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ABSTRACT

The paperincludesa descriptionof differentstrateyies for
monitoring the wearlineof a melting furnace. This type of in-
dustrial monitoring is importantfor both economicand safety
reasons.

Temperatureensorsitdifferentlocationsn thelining of the
furnacecombinedwith aninverseheatconductiormodelareuti-
lized for monitoringthe stateof thelining. Thewearlinebound-
ary is representedby a critical isotherm,andthe estimationof
this isothermis the crucial partof the inversesolution. Two nu-
mericalalgorithmsfor theinverseproblemaredescribed.

Thealgorithmsaretestedon modeldataaswell ason mea-
surementdataacquiredat anindustrialfurnace. Onealgorithm
is basecdbn utilizing afixedboundarywith controllingnodeson
the wearlineside,to approximatehe measurementsThe other
algorithmicapproachs to approximatehe wearlineascloseas
possiblewith asfew curve representingparameterss possible.
Both algorithmsutilize the commonapproactof minimizing the
sumof the squaredesidualatthe sensotlocations.

We alsoreporton somelimited numericalsensitvity studies
for thealgorithms.Thenumericakexperimentsonfirmtheutility
of the algorithmsasthe resultsarein goodagreementvith test
modeldataaswell asindustrialdata.

NOMENCLATURE

E= parametersf thewearlinedefinition
Aa;  edgelengthsof hypertetrahedions
Gi partialderivativesof uy w.r.t. g;
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ha heattransfercoeficientbetweersteeljacket
andair [W/n?K]

hy heattransfercoeficientbetweersteeljacket
andwater[W /nm?K]

H  Hessian

J regulizer

k  thermalconductvity [W/mK]

M M+ 1is numberof wearlinedefinition parameters

N numberof measuremerbcations

r spatialcoordinaten radialdirection[m]

u temperaturgC]

Ua ambienttemperaturef air [°C]

Uy ambienttemperaturef water[°C]

U, computedemperaturén locationn [°C]

U, measuredemperaturén locationn [°C]

Vi  nodalvaluesof temperaturalongcontrolcurve [°C]

x  radialcomponenbf approximatingcubic

y  axialcomponenbf approximatingcubic

z  spatialcoordinatean verticaldirection[m]

Greek symbols

o  weightingfactorof wearlinecurvatureregularization
oo coeficientin regulizerfor zeroorderterm

a1 coeficientin regulizerfor first orderterm

oz coeficientin regulizerfor secondbrderterm

K cunatureof wearline

I boundaryof Q

i boundarysggmenti of Q

Q  regionof computecheatconduction

® sumof thesquaredesidual
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Figure 1. VERTICAL SECTION OF THE MELTER.

INTRODUCTION

The problem origins from an ilmenite melting furnaceat
Tinfos Titan & Iron KS in TyssedalNorway. The productsfrom
the melterareiron andtitan-dioxide.Becauséhe densityof lig-
uid iron is higherthanthatof liquid titan-dioxide theslag(titan-
dioxide)tap-holesarelocatedaboretheiron tap-holes Theside-
wall of the furnaceis watercooledandthe bottomis air-cooled
(seeFigurel). In time, thelining of the meltergetsworn. This
is dueto chemicalreactionsandthermo-mechanicaitress.It is
crucialthatoneis ableto monitorthe wearingto avoid hot metal
from breakingthroughthelining andcausedamagéo the melter
andnearbyequipmentHerewe considera rotationalsymmetric
verticalsectionof themelterasillustratedin Figurel. In onesec-
tion thereare24 thermocoupleistalledto monitorthe temper
aturedevelopment.The measurementarealsousedin asimple
modelto calculatethe positionof pointson a specificisotherm.
The purposeof this paperis to suggesimethodsto monitorthe
wearingof the ilmenite melter i.e. to monitor the position of
the wearline. Sincewe do not know exactly what definesthe
wearline,we insteadtry to locatea representatie isotherm.Be-
causethe melting temperatureof the iron is about145(°C and
that of the titan-dioxideis about160(°C, it is certainthat the
lining is not worn beyond the 145(°C isotherm. Here we only
considerstationaryheatconduction. The transientsare negligi-
ble in our monitoring timeframes. A systemis built basedon
solving inversesteadyheatconductionproblemsrepeatedIyfor
severalsectionoof thefurnacelining, with afrequeng of 1 hour.

