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ABSTRACT
In this paper we examine an inverse heat convection

problem of estimating unknown parameters of a variable
boundary heat flux. The function estimation is reduced to a
parameter estimation problem through a parameterization in
terms of some trial functions. The physical problem treated here
is a hydrodynamically developed, thermally developing,
three-dimensional steady state laminar flow of a fluid inside a
circular sector duct, insulated in the flat walls and subject to
unknown wall heat flux at the curved wall. Results are
presented for polynomial and sinusoidal trial functions and the
unknown surface heat fluxes are determined. Depending on the
nature of the flow, on the trial functions used, on the position of
experimental points, the inverse problem sometimes could not
be solved. Therefore an identification condition is defined in
order to specify a condition under which the inverse problem
can be solved. Once the parameters have been computed is
possible to obtain the statistical significance of the inverse
problem solution. Therefore, approximate confidence bounds,
based on standard statistical linear procedure, for the estimated
parameters are analyzed and presented.

INTRODUCTION
Inverse problems have been reported in a variety of studies

to determine unknown parameters or unknown functions by
using measurements of some quantities and a mathematical
model [1-3]. Several numerical experiments in inverse thermal
problems have been done to estimate many aspects such as inlet
(or initial) condition, boundary conditions and physical
properties. The reported works deal with inverse
conduction [4-7], radiation [8-9] and convection [10-13]
problems. The instability inherent to the inverse problems is
overcome by data over-specification. In this paper we examine
the estimation of unknown parameters for a variable boundary

heat flux. The parameterization of the unknown functions is
done by using some trial functions such as polynomial and
sinusoidal curves. Physically the problem treated here is a
constant properties, three-dimensional thermally developing,
hydrodynamically developed, steady state laminar flow inside a
duct with cross-section shaped as a circular sector, as described
in Figure 1.

NOMENCLATURE
Ac circular sector cross sectional area = ∞ob2 2/
b circular sector radius
c fluid specific heat capacity
Dh hydraulic diameter = 4 2 2A P bc o o/ / ( )Ζ Η∞ ∞

f(r,∞) initial condition
F(R,∞) dimensionless initial condition = [ ( , ) ] /f r T To o∞ ϑ

g(p) gradient of the function S(p), eq.(6c)
G Hessian matrix, eq.(8b)
k thermal conductibility
p unknown parameter vector, eq.(5b)
�p the least square estimator of p

P perimeter = ( )2 Η ∞o b
qo(∞) curved wall heat flux
Q(∞) dimensionless heat flux = q D kTo h o( ) /∞

u(r,∞) fully developed velocity distribution in the polar
coordinate (r,∞,x), given by [14]

u average flow velocity = u r rdrd Aob
c00

∞
∞ ∞( , ) /

U(R,∞) dimensionless flow velocity  = u r u( , ) /∞

r radial coordinate
R dimensionless radial coordinate = r Dh/
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Re Reynolds number =± ←uDh /
Rw dimensionless radius = b Dh o o/ ( ) /Ζ Η2 2∞ ∞

S(p) function of the unknown parameters p, eq. (5a)
T(r,∞,x) temperature at (r,∞,x)

To average initial temperature = f r rdrd Aob
c( , ) /∞ ∞

∞

00
x axial coordinate
X dimensionless axial coordinate = x Dh/ Re Pr
X sensitivity matrix, eq.(7a)

Greek symbols
± fluid density
∞ dimensionless angular coordinate
∞o circular sector opening angle = 2↓/3
ν(R,∞,X) dimensionless temperature = Ε Φ[ , , ] /T R X T To o∞ ϑ

Figure 1 – Geometry and coordinate system

DIRECT PROBLEM
The direct problem related to the inverse problem

considered here is thermally developing, hydrodynamically
developed laminar flow, inside circular sector tube of radius b
by azimuthal angle ∞o = 2↓/3, subject to prescribed heat flux at
boundaries. At the plane surfaces the heat flux is zero and at the
curved surface heat flux varies with the azimuthal angle ∞.
Figure 1 shows the geometry and coordinates.

The energy equation for constant properties, thermally
developing, hydrodynamically developed laminar forced
convection in a circular cross-section tube is given in a
dimensionless form as

U R R X
X R R

R R X
R

R X
R

( , ) ( , , ) ( , , ) ( , , )
∞

⌡ν ∞
⌡

⌡
⌡

⌡ν ∞
⌡

⌡ ∞

⌡∞
Ζ � � Τ

2

2 2
ν

(1a)
in

0 Ψ ΨR Rw ,   0 Ψ Ψ∞ ∞o ,   X>0.                   (1b)

The boundary conditions are given by

⌡ ν ∞

⌡ ∞
∞

( , , )R X

Ζ

Ζ

0
0 ,     0 Ψ ΨR Rw ,   X>0;

⌡ν ∞

⌡∞
∞ ∞

( , , )R X

oΖ

Ζ 0 ,     0 Ψ ΨR Rw ,   X>0;     (2a-d)

 ⌡ν ∞

⌡

( , , )R X
R

fin ite
R Ζ

Ζ
0

,     0  ∞ ∞o ,   X>0;

⌡ν ∞

⌡
∞

( , , ) ( )R X
R

Q
R R wΖ

Ζ ,     0  ∞ ∞o ,   X>0.

