed in
a discrete form :
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[ ]1i21i1i2i1 fqfq...........fqfq.dt ++++= −− (14)

with )t(ff j1j = .

Assuming that q1--------qi and T1-------Ti are known, qi+1 is
searched by an ordinary least square procedure using the next
Yi+1 -------Yi+r measurements, assuming a constant heat flux qi+1
during the r future time steps (Fig.3) :

r1r2i1ii qq..........qqq ===== −++ (15)
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Figure 3 - Time discretization at time step ti

The least squares procedure minimizes the functional form
J with respect to qi+1 :
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Equation (16) is differentiated with respect to qi+1 and set
equal to zero :
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The heat flux increment during the time step is searched :

qqq i1i δ+=+ (18)

Thanks to Eq. (15), the r future computed temperatures Ti+j
(qi+1) can be written as :
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and for the same reason (qi = qi+1), the sensitivity coefficients in
Eq. (17) and Eq. (19) are equal :
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Equations (17 – 20) yield to the heat flux increment δq for
q temporarily assumed constant (Eq. 21). This equation is used
in a sequential manner by increasing i by one each time step.
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The sensitivity coefficients defined in Eq. (21) are known
from Eq. (14) with i replaced by i+1 to i+r. For example, the
temperature Ti+j at time ti+j, with assumption of constant heat
flux after time ti, can be expressed as :

[ ]1ji21ji1ji2ji1ji fqfq...fqfq.dtT +−+−+++ ++++= (22)

Assuming Eq. (15) yields to the sensitivity coefficients,
with j = 1 to r :

[ ]1j1ji21ji ff.................ff.dtS +−++ ++++= (23)

It is shown the great interest that have a direct model with a
convolution such as Eq. (11) coupled with the specification
function method : the sensitivity coefficients are constant with
time step, and only the first r+1 values of the inverse transfer
function are to be calculated. The sum of inverse transfer
function values in Eq. (23) also imply a growing behavior for
these sensitivity coefficients. This fact improves the future time
steps stabilization effect in Eq. (21), because each future time
step number increment will contribute with a sensitivity
coefficient growth. Sensitivity analysis is to be detailed in next
section.

4. Sensitivity analysis

The direct model, described in section 2, is used with a heat
flux functional form similar to experimental results.  Reduced
sensitivity coefficients to the main parameters are plotted on fig.
(4). It is shown that sensitivity of T1 to e1 is very low. This is
due to the sensor location, near to the surface.

Sensitivity coefficients to thermal conductivity and thermal
diffusivity are the same order than sensitivity to mean heat flux
gain φ0. It is then important to get good knowledge  of the
plate’s thermal properties.

Equation (14) can be written in a matrix form, in order to
express the sensitivity matrix X to the unknown heat flux
components :

XqT = (24)
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Figure 4 – Reduced sensitivity coefficients

A whole time domain estimation procedure would be
difficult to regularize : The qi component at time ti can be
estimated only very close to time ti.
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The dirac form of sensitivity coefficients to q can be
understood with Eq. (25), and is due to the deep exponential
decrease of the transfer function f(t).

Sensitivity coefficients, obtained from Eq. (24 - 25) are
presented on a map by fig. (5). It is shown that the sensitivity
coefficient is non zero only for a very few points very close to
each  heat flux component qi at time ti.
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Figure 5 – Sensitivity coefficients map

The comparison between  fig. (5) and fig. (6) makes clear
the present algorithm interest, and the future time steps
stabilization effect, since the sensitivity coefficients curve
shown by fig. (6) is a growing function with the future time
steps number.

1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10

11
x 10-6

future time step number

Figure 6 – Future time step sensitivity coefficients for the
sequential method : Si+j, j = 1 to r (Eq. 23)

5. Heat flux estimation results

Some method’s validation tests have been implemented
with “numerical experiments”, and have proved its efficiency,
but the corresponding results are not presented herein. In this
section, only real experiment results are shown.

The plate is  placed inside a drying loop, and a stable initial
temperature above the product’s boiling temperature is reached
before the experiment is started. At time 0, the product is
quickly coated on the plate, while Y1 and Y2 acquisition goes
on.