MATHEMATICAL MODEL OF HEAT CONDUCTION

Thedirectproblemis to solve awell definedstationaryheat
conductionproblemon a givendomainQ with boundarycondi-
tions,seeFigure2. In this specificcaseonecanassumeotational
symmetryi.e.:

whereu is thetemperaturata point (r,z) € Q, r andz beingthe
radial and axial coordinatesrespectiely. Thethermalconduc-
tivity, k(u), is generallydependingn thetemperatureEquation
(1) describesheatconductionin cylindrical coordinateswhen
the angulardirectioncomponenbdf the conductionis negligible.

Eventhoughthefurnaceining heatconductionrdo notsatisfythe
assumptiorof axisymmetryin generalthis assumptioris locally
valid andapplicablealongseparateerticalsectionsf thelining,

wherea numberof thermocouplesrelocated. The boundaryl”

of Q is splitin 5 sgmentsasshovnin Figure2,

MuUluUlfgulragulrs=r (2)

Theboundaryvaluesfor the problemareasfollows. OnT 1
theheatflux is zero,sincethe modelis rotationalsymmetric,

Jdu
E_O on I 3)

The bottomsegment(I,) is air-cooledsowe have a mixed con-
dition. Thefurnaceis suppliedwith fans,blowing air underneath
to increasethe cooling of the bottom. h, is the heattransferco-
efficient betweenthe bottomandair, andu, is the ambientair
temperature,

_k(u)% =ha(u—uy) on T 4)

Thesidewall (I'3) is watercooledsowe have a mixed condition
hereaswell. hy, is the heattransfercoeficient betweerthe side-
wall andwater anduy, is theambientwatertemperature,

ou

_k(u)a =hy(u—uy) on I3 (5)

At the upperendof the domain,the assumptiorof insulationis
reasonable,

ou
5_0 on 4 (6)

At theinsideboundary('s) we have a Dirichlet condition. Be-
causewe aretrying to monitorthewearline,we choosehefunc-
tion f(r,2) in (7) soasto describethe wearline. For instancejf
themeltingtemperaturef themetalinsidethefurnaceis 1450°C
we choosethe function to be equalto this melting temperature.
In (Radmoser1998)a similar approachis used.

u=f(r,z on Is (7)
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Figure 2.  THE HEAT CONDUCTING REGION WITH CURVED WEAR-
LINE. MEASUREMENT LOCATIONS ARE SHOWN.

Anotherpossiblenodelingapproachs to considetthe prob-
lem as an inverse multi-dimensionalfree boundaryproblem.
This is quite naturalfor phasechangeproblems. In (Katz &
Rubinsky, 1984)and(Zabarastal., 1988)suchapproachesre
consideredor the one-dimensionatase.

ALGORITHMS FOR INVERSE HEAT CONDUCTION
Theunknovn wearlinedenotedy I's, will be estimateduti-
lizing afinite numberof measurements

U, n=1...,N (8)

at givenlocationsin Q, in combinationwith solvingthe mathe-
maticalmodelof heatconductiorgovernedby Equationg1)-(7).
The locationsusedin our studiesareshavn in Figure2, i.e. a
maximumof 9 sensottocations.Theactualnumberof sensorsn

vertical sectionof theindustrialfurnaceis larger.

Marny authorse.g. (Becketal.,1985),(Hensel, 1991),have
analyzednverseheatconductiorproblemspothanalyticallyand
numerically In (Sorli & Olden,1998)a methodfor finding heat
transfercoeficients,basednabisectiontypealgorithmfor non-
linearandimplicit equationsis presentedIin (Radmoser1998)
asimilar problemto the presenbneis formulatedandsolved by
aspecialtype of angleconstrainto regularizethe problem.

In thissectiorwe presentwo differentnumericallgorithms
for solving the giveninverseproblem. Both methodsare based
on the commonapproactof minimizing the sumof the squared
residualatthe measuremergoints,

min % (Un—Up)? ©)
n=1

This function is refined by regularizationterm(s) that are de-
scribedin thefollowing subsections.