The initial condition is

ν( , , ) ( , )R F R∞ ∞0 Ζ ,     0  R Rw ,   0  ∞ ∞o ;      (3)

when f(r,∞) is constant, like in this work, F(R,∞) is zero.
This direct problem was solved in each step of the inverse

problem solution by using the generalized integral transform
technique[36]. The three-dimensional temperature distribution
ν(R,∞,X) for such kind of problem is given by
Aparecido and Ozisik[37] as the following explicit equation

ν ν( , , ) cos( ) ( )~ ( )
( )

.R X B B J R X
Q R

Ri i im im im
m wi

i
∞ ← ∞ ϒ

∞
←Ζ Η

Γ

Ζ



Ζ



1

2

1 2

INVERSE PROBLEM
The inverse analysis considered here is defined as follows:
Suppose the applied wall heat flux Q(∞) is not known,

instead some temperature readings taken in the fluid at different
locations are available. Our objective is by utilizing these
measured data, to estimate the unknown heat flux Q(∞).

In nonlinear parameter estimation a priori insight is
necessary to consider the unknown heat flux Q(∞) as a nonlinear
multivariate function of ∞ and some unknown parameters
pi (i=1,2,…,I), as follow

Ε ΦQ F p p pI∞ ∞ ( , ,..., , )1 2 .                          (4)

In the problem considered here, the parameters
pi (i=1,2,...,I) are unknown, to be determined by inverse
analysis from the knowledge of temperature measurements
taken at locations in the down stream region of the flow. The
analysis is now recast as a problem of optimization for finding
the unknown parameters pi (i=1,2,...,I) by minimizing the
function
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ξ ζS m m
m

M
( ) ( )p pΖ ϑ

Ζ

ν ρ
2

1
,                        (5a)

where the vector of unknown parameters p is define as

ξ ζp  p p pI
T

1 2, ,..., ,                         ( 5b)

and Ym are the measured temperatures taken by thermocouples
at the positions (R,∞,X)m = (Rm,∞m,Xm), (m = 1,2,...,M); νm(p)
are the temperatures at corresponding positions computed by
solving the direct problem and using the estimated values of the
unknown parameters.

The function S(p) is differentiated with respect to each
unknown parameter, to yield

ξ ζg
S
p pi

i

m

i
m m

m

M
( )

( ) ( )
( )p p p p Ζ ϑ

Ζ

⌡

⌡

⌡ν

⌡
2

1
ν ρ , (i=1,2,...,I). (6a)

Defining the gradient of the function S(p) as

g p p p p p p
p

( ) , ,...,  � � S( )
S( )

p
S( )

p
S( )

p
S( )

I

T

     �

�

�

�

�

�

�

�1 2
, (6b)

the system of equations (6a) can be written in matrix form as

Ε Φg p p
p

X T Y( ) Ζ Ζ ϑ
⌡

⌡

S( ) T2 ,                    (6c)

where

ξ ζT T p p p pΖ ( ) ( ), ( ),..., ( )ν ν ν1 2 M
T ,            (6d)

ξ ζY Ζ Y Y YM
T

1 2, ,..., ,                        (6e)

X X p T
p

Ζ  Ζ Ζ Ζ� �( ) ; , ,..., ; , ,...,�

�

�{

�T
m

ip
m M i I1 2 1 2 .  (7a)

The matrix X, defined by equation (7a), is the so called
sensitivity matrix and their elements Xmi (m = 1,2,...,M;
i=1,2,...,I) are the sensitivity coefficients. This sensitivity
coefficient Xmi is the first derivative of the dependent variable
νm(p) with respect the unknown parameter pi, in other words
the sensitivity matrix X defined by equation (7a) is the Jacobian
matrix J of this transformation

J J p
T

p
XΖ  Ζ( )

⌡

⌡
T .                        (7b)

Differentiating the equation (6a) in relation to the unknown
parameters gives the Gij(p) elements of the Hessian of S(p)

Ε Φ

ξ ζ

G
S

p p p p

p p

ij
i j

m

i

m

jm

M

m m
m

i j

( ) ( ) ( )

( ) ( )

p
p p p

p p

 Ζ Η
�

Η Τ
�

�

Ζ

�

� �

�|

�

�|

�

�

� �

2

1

2

2

| ′
|

.         (8a)

The complete Hessian matrix G(p) of S(p) can be written as

ξ ζG G p J J W W W p p GΖ Ζ Η Ζ Ζ ϑ

Ζ

( ) ( ), ( ) ( ) *2
1

T
m m

m

M

mYν

, (8b,c)

where Gm
*  is the Hessian matrix of νm(p) given by

G G pm m
m

i jp p
i j I* * ( ) ; , , ,...,  Ζ�

�
�
�

�

� �

2
1 2

{
              (8d)

Following the same idea when defining the so called
sensitivity coefficients is possible also to call the elements of
Gm

*  as second order sensitivity coefficients.