Although a lot of experiments have been made, the goal of
the present paper is only to present the general work and

method, and the results are exhibited only for one case, with
initial temperature T0 equal to 138 °C.

Time step is dt = 0.01 s., the estimated parameters number
is 2518, and the future time steps number r is 5.

Measured and computed temperatures evolution are plotted
on fig. (7). The measured sensor temperature Y1 is perfectly
fitted with T1 , but this is directly due to the inverse method,
very close to an exact matching algorithm. More important is
the perfect fit between back side measurement Y2 and computed
temperature T2, because this means a good concordance
between the experiment and the model, and proves the validity
of back side insulated boundary condition assumption. Wall
temperature T and T1 are almost identical, due to the low
distance e1 and the copper’s high thermal conductivity.

Figure 7 – Computed and measured temperatures

Y1 is submitted to a straight diminution due to sudden
boiling phenomena, and the corresponding superficial high heat
flux density.  The decrease is stopped when the heat flux
intensity falls down while thermal diffusion inside the copper
plate  tends to its homogenization. When q(t) is near to zero,
front side and back side temperatures tend to the same value,
corresponding to a quasi-permanent state.

The wall temperature T is always above product's boiling
temperature. Boiling transfer stops probably due to the product
structure evolution : a high external thermal resistance is found
between the dried product and the plate interface.

Figure (8) indicates superficial heat flux density q(t)
estimated from Y1 measurements and inverse procedure.  A high
value, about 106 W.m-2 is raised after a very short time smaller
than one second, due to boiling phenomena. The flux decrease
occurs when boiling drying stops, and is followed by an
evaporative drying period, involving smallest heat transfer
(about 103 W.m-2 ).

The main objective of thin-layer drying is to dry most of
product with boiling drying. The transient period between
boiling and evaporation drying is more or less defined. When

T1  Y1 and T

T2 and Y2
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initial temperature T0 is near to the product's boiling
temperature, this transient period is large.

Figure 8 – Estimated superficial heat flux density q(t)

Assuming the classical statistical description of temperature
measurement errors (Beck, 1977), it is possible to estimate the
corresponding standard deviations. For the present experiments,
the standard deviation σT for temperature measurements is
found to be about 0.07 °C. Estimated heat flux standard
deviation σq is plotted on fig. (9) as a function of the future time
steps number r. The decay is due to the stabilization effect of
growing r (see on fig. 6).
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Figure 9 – Estimated heat flux standard deviation σq as a
function of the future time steps number r.

6. Energy balance and drying curves

Superficial heat flux knowledge can be used to calculate
the energy density E lost through the surface :

ττ=
t

0

d)(q)t(E (26)

The global energy density lost by the copper plate after a
new quasi-permanent state is reached (when front side and back
side temperatures are equal to Tf) is :

)TT.(e.c'E 0fp −ρ= (27)

E’ is found to be quite close to E(tf), where tf is the final
time when T1=T2=Tf. This means that q(t) is the unique flux
cruising plate walls. This fact confirm the insulated back side
assumption, but also seems to prove there are no lateral losses,
hence the one dimensional conductive transfer assumption is
valid.

It is now possible to calculate the dry matter load :

vl)XX(
'EM

f0 −
= (28)

with X0 and Xf initial and final moisture content. It is very
important to know precisely the dry matter load M, since drying
rate is highly dependant on this quantity, and it is not possible to
deduce its value with direct experimental measurements.

The moisture content X(t), the drying curves, and finally
the drying rate can be deduced from Eq. (26 - 28) :

vM.l
)t(EX)t(X 0 −= (29)

vM.l
)t(q

dt
dX −= (30)

Drying curves are shown by fig. (10). It is noticeable that
boiling thin-layer drying, in that particular case, is very fast,
thanks to the non internal transfer limitation. The global drying
time is increasing with initial temperature.
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Figure 10 - Drying curves - Initial temperature T0 effect

CONCLUSION

The present experiment has been developed in order to
determine the drying curves for sludge thin-layer drying. Since
mass balance is very difficult to measure for thin-layer drying,
these curves are obtained through an inverse method used to
estimate superficial heat flux density history from internal
temperature measurements and energy balance. These curves
are used as an ideal  reference for drum dryer's design, since
industrial dryers always have an internal conductive transfer
limitation.
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