Method of contr ol boundar y

Theideais thatsincewe do not know exactly whatthe do-
mainfor the boundary-alueproblemlookslike we just assume
somefixed shapefor the unknovn boundary(I's). We define
this boundaryasthe control boundary A rule is thatthe control
boundaryshouldbe chosersuchthatit is ascloseto thedesired
isothermaspossible.This canbe achiesedby somea priori cal-
culationsor by startingwith avery simplecontrolboundarye.g.
astraightline andimprove theguessrom theresultsin anitera-
tive manner Theinverseproblemthenreads:Find atemperature
distribution along the control boundarywhich reconstructghe
measuredemperaturest the sensorpositions. Thatis, given
measurementd,, n=1,...,N, whereN is the numberof ther
mocouplesfind a Dirichlet conditionon T 5 which minimizesthe
sumof squaresasgivenin (9). Thevaluesu,, n=1,... N, are
the calculatedtemperaturesit the thermocoupldocationsfor a
giventemperaturalistribution alongrl's. Sinceinverseproblems
tendto beill-posedit is not very likely thatwe will succeedn
minimizing the squaresumandgeta reasonablsolutionto our
problem.lt is easilyseenthatthe problemhassimilaritiesto the
sidevays heatequationwhich is ill-posed, thatis, the solution
doesnotdepenccontinuouslyonthe data,see(Becketal.,1985)
and (Hensel,1991). To limit the behavior of the temperature
distribution alongl"s we introducea regulizerin additionto the
squaresum, see(Radmoser1998)and (Hensel,1991). There-
fore, insteadof minimizing the puresquaresumwe minimize

N
D(V1,V2,.0Vm) = 5 (Un—Un)?+J (10)

n=1
with respectto the unknovn boundaryvaluesy;, i = 1,...,m.

ThetermJ is aregulizerandmis the numberof nodesalongthe
fixedcontrolboundaryIn calculationgresentedhereld is afinite
differenceapproximatiorto

a/(U)zd +a/ (ﬂ)zd +0(/ <@>2d (12)
0 s Y+ rs \ O y+ a2 rg \ 02 ¥

whereag, o1 anday areconstants.This type of regularization
is referredto asTikhonov regularizationin literature,see(Beck
etal.,1985)and(Engl,Hanke & Neubauerl996). The constants
are chosenlarge enoughto stabilize the problemso iterations
will corverge. Thereexist a theory on how to determineop-
timal valuesfor the constantssee(Engl, Hanke & Neubauer
1996). If it shouldhappenthat our guessfor the controlline is
nearlyon the wantedisotherm the extra termJ becomesmall.
This fact encouragesis to make a good guessfor the control
line. To solve the modified minimization problemwe usethe
methodof Newton-Raphson.See(Dennis& Schnabel,1983)
for detailson this methodand optimizationmethodsin general.
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Using Newton-Raphsonve have to solve

9D(v1,V2,..,Vm)
aV]_
9P(V1,V2,..,Yim)

F(V1;V27"7Vm) = a\_lz =0 (12)

9P(Vy,V2,..,Yim)
OVm

Using Newton-Raphsomwe have to calculatethe Jacobiarof F
whichis givenby

02DV, Vo, Mm) 2DV, Vo, V) | BPD(VLV,..Vim)

av% 0V10V2 0V10Vm
2D(vy, Vo, Mm) POV, Vo, V) | 9PD(VLVa,.Vim)

0vo0 0vo0

V201 ov3 V20Vm (13)

H=

2D(vy, Vo, Mm) POV, Vo, V) | 9PD(VLVy,..Vim)
OVmoVy OVmoVa avZ,

and is symmetric. One advantageof the control boundary
methodis thatthe Jacobiarbecomesndependenbf the bound-
ary valuesalong I's whenthe thermalheatconductvity is in-

dependenbf temperature.Thatis, we do only needto calcu-
late the Jacobianonce. This will of courseresultin very fast
convergencefor the Newton-Raphsoriterations,becauseave in

factaretrying to solve alinear problem. The methodof solving
for unknovn boundaryvaluesfor linearsystemsarepresentedh

(Hensel 1991). The Newton-Raphsomipdatesecomes

Vier = Vi —H Y (vi)F (Vi) (14)
wherev; = [V1,V2,--an]iT-

Test cases Two testcasespnewith a“minor wearline”
andonewith a “severewearline”, were createdo testthe algo-
rithm. Table 1 shavs the computedtemperaturest the probe
locationsfor both cases Remembethatwearlinein this caseis
representethy the 1450°C isotherm.

The upperplot of Figure 3 shows the calculatedwearline,
the actualwearlineandthe controlline. In this casewe tried to
reconstrucaminorwearlineusingalinearcontrolline ratherfar
from the actualwearline,bothin locationandshape.Thelower
plot of Figure 3 shows the relative error at the locationsof the
thermocouples.The numberingof the thermocouplesn Table
1 areasin Figure 2. The constantsn the regulizer term were
choserno beag = 0.0, 0; = 0.0005anda, = 0.0003.