The sensitivity problem
To compute the gradient of S(p) using equation (6b) it is

necessary to calculate the sensitivity coefficient that can be
obtained as follow.

Differentiating the equations (1-3) with respect to each of
the parameters pi (i=1,2,...,I) we obtain the sensitivity problem
as

U R
R X

X R R
R

R X
R R

R Xi i i( , )
( , , ) ( , , ) ( , , )

∞
⌡δ ∞

⌡

⌡

⌡

⌡δ ∞

⌡

⌡ ∞

⌡∞
Ζ � � Τ

1 1
2

2

2
δ

,     (9a)
where

Ε Φ
δi

i
R X

R X
p

( , , )
, ,

∞
⌡ν ∞

⌡
 ,   (i=1,2,...,I);         (9b)

the boundary conditions

  
⌡δ ∞

⌡ ∞
∞

i R X( , , )

Ζ

Ζ

0
0 ,     0 Ψ ΨR Rw ,   X>0;

(10a,b)

   
⌡δ ∞

⌡∞
∞ ∞

i R X

o

( , , )

Ζ

Ζ 0 ,     0 Ψ ΨR Rw ,   X>0;
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⌡δ ∞

⌡

i

R

R X
R

( , , )

Ζ

Ζ
0

0 ,     0  ∞ ∞o ,     X>0;

(10c,d)
⌡ δ ∞

⌡

⌡ ∞

⌡

i

R R i

R X
R

F
p

w

( , , ) ( , )
,

Ζ

Ζ
p

 0  ∞ ∞o , X>0;

and the initial condition

δi R( , , )∞ 0 0Ζ ,   0  R Rw ,   0  ∞ ∞o .         (11)

The above equations (9-11) form a decoupled second order
system of linear partial differential equations defining the
sensitivity problem. The unknown variables in this system are
the sensitivity functions δi(R,∞,X), (i=1,2,...,I) if we consider
that the pi parameters are a priori known.

After solution of the sensitivity problem we obtain the
sensitivity functions for the whole domain. Actually the
sensitivity coefficients are equal to the sensitivity functions
evaluated at the m-positions. If we evaluate the sensitivity
functions in those positions (R,∞,X)m  (Rm,∞m,Xm), i.e. where
the experiments were done, we obtain the sensitivity
coefficients

Xmi i m m mR XΖ δ ( , , )∞ ,    (m=1,2,...,M; i=1,2,...,I).    (12)

MINIMIZATION METHOD
A point p* is said to be a strong minimum of a function S(p)

if a scalar ≤>0 exists such that S(p*)<S(p*+αp) for all αp such
that 0<||αp||≤. It is important to have conditions to know
whether a given point p is a minimum of S(p) or not.

If S(p) has continuous first and second derivatives, it is
feasible to approximate the function at an arbitrary point p+αp
by using information about S(p), g(p) and G(p). When retaining
just the first two terms in the Taylor series expansion for S(p), it
becomes

S S T( ) ( ) ( )p p p p g pΗ Ζ Ηα α .                   (13a)

Considering equation (13a), the only way to not contradict
the definition for a strong minimum is setting [35]

Ε Φg p p
p

X T Y 0( )Γ Ζ Ζ ϑ Ζ

Ζ
Γ

⌡

⌡

S( )

p p

T 
2 ,           (13b)

which is the first condition. These points which obey equation
(13b) are called stationary points. Other kind of points p* also
satisfy the above condition, maximum points for example. Then
it is necessary to establish an extra condition for determining
whether a point is a minimum instead just another stationary
point.

Retaining the first three terms in the Taylor series expansion
for S(p), it gives

S S T T( ) ( ) ( ) ( )p p p p g p p G p pΗ Ζ Η Ηα α α α
1
2 .  (13c)

Considering that in a stationary point S(p*)<S(p*+αp) and
g(p*)=0, then equation (13c) becomes

α αp G p* p 0T ( ) [                           (13d)

which is the second condition, commonly called positive
definiteness. First and second conditions are sufficient to ensure
that p* is a strong minimum [35]. If G(p*) is singular it is
necessary to hold more terms in the Taylor series to get the
extra condition. It is assumed here that G(p*) is not singular.

The unknown parameter vector p* can now be determined
from the solutions of equations (13b) subject to condition (13d),
by means of several iterative methods such as:
modified-Newton [15-17], quasi-Newton [15],
Levenberg-Marquardt [20,21], conjugate gradient [18], and
direct search [19]. About characteristics of such methods see
[15,35]. In this work we used the IMSL routine DUMING [34]
that is based on the quasi-Newton algorithm.

Quasi-Newton method
Modified-Newton method requires computation of complete

Hessian Gk and subsequently, when Gk is not positive definite,
computation of a pseudo Hessian Bk of Gk. In present work to
calculate Gk is not an easy task, it requires, at each iteration,
computation of (I2+I)/2 second order partial differential
equations. Following the formulae in Newton and
Modified-Newton methods it is possible to write for
quasi-Newton method [15]

αp B gk k kΖ ϑ ϑ( ) 1 ,                          (14a)

p p pk k k k kΗ
 Η [

1 0∼ ∼α , ,                (14b)

where Bk is a positive definite matrix that approximate in some
way the Hessian Gk, and ∼k can be determined using linear
search minimization in the direction of αpk, see Appendix A.
The matrix Bk is updated by the application of the
BFGS (Broyden-Fletcher-Goldfarb-Shanno) formula [15]

B B B p p B
p B p

g g
g p

k k
k k k T k

k T k k

k k T

k T k k
Η

Ζ ϑ Η
1 α α

α α

α α

α α

( )
( )

( )
( ) ( )∼

,   (14c)

where αgkgk+1 - gk. The initial approximation B0 is any
positive definite matrix and could be the unit matrix.
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COMPUTATIONAL PROCEDURE
It is now possible to establish the steps of the computational

procedure in the solution of this convective inverse problem
using procedures for the quasi-Newton method as follow.

Computational procedure using quasi-Newton method
1. Choose the initial guess for p0, set the initial Hessian

approximation B0 for k=0, for example ; B0 = I;
2. Calculate the temperature distribution ν(R,∞,X,pk) through

solution of the direct problem (1-3);
3. Calculate the sensitivity functions δi

kR X( , , , )∞ p ,
(i=1,2,...,I) through solution of the sensitivity problem
(9-11) and consequently the sensitivity coefficient X matrix,
using the equations (12);

4. g J T Yk T k k
Ζ ϑ2( ) ( ) ;

5. αp B gk k kΖ ϑ ϑ( ) 1 ;
6. Compute ∼k using univariate optimization in the direction of

αpk (see Appendix A);
7. p p pk k k kΗ

 Η
1

∼ α ;
8. Calculate the temperature distribution ν(R,∞,X,pk+1) through

solution of the direct problem (1-3);
9. Calculate the sensitivity functions δi

kR X( , , , )∞ p Η1 ,
(i=1,2,...,I) through solution of the sensitivity problem
(9-11) and consequently the sensitivity coefficients X matrix
using the equations (12);

10. S k k T k( ) ( ) ( )p T Y T YΗ Η Η
Ζ ϑ ϑ

1 1 1 ;

11. g J T Yk T k kΗ Η ΗΖ ϑ1 1 12( ) ( ) ;
12. αgk = gk+1 - gk;

13. B B B p p B
p B p

g g
g p

k k
k k k T k

k T k k

k k T

k T k k
Η

Ζ ϑ Η
1 α α

α α

α α

α α

( )
( )

( )
( ) ( )∼

;

14. Increment iteration, k:=k+1;
15. Check if the stopping criterion is achieved, if yes stop; if not

return to 5.

STOPPING CRITERION

The function S(p) is to be minimized, consequently the
gradient of the function S(p) must be close to zero and the
iterative algorithm generates the following sequences
p0, p1, p2,...; S(p0), S(p1), S(p2),...; g0, g1, g2,... A necessary
condition to achieve a solution for the inverse problem is that
these sequences must be convergent. In this sense the distance
between one step (k+1) and the last (k) must be less than a
arbitrary small positive number ⁄. The concept of distance is
measured using the Euclidean norm. If the experimental data
contains no measurement errors and taking in consideration the
aspects stated above the following stopping criterion can be
defined, among others:

S k( )p Ψ ⁄1 ,   gk
Ψ ⁄2                      (15a,b)

The more traditional check condition is that specified by the
equation (15a) [22]. However, the IMSL routine DUMING [34]
used in this work, uses the gradient criterion, equation (15b).

However, the real temperature results contain measurement
errors, then the inverse solution will converge to the
experimental data and the inverse problem solution will lose a
regular character more and more as the number of iterations is
increased [23]. Some researches [24,12] show that is adequate
to use the discrepancy principle for terminating the iterations
and avoid that unsuitable behavior. The idea of application of
discrepancy principle (or error principle) to the inverse problem
analysis appears to have originated firstly with [25]. A similar
work was published in the same year by [26]. More detailed
mathematical proofs about this subject can be found in [27] and
[28]. Let the standard deviation ″ of the measurement errors be
nearly the same for all sensors and measurements, that is

Ε Φρ νm mϑ p ″ ,   (m=1,2,...,M).                 (15c)

Introducing the equation (15c) into (5a) we have a residual
amount for the function

S M
m

M
( )p  Ζ

Ζ

″ ″
2

1

2 .                      (15d)

Then the discrepancy principle applied as stopping criteria
is taken as

S Mk( )p Ψ ⁄ ″3
2 .                        (15e)

STATISTICAL ANALYSIS OF CONFIDENCE BOUNDS
Once the parameters are computed is important to obtain the

statistical significance of the inverse problem solution.
Approximate confidence bounds, based on linearization
procedure, for the estimated parameters are here analyzed.