In Figure4 thesamewearlineasin Figure3is reconstructed,
but this time usinga betterfitted curvedcontrolline. Comparing
the relative errors plotted in the lower plot of Figure 3 and 4

Table 1. SIMULATED TEMPERATURES AT NINE PROPE LOCATIONS
FOR TEST CASE 1 ("MINOR” WEAR) AND TEST CASE 2 ("SEVERE”
WEAR).

Un(1) Un(2

305.40 404.87
384.99 506.14
480.66 672.39
480.92 646.39
189.36 242.92
268.55 347.69
667.25 872.56
550.63 804.88
98.61 125.80

n Zy

6.50 2.00
3.75 0.50
6.50 2.75
2.00 0.50
6.50 1.25
5.25 0.50
6.50 3.50
0.00 0.50
6.50 0.50
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Test case 1 - "minor" wear line, linear control line.
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Figure 3. RECONSTRUCTION OF MINOR WEARLINE WITH LINEAR
CONTROL LINE.

shavsthata controlline closerto thewearline bothwith respect
to shapeandlocation,will contributeto a solutionwhich fits the
measuredemperaturebetter The samevaluesfor the regular
ization parametersisin the linear control curve casehave been
usedto reconstructhewearlinein Figure4.

For Case2, i.e. “severewearline”, the sametestshave been
performed. In Figure5 a linear control line hasbeenusedin
thereconstructiorof the temperaturalistribution giving relative
errorsasin thelower plot of the Figure5 . Again, samevalues
asheforehave beenusedfor theregularizationparameters.
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Test case 1 - "minor" wear line, curved control line.
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Figure 4. RECONSTRUCTION OF MINOR WEARLINE WITH CURVED
CONTROL LINE.

Test case 2 - "severe" wear line, linear control line.
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Figure5. RECONSTRUCTION OF SEVERE WEARLINE WITH LINEAR
CONTROL LINE.

We have alsoin the caseof “severe wearline” tried to re-
constructhetemperaturaistribution usinga curvedcontrolline
whichis closerin locationandshapeo thecritical isotherm.As
wasthe casefor the “minor wearline” this resultsin a betterfit
to measuredemperatureswhich is shavn in the lower plot of
Figure6.

A brief response analysis To analyzetheresponsef
temperatureat measuremenibcationswe introducedperturba-
tionsof thelocationof theboundarys. In thiscaseheboundary

Test case 2 - "severe" wear line, curved control line.
35 T T T
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Control line
Actual

N
3
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Relative error

Thermocouple no.

Figure 6. RECONSTRUCTION OF SEVERE WEARLINE WITH CUR-
VED CONTROL LINE.

conditionfor theinnerboundaryis u = 1450°C. The conditions
for the otherboundariesarethe sameasfor the testcases.The
innerboundaryis describedy quadratigpolynomial

Z(r) = co+ Cor +Cor? (15)
Theconstants;, i =0, 1,2, aredeterminedrom the equations

dz

g 2=0 )=z and Zr})=2 (16)

Thenthetemperatureatprobelocationsn=1,... ,9, weresim-
ulatedwith (r1,z1) = (0.0,1.5) and(r2,22) = (6.0,3.5). Now,
to testhow perturbationf the location of the isotherm(inner
boundarywould effectthemeasuredemperatureatprobeloca-
tions,we simulatedtwo casesCasel with (r1,z;) = (0.0,1.5+
0.025) and (r2,2z) = (6.0 —0.00253.5), which is a curve just
above the original. Case2 with (rq1,z) = (0.0,1.5—0.025) and
(r2,2z2) = (6.0+ 0.00253.5), which is a curve just underthe
original curve.

In Figure7 thetwo curvesabove andunderthemiddlecurve
aregivenin theupperplot andcorrespondingelative errors(re-
sponsept probelocationsin thelower plot. This shavsthatthe
relative errorsin the test cases,at leastfor the curved control
lines,areacceptableThatis, if onecantoleratedeviationsasin
Figure?.