Assumption on errors
The random measurement errors are generally the major

source of error in estimates made by the inverse analysis. A
statistical description of such random errors is useful in their
analysis. Some standard assumptions regarding the temperature
measurements are listed below [1,3]:
1. The errors are additive, that is

Y m Mm m mΖ Η Ζν ( ) , , ,...,p ⁄ 1 2 ,               (16a)

where Ym is the measured temperature, νm(p) is the estimated
temperature and ⁄m is the random error.
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2. The temperature errors ⁄i, have a zero mean, that is

E m( )⁄ Ζ 0 ,                                (16b)

where E( ) is the expected value operator.
3. The errors have constant variance ″2, that is

var( ) ( )] } ( )⁄ ⁄ ⁄ ⁄ ″m m m mE{[ E EΖ ϑ Ζ Ζ
2 2 2 .     (16c)

4. The measurement errors ⁄m and ⁄n, mn, are uncorrelated, i.e.
the covariance of ⁄m and ⁄n is zero

cov( , ) ( )][ ( )]}
( ) ,

⁄ ⁄ ⁄ ⁄ ⁄ ⁄

⁄ ⁄

m n m m n n

m n

E{[ E E
E for m n

Ζ ϑ ϑ Ζ

Ζ Ζ 0
.    (16d)

5. The statistical parameters such as ″2 describing the variance
of ⁄i are known.
6. The measurement positions and the thermal properties are all
accurately known.

The standard statistical linear model
We assumed above that the elements of ⁄ = (⁄1, ⁄2,…,⁄M)T

were independently normally distributed with mean zero

E E E E EM
T

M
T( ) [ , ,..., ] [ ( ), ( ),..., ( )]⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄Ζ Ζ Ζ1 2 1 2 0 ,  (17a)

and the variance

E ET

M

M

M M M

( )⁄⁄

⁄ ⁄ ⁄ ⁄ ⁄

⁄ ⁄ ⁄ ⁄ ⁄

⁄ ⁄ ⁄ ⁄ ⁄

″Ζ

�
�
�
�
�

�
�
�
�
�

Ζ

1
2

1 2 1

2 1 2
2

2

1 2
2

2

�

�

� � � �

�

I .           (17b)

As stated in assumption (1) the errors are additive and are
expressed in vector form as

Y TΖ Η ⁄ .                                 (18a)

The estimated temperature vector T(p) can be linearized by
using the Taylor expansion

T p T p T p
p

p p( ) ( )
( )

( )Ζ Η ϑ
o

o

T
o⌡

⌡

.               (18b)

If we choose po=0, T(po)=0, and
⌡T(po)/⌡pT=⌡T(p)/⌡pT=X= constant matrix, the equation (18b)
reduces to

T p T p
p

p Xp( )
( )

Ζ Ζ
⌡

⌡
T .                         (18c)

Combining the previous statistical assumptions with the
linearized equation (18c), we have the standard linear statistical
model [29]

Y Xp 0 IΖ Η Ζ Ζ⁄ ⁄ ⁄⁄ ″, ( ) , ( )E E T 2 ,     (18d-f)

where the elements of ⁄ may be independently normally
distributed but are not necessarily so distributed.

Let �pi , for i=1,2,…,I, be an estimator of pi with
Expectation

E pi( � ) ,                                    (19a)
deviance

� � ( � )≤ i i ip E pΖ ϑ ,                            (19b)
variance

var( � ) ( � ) � ( � )] }p E E{[p E pi i i iΖ Ζ ϑ≤2 2 ,     (19c)
and covariance

cov( � , � ) ( � � ) � ( � )][ � ( � )]}p p E E{[p E p p E pi j i j i i j jΖ Ζ ϑ ϑ≤ ≤ .     (19d)

The concepts of expectation, deviance, variance and
covariance can be expressed in a matrix for as:
Expectation

E E p p p E p E p E pI
T

I
T( � ) [� , � ,..., � ] [ ( � ), ( � ),..., ( � )]p Ζ Ζ1 2 1 2 ,   (19e)

deviance
� � ( �)≤ Ζ ϑp pE ,                           (19f)

and variance-covariance

       var cov( � ) ( � � )ϑ Ζ Ζp E T≤≤

Ζ
�
�
�
�

�
�
�
�

var( � ) cov( � , � ) cov( � , � )
cov( � , � ) var( � ) cov( � , � )

cov( � , � ) cov( � , � ) var( � )

p p p p p
p p p p p

p p p p p

I

I

I I I

1 1 2 1

2 1 2 2

1 2

�

�

� � � �

�

    (19g)

The least square estimator �p  of p in the standard statistical
linear model is given by

� ( )p X X X YΖ
ϑT T1 .                           (20a)

Substituting Y, defined by equation (18d), in equation (20a)
we have

� ( ) ( ) ( )p X X X Xp p X X XΖ Η Ζ Η
ϑ ϑT T T T1 1

⁄ ⁄ .     (20b)
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As in this model X and p are not functions of ⁄, then the
expectation of �p  is expressed as

E E E ET T T T( �) ( ) [( ) ] ( ) ( )p p X X X p X X X pΖ Η Ζ Η Ζ
ϑ ϑ1 1

⁄ ⁄ . (20c)

Further, the bias of �p  is obtained by

bias E( �) ( �)p p p 0Ζ ϑ Ζ ,                         (20d)

then �p  is an unbiased estimator of p. Similarly for the deviance
we obtain

� � ( � ) � ( ) ( �)≤ ⁄ ≤Ζ ϑ Ζ ϑ Ζ Ζ
ϑp p p p X X X 0E and ET T1 ,    (20e,f)

and E(⁄⁄T)=″2I, hence the variance-covariance of �p  is given by

var cov( �) ( � � ) ) [( ) ] }ϑ Ζ Ζ Ζ
ϑ ϑp X X X X X XE E{(T T T T T T

≤≤ ⁄ ⁄
1 1

Ζ Ζ
ϑ ϑ ϑ( ) ( ) ( )X X X IX X X X XT T T T1 2 1 2 1

″ ″ .       (20g)

Confidence bounds
Comparing equation (19g) and equation (20g) for the

var-cov( �p ) we conclude that the ii-th element represents the
variance of �pi  and the ij-th element represents the covariance

of �pi  and �pj , for ij. Therefore the variance ″
�p
2  of the

estimated parameter vector �p  is given by

″ ″� {( ) }p X X2 2 1
Ζ

ϑdiag T .                   (20h)

Assuming now a normal distribution for the measurement
errors, since the exact distribution is unknown, and the 99%
confidence bounds for the computed parameters
�pi , (i=1,2,…,I) are expressed as [30]

Pr {� . (� ) � . } .� �obability of p E p pi p i i pi i
ϑ Ψ Ψ Η Ζ2576 2576 099″ ″ ,   (21a)

where the number 2.576 arises from the fact that 0.99 (or 99%)
of a normal probability distribution lie in between �2.576 of
that distribution. Considering negligible the deterministic error,
i.e. E( �p )=p, between the mean estimated parameter �pi  and the
true value of pi, the equation (21a) becomes

Pr {� . � . } .� �obability of p p pi p i i pi i
ϑ Ψ Ψ Η Ζ2576 2576 099″ ″ .   (21b)

The approximate statistical confidence bounds for the
estimated parameters pi are given by equation (21b). Similar
analysis were used by Flach and Ozisik[31], Huang and
Ozisik[32] to determine the confidence bounds for thermal

conductivity and heat capacity, and by Ho and Ozisik[33] to
compute the confidence bounds for single scattering albedo and
optical thickness.

IDENTIFICATION CONDITION
Depending on the nature of the flow, on the trial functions

used, on the position and the number of experimental points, the
inverse problem sometimes could not be solved. Therefore, it is
necessary to specify some conditions under which the inverse
problem can be solved. In equation (13b,d) was settled the
conditions for the existence of a minimum of a multivariate
function. When using the Newton method of minimization  (not
shown here) a key step is defined by inversion of the Hessian
matrix Gk. It is clear that a condition to have a solution for the
inverse problem is to set

det( )Gk
 0 .                              (22a)

The equation (22a) establishes the so called identification
condition. When dealing with minimization methods other than
the Newton method the identification condition takes specific
forms. In some methods the Hessian matrix G can be
approximated in a form expressed by setting W = 0 in
equation (8b), in this case the identification condition becomes

det( )X XT
 0 .                            (22b)

Further, when we inspect the equation (20h) for the
confidence bound of the estimated parameters, evidently the
determinant of (XTX) must be different from zero but also be as
big as possible to provide smaller confidence bounds.

RESULTS AND DISCUSSION
An inverse analysis is done for estimating the unknown

azimuthally varying wall heat flux Q(∞). The inverse problems,
in a broad classification, are of two kinds: parameter estimation
and function estimation. Here we treat the case of parameter
estimation, for both linear and non-linear problems. We show
results for three cases, one linear and two non-linear. Also we
present results for the inverse problem identification factor and
for the parameter confidence bound as well.

We present the inverse problem results for the three cases:

Case A Q a a ao
o o

ϑ Ζ Η Η( ) ( ) ( )∞
∞

∞

∞

∞
1 2

2 ,

Case B Q a a a ao
o

ϑ Ζ Η Η( ) sin( )∞
∞

∞
1 2 3 ,                 (23a-c)

Case C Q a a a ao
o o

ϑ Ζ Η( ) sin( ) sin( )∞
∞

∞

∞

∞
1 2 3 ,
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The Case A represents a linear parameter estimation
problem, while the Cases B and C are non-linear problems.

We used the identification factor to locate the measurement
sensors. As discussed previously a good place to put the sensor
is where the identification factor is different of zero and is as
big as possible. Figure 2 shows the identification factor
calculated along the axis X, with varying number of
experimental points, for the linear case. The sensors are placed
along the heated surface of a cross-section, with an uniform
distance among the experimental points. The number of sensors
in each measurement set is M=5, 10, 15 and 20. In linear cases
the sensitivity matrix does not depend of the unknown
parameters and so the identification factor.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 M= 5
 M=10
 M=15
 M=20

Id
en

tif
ic

at
io

n 
fa

ct
or

 =
 d

et
(J

T J
)

X
Figure 2 – Identification factor for the linear inverse problem

varying along the axis X with M=5, 10, 15 and 20.