Isotherm Cubic Curve Appr oximation
In this casethe unknown locationof anisothermrepresent-
ing or approximatingthe wearline,is estimatedin an iterative
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Figure 7. RELATIVE ERROR FOR SMALL PERTURBATIONS OF ISO-
THERM POSITION.

manner First we formulatethe algorithmwith no otherregular

izationthana parametriaepresentationf this critical isotherm.
This wearline parameterizations a specialkind of regulariza-
tion of the problemsincewe limit the numberof parametergor

describingthe curve. Later we extendthe regularizationby in-

cludinga curvaturetermto the minimizationproblem.

Smooth wearlines As suggestedve apply the well-
known conceptof minimizing the sumof the squaredesiduals
(9) atthe N measuremerpoints. One approactof solving this
problemcould be to usethe multidimensionabdownhill simple
methodNelder& Mead,1965). Thismethodonly requiresfunc-
tion evaluationsnot derivatives.However, it is notvery efficient
in termsof thenumberof functionevaluationst requires.There-
fore, we have formulatedanothemethodbasedon the assump-
tion of local lineardependence

Un(a1,...,am) =CQ+Clag+ -+ Cyam (17)

betweenthe computedvalues u, and M curve parameters
ai,... ,am definingthecritical andunknavnisothermaturve. In
this work we have limited our studyto cubic curvesandpresent
resultsfor this case. However, extensionsto cubic splinesare
proposedfor problemswith wearlinesthat are changingquite
rapidly on someparts.

In (17),for n=1,...,N thecoeficientsc, m=0,... ,M,
aredeterminedby multidimensionainterpolation.M + 1 differ-
entsetsof parametevalues{a,...,a,}, j =0,... ,M, givethe

following linear systemof algebraicequations

1a(£---af\l’,| ch UE
laj---ay| |} u
1 1 n
. =1 (18)
1af -l | [ chy u!

which may be solved by Gaussiareliminationwith backsubsti-
tution or ary triangulardecompositionscheme. Obsenre that
(18) must be solved for N different right-hand side vectors
[ud,... ,unM]T, n=1,...,N. However, the coeficient matrix is
the samein eachcase.Therefore the eliminationonly needsto
be doneonce,while the backsubstitutioris requiredfor eachof
thedifferentright-handsidevectors. _ _

In the presensstudythe parametewalues{al, ... ,a\,}, j =
0,...,M, aregivenby

a=[al,... ,aﬁ,,]T (19)
T

al =a’+nae], j=1,...M (20)

forming right-angledhypertetrahedonswith M + 1 verticesin
the M-dimensionalEuclideanspace. In the last equation(20)
Aaj is theedgelengthof thetetrahedrorin thedirectionof g; =
[0,...,0,1,0,...,0] wherelis in the j'" positionof thevector
Let a° be our latestestimateof the curve parameters.We
usean iterative formula to computea new andimproved esti-
matefrom the previousone. To solve the minimizationproblem
of (9), the approachof computingthe partial derivativesof this
expressionwith respecto {a;}, j = 1,...,M in this case,and
settingtheresultsequalto zero,is acommonapproactof finding
thevaluesminimizing a givenfunction. In doingsowe get

z

(Un_Un)CanO, m:].,,M

1

,am) =

n

fm (a.j_,

(21)

wherech, = 22, m=1,...,M,n=1,...,N, aregivenby (18).
We solwe this systemiteratively by the well-knawn Newton-

Raphsorformula

ofy ofy . 0fs

da; Oap day Aa? f1

oz 9z . 9tz | | pg0 f

0a, Oay GEY 2 __ (22)
an an an Aa‘,?,, fm

9a; Oap day
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whereboththeright-handsidevectorandthe coeficient matrix
arecomputedor a = a°. Thenew iteratefor the curve parame-
tersis

a®=a+Aa

whereAd? = [a),. .. ,a,?,,]T.

In orderto reducecomputingtime we have split the itera-
tion in two differentcycles; one inner iteration cycle and one
outer During an inner iteration cycle we do not relocateal,
j=1,...,M, butiteratesonly on &°. In the outeriteration,how-
ever, we do relocatethe other parametesets. The stratgy we
have chosenfor ending an inner iteration cycle and doing an
outeriterationstep,is basedon computingthe distancefrom a°
to thehyperplanespannedy al, j = 1,...,M. If thisdistanceds
largerthansomeprescribedimit, andthe numberof inneritera-
tionsof thepresentycle is belov somelimit, theinneriteration
continues.Whenoneof the limits is reachedthe presentnner
iterationcycle stops,andan outeriterationis executed.The new
al, j =1,...,M, parametesetsarestill determinedy (20), but
now the Aa; hypertetrahedroredgelengthsare setto half the
lengthsof the previous ones. The latter choice may seemar-
bitrary, but it hasproved to be quite efficient in the numerical
testswe have doneso far. However, it may prove more effi-
cientto relatethereductionrateof the edgelengthsof the hyper
tetrahedronso thefunctionvaluesevaluated.

Any finite elementor finite volume solver for direct heat
conductionproblemscanbe utilized for computingthe u,, n =
1,...,N, for givenparametesets{ay,... ,am}, i.e. for fixedl's
(seeFigure?2). In our validationtestsa finite elementsolver and
atriangularmeshgeneratowereused.The mainrequiremenbf
the solver is thatit shouldhandlecurved boundariesuficiently
well. Themeshgeneratoshouldcreatea quality meshrelatively
fastsincethemeshhasto beregeneratedereraltimesfor differ-
entregions. A typical meshis shavn in Figure8. The meshis
refinedtowardsl s dueto the large temperaturgyradientsclose
to this curve. The meshingis basedon the Delaunay-\dronoi
triangulationalgorithm(seee.g. (Caregy, 1997)).

Test cases - knowing the shape of the wearlines
Herewe presentesultsof usingthe algorithmpresentedbove.
Thetestregionsareshavn in Figure9.

The caseqa) and(b) of Figure9 arechosersoasto repre-
senttwo extremewearscenarios.They do not reflectreal wear
in existing industrialfurnaces Both theseartificial wearlinesare
createdby a cubiccurve of the form

X(9) =bo+bis+b2+bss’, 0<s<1  (23)

Figure 8. TRIANGULAR MESH FOR A GIVEN WEARLINE.

(a) no wear

(b) severe wear

Figure 9. TEST REGIONS WITH SMOOTH WEARLINES.

where
bo = x(0) (24)
b1 = X'(0) (25)
by = —3[x(0) — x(1)] — 2xX'(0) — X' (1) (26)
bs = 2[x(0) — x(1)] +X'(0) +X(1) 27)

Thistypeof curveis oftencalledFergusoncubiccurves(seee.qg.
(Davies & Samuels1996)). In the teststhe following assump-
tionsaremade

x'(0) = (a,0) (28)
X' (1) = (0,a2) (29)
x(0) = (0,aq) (30)
x(1) = (as,H) (31)

i.e., the slopeof the wearlineis horizontalat the left side and
verticalattheright sideof it. Thesearereasonabl@assumptions
in real wear scenarios.In (31) H is the height of the furnace
wall. It is setequalto 3.5 in both tests. Also, in both cases
a; =5,a3 = 1.5andas = 6. In case(a) a; = 10, while a; = 26
in the severewearcase(b).
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Figure 10. af —af, i =1,...,4, AS FUNCTIONS OF NUMBER OF
OUTER ITERATIONS. NO WEAR CASE IN UPPER AND WEAR CASE
IN LOWER FIGURE (c=COMPUTED, e=EXACT).

Thedirectproblemof (1) wassolvedfor thesewo casedy a
finite elementsolver. Numericalresultswerestoredin positions
1to 9 asdepictedn Figure2. Thesenumbersveresubsequently
treatedasmeasurementsThis completeghe preparatiorof the
modeltests.

Thetestof thegivensolutionalgorithmfor theinverseprob-
lemis now concernedvith estimatinghewearlinesof FiguresQa
and9b, usingthe sametype of curve for estimatinghewearline.
However, now the parameters; to a4 are not known and will
be estimatedby the inversealgorithm. Hopefully, we are able
to createthe sameparametesets. Of course this taskis much
easierthanthe real problemwhenthe shapeof the wearlineis
not known a priori. However, the testis still valuable,sinceit
mustsucceean thistype of problemin orderto handlearbitrary
wearlines. The resultsof the testsare presentedn Figure 10.
Obsenre thatthealgorithmneedsmoreiterationsto corvergefor
the no wearcasethanfor the wearcase. The reasonis mainly
that the cubic curve in the studyis not very well suitedfor ap-
proximationof the wearlinein this case.lt is slightly betterfor
theseverewearcase However, for heary wearit would probably
be betterto usecubic splinesinsteadof a singlecubic. This will
beinvestigatedn future.