Inspecting Figure 2 we can see that the identification factor
decreases towards zero as the measurement positions
approaches the inlet (X0), or the number of experimental
points decreases. Therefore, according to Figure 2 and the
identification condition a good place to put the measurement
sensors are as far as possible from flow entrance and with as
much as possible experimental points. In Figure 3 we keep the
number of experimental points constant, equal to 20, and show
the behavior of the identification factor related to the axis X and
the radial positions R/Rw=1, 0.9, 0.8, and 0.7.

Analyzing Figure 3 we see that the identification factor
decreases as the experimental positions go towards the
r-coordinate origin, so a good place to put the sensors is in the
heated surface or as near as possible of it.

Combining the information in Figures 2 and 3 we
concluded, in according with the identification factor values,
that a good place to settle the experimental sensors is at the
cross-section heated surface (or so near of it) and as distant as
possible from the flow entrance. Physically this conclusion can
be understood in the following manner: It comes to the flow two
types of information, that one from the inlet and other one from
the heated surface.
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Figure 3 – Identification factor for the linear inverse problem

varying along the axis X with radial positions
R/Rw=1.0, 0.9, 0.8 and 0.7, and M =20.

In a cross-section near the inlet the information coming from
the entrance is proportionally greater than that one coming from
the heated surface. Otherwise in a cross-section distant from the
inlet the information coming from the heated surface is
proportionally greater than that coming from the entrance. As
we are interested in recovering as much as possible of
information about the unknown surface heat flux we should
place the experimental sensors as near as possible to the surface
and as far as possible from the entrance. Also the number of
experimental points should be as big as possible. For the
nonlinear cases it is more difficult to determine good places to
put the sensors since in these cases the sensitivity matrix, and
consequently the identification factor, depend of the unknown
parameters. Is necessary to inspect the identification factor
values during all the iterative process of solving the non-linear
inverse problems in order to identify if the identification
condition is being obeyed, otherwise the solution could not be
achieved.

The simulated experimental temperature data, Ym
(m=1,2,…M), are generated by adding a random error term,
∂″, to the computed exact temperature, νexact, obtained from
the solution of the direct problem (1-3) as

Ym exactΖ Ην ∂″ ,                           (24a)

where ″ is the standard deviation of the measurement errors and
∂ is the normally distributed random variable, calculated by the
IMSL routine RNOPT[34]. The values of ∂ are generated by a
pseudo-random algorithm and then selected to lie in the range
-2.576<∂<2.576, which represent a confidence bound of 0.99
(or 99%) for the simulated measurement errors.

Now we analyze some results obtained for the inverse
problem. All experimental sensors are placed in the wall of a
cross-section located at X=0.5. The experimental sensors are
uniformly distributed over the entire opening angle ∞o.
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Figures 4-6 show results for the unknown surface heat flux
Q(∞), in which the corresponding expression for the exact
surface heat flux Q(∞)exact is given by

Q exact
o o

( ) ( ) ( )∞
∞

∞

∞

∞
Ζ Η ϑ0 6 6 2 ,                 (25a)

the used standard deviation values are ″=0.01, 0.05 and 0.1,
and the number of experimental sensors considered is
M=5, 10, and 15. Equation (25a) corresponds to a specific
linear Case A. Figures 4-6 keep, in each one, a constant value
for the number of experimental sensors M, and vary the
standard deviation ″. Figure 4 shows the influence of the
standard deviation on the estimated surface heat flux Q(∞) for
the number of experimental sensors, M=5. As the standard
deviation decreases the results for the estimated heat flux Q(∞)
becomes more close to the exact distribution. In Figures 5 and 6
are shown similar results for the number of sensors M=10 and
M=15. Figure 6 shows that for M=15, even with ″=0.1, is
possible to achieve a good estimation of the heat flux Q(∞).
Comparing Figures 4-6 we conclude that as the standard
deviation decreases and the number of experimental sensors
increases the estimated heat flux becomes more and more close
to the exact distribution. This means that to increase the
accuracy of the estimated heat flux is necessary to increase the
number of experimental points and have more accurate
temperature experimental data, i.e. decreasing the standard
deviation ″ of the measurement errors.
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Figure 4 - Estimated surface heat flux, Case A, for different

values of standard deviation ″=0.01, 0.05 and 0.1
and the number of experimental sensors, M=5.

For ″=0.01 the estimation is so close to the exact
distribution. Increasing the number of experimental sensors to
M=10 and 15, the estimation for ″=0.05 and 0.1, becomes less
dispersed when compared with the exact distribution, as shown
in Figures 5 and 6.