The maximumrelative error of the computedvaluesat the
measuremergointsis in this casdessthan1% afteronly a cou-
ple of outeriterations(seedescriptionabove). The initial esti-

mateswere chosento enclosethe exact parameteiset with an
initial hypertetrahedon having edgelengthsof 10% of the ab-
solutevalueof theexactparameters.

Modification for nonsmooth wearlines We modify
the algorithmwith extra regularizationasclaimedat the begin-
ning of this subsection.The reasonfor the modificationis the
needfor handlingreal furnacewearlineswhich in generalare
notsmoothlyshapedFor suchcaseghe previousalgorithmwill
easilyfail to corverge,dueto sensitvity of the algorithmto dis-
turbanceson the wearline This agumentcould alsobe turned
aroundby sayingthatthe algorithmis sensitve to disturbances
in themeasurements helatteris obviously the casen reallife,
sinceevery thermocouplebaseheasuringsystemproducedata
with somedegreeof noise. A rigorousanalysisof this matteris
notdone,but is plannedn futurework.

We have testeda modificationof thealgorithmbasedon the
following minimizationproblem

N 1
min(Z (Un—Up)* +a / K(S)ds) (32)
n=1 0
Herek is thecurvature of thewearline
K(S) = (Xss‘ Xss) 1/2

anda is someweightingfactor Assumingacubicwearlineasin
(23), its curvatureis givenby

KZ(S) = 2by - by + 6by - b3s+ 9bs- b3$2

For the caseof the 4-parametrigoroblemformulatedabove the
systemof algebraicequationgjivenin (21) is modifiedas

N

fi=S (Uh—Up)cl+a(da;—6ag) =0 (33)
n=1

N

f2=Y (Uh—Un)c5+a(dax+6az—21) =0 (34)
n=1

N

fa= Y (Uh—Un)c3+a(baz+12a3—42) =0  (35)
n=1

N

fa=S (Uh—Un)ci+a(12a4—6a;) =0 (36)
n=1
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computed

Figure 11. COMPUTED AND ACTUAL WEARLINES.

For the 4-parametriccasethe Newton iterationmatrix of (22) is
modifiedas

oty R TR T
aalanr “ o, 2 0 0%y o
ﬁ ﬁ + 4a ﬁ + 6a ﬁ
o s gy sy I 37)
o Py My o, %
oty _ [ ofs  0fs
0ag 6a 0ay GEY 0ay + 120

Test cases - not knowing the shape of the wear-
lines In the following testswe are not assumingarny knowl-
edgeof the shapeof the wearlinesexceptfor the following as-
sumptions

y(0) =x(1)=0 (38)

i.e., thewearlineis horizontalat the left sideandvertical at the
right handside,asin the previous case.The computedwearline
is comparedo the actualwearlinein Figure1l.

Differentvaluesof a werechoserandtherespectie history
of iterationsis shavn in Figure 12. Numericalexperimentsin-
dicatethat a shouldbe largerthan 0.5 in this casein orderto
getconvergentresults.For otherwearlinesandregionsthis value
maychange.

The maximumrelative error of the computedvaluesat the
measuremenpointsis in this caseabout3%. The initial esti-
mateswere chosento enclosethe exact parameteisetwith an
initial hypertetrahedon having edgelengthsof 10% the abso-
lute valueof theexactparameters.

RESULTS ON FURNACE DATA

In this sectionwe presensimulationsof the wearlineusing
actualtemperaturaneasurementgom an ilmenite melting fur-
nace. This is donewith the methodof control boundary The
methodis testedon two differentsetsof measurementst differ-
entacquisitiondates. Thereare someeffects which can cause

20~

B o ——g—g—E—I—a—a 2
— (=]
5 4
o
B— 3
0 1 1 1 1 1 1 1 1 1 1 1 J
20~
a=25
15[ 1
10
o
o o o o o o 2
—
5 4
o
B 3

Figure 12. af,i = 1,...4, AS FUNCTIONS OF NUMBER OF OUTER
ITERATIONS.

differencesn comparisorto measuredemperaturestherthan
themethoditself. Oneeffectis thatthe heattransfercoeficients
areassumedo be h, = 30 andh,, = 150which is closeto their
actualvaluesbut not quite correct. Othercontributionsto error
may be inaccuray in locationof thermocouplegandair gapsin
the brick-work. In Figure 13 the wearlineis calculatedusinga
linear control boundary As expectedthe relative errorsat the
probelocationsareratherlarge. But this calculationgivesguide-
linesto how thepositionandshapeof the controlline shouldbe.
If thecontrolline is placedcloserto theactualwearlineasin Fig-
ure 14 for the samesetof measurementsye canobsene some
reductionin the relative errors. To geta betterideaof how the
actualwearlinelookslike, moreeffort shouldbe madeto getthe
controlline closerto the wearline. This shouldbe donebecause
therelative errorsarestill toolarge. We canobsene a specialef-
fectin theupperpartof thelining in Figurel4. Thisis causedy
frozentitan-dioxideat theinsideof thelining. Thisis awanted
effectbecausét protectsherefractoryagainstthemicalattacks.
Iron is not that easilyfrozenalongthe lining. Onewould have
to increasehe cooling of the sidavall significantlyto getthis ef-
fect. Onegetsin a positionwhereonewould have to consider
lining wearagainstheatloss. In Figure 15 the methodof control
line hasbeentestedon anothersetof measuredemperatures.
In thetwo casegresentedn this sectionthereis noreason
to believe thatary of the original refractorymaterialshave been
worn. The casehave beenpickedrelatively earlyin thelifetime
of the furnacelining. This lining hasbeenoperatve for only
a shortperiodof time. The lifetime of sucha lining shouldbe
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Actual measurments case 1, linear control line.
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Figure 13. CALCULATED WEARLINE USING LINEAR CONTROL LINE
FOR CASE 1.

Actual measurments case 1, curved control line.
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Figure 14. CALCULATED WEARLINE USING CURVED CONTROL
LINE FOR CASE 1.

somavherebetweenl5 and 20 years. At this stagethereis no
reasonto believe that the lining should not reachits expected
lifetime.

CONCLUSION

Numericalmodelsfor monitoringthe wearlineof thelining
of a melting furnacehave beendeveloped. Two algorithmsfor
solving the resultinginverseheatconductionproblemare pre-
sentedand tested,both on test problemdataand on real mea-
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Actual measurments case 2, curved control line.
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Figure 15. CALCULATED WEARLINE USING CURVED CONTROL
LINE FOR CASE 2.

surementdatasampledin anindustrial furnace. Numericalex-
perimentsconfirmthe utility of boththe control boundaryalgo-
rithm andthe algorithm of isothermcurve approximation The
reliability of the formeronedepend®nthe averagedistancebe-
tweenthecurve andthe actualwearline.

Thetestsof the controlboundarymethodon minor andse-
verewearlinesshaw thatif thecontrolcurvecorrespondseason-
ablywell to theactualwearlinein locationandshapetherelative
errorshecomdessthan2.5% in both cases.This is well within
the acceptabldoundsfoundin the responsanalysis.Sincethe
control line canberelocatedin aniterative mannerto improve
locationandshapethis canbeachiezedin mostcases.

The isothermcubic curve approximationproducesresults
comparabléo resultsof the”closeversion”of thecontrolbound-
ary algorithm. The methodrequireslimited knowledgeof the
actualwearlineshape.Thereforejt is bettersuitedto handlein-
verseproblemswith a complex behaior like rapidly changing
wearlines.The algorithmprobablyneedsa modificationfor the
mostsevere casesand the utilization of splinesare suggested.
Thiswill beinvestigatedn future work.

Both algorithmsneedextra regularizationtermswhen ap-
plied to realwearlineproblems.The controlboundaryalgorithm
addsregularizationusing commonconstraintson the tempera-
ture along the control boundary i.e. Tikhonov regularization.
The modifiedalgorithmof isothermcubic curve approximation
includesa constrainton the curvature of the isothermapprox-
imation, i.e. anothertype of Tikhonov regularization. These
modificationsare shavn to be both necessarand successfuln
numericalexperiments.

Theregularizationterm andthe improving effectsof locat-
ing the controlline closerto theisothermimply thatthe method
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of controlboundaryshouldbeimplementedsaniterative search
for theisotherm.If thatcanbe achieved,theregularizationterm
vanishif thecontrolline is exactly attheisothermandwe would
only be minimizing the squaredsum involving calculatedand
measuredemperatureat probelocations.

Both methodsas presentedn this paper are stand-alone
methodsfor solving inverseheatconductionwith an unknowvn
boundarylike the wearlinein the presentproblem. However,
an interesting possibility is to use the method of fixed con-
trol boundaryasa refinementmethodafter usingthe methodof
isothermapproximationby cubicsor splines. The potential of
theseideaswill beinvestigatedn future work.
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