Figures 7 shows results for the non-linear Case B for which
the corresponding exact surface heat flux distribution Q(∞)exact
is expressed by

Q exact
o

( ) sin( )∞
↓

↓

↓

↓
↓

∞

∞

↓
Ζ

Η
Η

Η
ϑ

2
2

2 4
,        (25b)

using a fixed number of experimental sensors, M=15.
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Figure 5 – Estimated surface heat flux, Case A, for different

values of standard deviation ″=0.01, 0.05 and 0.1
and the number of experimental sensors, M=10.
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Figure 6 – Estimated surface heat flux, Case A, for different

values of standard deviation ″=0.01, 0.05 and 0.1
and the number of experimental sensors, M=15.

Figures 7 presents results for the estimated surface heat flux
using the number of experimental data M=15, for each value of
the standard deviation ″. Again the estimated results are more
accurate as the value of the deviation ″ decreases. In Figures 7,
the estimated results for ″=0.01 are very close to the exact
distribution, but the results for ″=0.05 and 0.1 are less accurate.

Figure 8 shows estimation results for the non-linear case C
which the related exact surface heat flux Q(∞)exact is
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Q exact
o o

( ) sin( ) sin( )∞
↓

↓
∞

∞

↓
↓

∞

∞
Ζ ϑ

2 2
2 ,           (25c)

and the number of experimental points is M=15.
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Figure 7 - Estimated surface heat flux, Case B, for different

values of standard deviation ″=0.01, 0.05 and 0.1
and the number of experimental sensors, M=15.

Here also the better results for the estimated surface heat
flux Q(∞) are given by using the more accurate temperature
experimental data, i.e. for that ones showing a standard
deviation ″=0.01. As the deviation increases the estimates
become worse. This behavior could be studied through the
concept of the confidence bounds of the estimated parameters
defined by equation (21b).
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Figure 8 - Estimated surface heat flux, Case C, for different

values of standard deviation ″=0.01, 0.05 and 0.1
and the number of experimental sensors, M=15.

For the previous case Figures 9 and 10 present the exact
values of the parameters a0, a1, a2 and a3 as horizontal solid
lines, the corresponding estimated parameters as dash lines, and
the respective confidence bounds as vertical bars. The

confidence bounds computations are performed using ten runs
of temperature experimental data sets. Figure 9 corresponds to
standard deviation ″=0.01 and Figure 10 to ″=0.05. In both
Figures 9 and 10 the estimated parameters oscillate around the
exact value parameter value. For small values of the standard
deviation, say ″=0.01, Figure 9, the confidence bounds are
closer than for ″=0.05, Figure 10 where confidence bounds are
wider.
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Figure 9 - Estimated confidence bounds, Case C, for the

standard deviation ″=0.01, the number of
experimental sensors, M=15, and using ten runs.
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Figure 10 - Estimated confidence bounds, Case C, for the

standard deviation ″=0.05, the number of
experimental sensors, M=15, and using ten runs.

Inspecting Figures 9 and 10 it seems that the linearized
statistical model (18d-f) can provide some useful insights about
the behavior of the estimated confidence bounds, through the
use of the equation (21b).

CONCLUSION
The heat flux estimation through the solution of an inverse

problem for laminar forced convection inside a circular sector
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tube was successfully done for three cases. Based on the values
for the identification factor we concluded that the best points to
locate the thermocouples is as far as possible from the inlet and
as near as possible from the heated wall. As the number of
experimental points increases more reliable are the results.
When the standard deviation of the measured temperatures is
small the results are better than when it is big. The linear
statistical model gives useful confidence bounds for the
estimated parameters.
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Appendix A: Linear Search Minimization.
In some minimization methods it is necessary to compute

the scalar value of ∼k, that minimizes a generic function S(pk+1),
where pk+1 is

p p pk k k k kΗ
 Η [

1 0∼ ∼α , ,                 (A1)

once pk and αpk are known. If �∼ k  is the value for ∼k that does
this, then using the chain rule

⌡
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Considering that the two terms in the right side of equation (A2)
are developed as ( )g pk T kandΗ1

α , thus it becomes

( )
�

g pk T k
k k

Η

Ζ

Ζ
1 0α

∼ ∼

,                       (A3)

meaning that when the linear search minimization is completed,
the gradient vector at pk+1 must be orthogonal to αpk.

Formula (A3) is useful for theoretical purposes and when
the function S(p) is generic. In specific cases, as in least squares
function, it is possible to devise another way to do that. The
formula for the least squares function (5a) at pk+1 is

ξ ζS k
m

k
m

m

M
( ) ( )p pΗ Η
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1 1 2

1
ν ρ ,                    (A4)

where νm(pk+1) can be expanded in a Taylor series which the
first two terms are

ν ν α ν αm
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Substituting equation (A5) into (A4) it gives
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If �∼ k  is the value of ∼k that minimizes equation (A6), thus
doing the derivative of S(pk+1) relative to ∼k and solving the
resulting equation, it becomes
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where ⌡ν ⌡m
k k( ) /p p  is the m-th column of the Jacobian

matrix J(pk).


