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ABSTRACT
A methodology of arranging the heat sources in fixed

location is presented in the paper. The sources are arranged so
that the generated temperature field satisfies given limitations
and minimizes a criterion functional. The superposition
principle and the usage of different discretization of the domain
are the tools of constructing the minimizing sequences. Test
case and results illustrate suggested algorithm.

INTRODUCTION
A trend of electronic equipment consists of concentrating a

lot of electronic elements in small spaces. At the same time the
heat generation of the latest has a high rate. This can cause a
high temperature of some units and provoke a failure of device.
Thus the problem of guaranteeing an acceptable thermal
behavior is a significant part of designing an electronic
apparatus as a whole. This problem is especially urgent when
vehicular equipment is developed, since in this case there are
strong mass-dimension limitations. As is well known reducing
the device dimensions causes a rise in temperature if the rate of
internal heat generation is fixed.

As a rule to guarantee a certain thermal reliability it is
necessary to arrange the heat sources (microchips,
micromodules, microunits) in the device body or its component
parts so as to answer some limitations on a temperature field
that is generated by these sources. For example such a
limitation can be the requirement that the temperature of chips
does not exceed the critical value, which can cause its failure.

Similar problems appear when heating devices are
designed. In that case the temperature limitations are defined by
operating thermal characteristics which the heating device have
to provide.

According to the statement this problem is a geometrical
inverse heat conduction problem, as it is necessary to find
geometrical parameters from known ones of temperature fields.

Consider the particular steady-state problem in which the
heat sources have the equal geometrical form and dimensions
and can occupy only fixed locations. A problem of such kind is
the one of arranging the chips on a printed circuit board when
the chips have the same dimensions as a result of unification.

NOMENCLATURE
E(T) criterion functional (4)
P output heat rating
Q specific heat generation rating
R(T) functional of temperature limitation (3)
T temperature
x, y, z space coordinates
∼ heat transfer coefficient
↔ thermal conductivity
↓ permutation (arrangement)
µ minimizing sequence

STATEMENT OF PROBLEM
From the mathematical point of view this problem can be

formulated as following. There are n sources with output heat
rating Pi (i = 1, 2, …, n). In the considered domain τ there are
m locations, which are described by regions Sk (k = 1, 2, …, m).
At each location it is possible to arrange one source. All regions
Sk and heat sources have an equal geometrical form and
dimensions. It is necessary to find such correspondence
between serial numbers of sources and locations at which the
temperature field T(x, y, z) described by a heat conduction
equation
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with boundary conditions
BT≈⌡τ = ♥, (2)

satisfies the limitations
Rl(T)  0, l = 1, 2, …, r. (3)

Here ↔x, ↔y, ↔z are thermal conductivities in corresponding
directions; the term ∼(T – Tf) describes a heat outflow
distributed in volume; Q is a specific heat generation rating; B
is an operator of boundary conditions; ♥ is a function defined at
a border of domain τ; Rl are some functionals. For example
Rl = T(xl, yl, zl) – Tl

* describe the condition of non-exceeding
the specified temperature Tl

* in check points (xl, yl, zl).
In region Sk specific heat generation rating Q is equal

Qk = Pik/V, where Pik is heat generation rating of the sources
arranged at the kth location, V is the volume of the region (it is
equal for all Sk according to the conditions of the problem).
Outside the locations Q  0. Introduce unit functions ♣k(x, y, z)
which are identically equal to unity in region Sk and zero

outside Sk. Then 
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some sources are not used, and when n < m some locations are
free (for them Qk = 0).

The solution of problem (1)–(3) is the ordered collection of
numbers ↓ = (i1, i2, …, im), where ij is the serial number of
source arranged at the jth location. If n < m, ↓ is an arrangement
from the set of arrangements An

m; if n = m, ↓ is a permutation
from the set of permutations Pn; and if n > m, ↓ is an
arrangement from the set of arrangements Am

n. From now on
denote by T(↓) the temperature field generated by the sources
placed according to the ↓. Let permutation (arrangement) ↓ be
called the permissible solution of the problem, if T(↓) satisfies
limitations (3). In general the problem (1)–(3) has several
solutions, as a few permutations (arrangements) can satisfy
inequalities (3).

If some extremum condition
E(T)extr (4)

(for example the requirement of minimizing the temperature in
check points) is set in addition, it is possible to choose an
optimal solution from the permissible ones. This solution is
unique as a rule.

One formulation variant is the problem (1)–(2), (4), in
which limitations (3) are missing. In this case all permutations
(arrangements) are permissible.

The problem can also be generalized to the case when there
are other heat sources in the domain τ, the location and heat
generation of which are fixed. Let such sources be called fixed
ones. In this case specific heat generation rating, which appears
in equation (1), can be represented in the form
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known specific rating of fixed sources. In general Q0  0 in
regions Sk, i.e. the fixed sources can be situated in the locations.

PROCEDURE OF ARRANGING THE SOURCES
The problem of finding an extremum of the functional E in

Equation (4) on the set of permutations (arrangements) relates
to the problems of discrete optimizations (Plane and
McMilland, 1971; Philips et al., 1976). During the solution of
such problems some permutations (arrangements) are
successively considered and the value of optimized functional is
calculated for each of them. In our case such a calculation is
connected with solving the direct problem (1)–(2). To check
limitations (3) it is also necessary to find temperature
distribution.

In real problems the number of heat sources and locations
amounts to some tens. So the exhaustive search is unacceptable
because of it is impossible to check all permutations
(arrangements) during the reasonable time.

When the controlled search of permutations (arrangements)
is used the main time is spent in solving the direct heat
conduction problem. It is therefore reasonable to try to reduce
these time expenses.

One of the ways of reducing these expenses is based on the
superposition principle in the case of linear problems. It
consists of the presenting the temperature field in the form of a
linear combinations of fields, which do not depend on a
concrete permutation (arrangement). In this case it is necessary
to find this distributions in advance, and during search for each
investigated permutation (arrangement) to find the coefficients
of the linear combinations and then to calculate the temperature.

As a rule problem (1)–(2) can only be solved by a
numerical method, when the temperature is considered in the
discrete set of nodal points (Richtmyer and Morton, 1967;
Patankar, 1980). A large number of nodes results in best
accuracy of the solution, but at that the expense of large
computational times. Therefore as an alternative we have
suggested using coarse discretization of the domain τ to
investigate most of the permutations (arrangements), using a
large number of nodes for some small quantity of permutations
(arrangements).

Superposition Principle
If the coefficients appearing in equation (1) are constants

and operator B is linear, problem (1)–(2) is linear and the
superposition principle (Rightmayer, 1987) may be applied.
That is the temperature is representable in the form
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where T0 is the solution of the problem
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BT0≈⌡τ = ♥,

and the uk are the solutions of the problem

0Ζ♣Η∼ϑ
�

��
�

	






•






Η��

�
��
�

	






•






Η��

�
��
�

	






•






kk

k
z

k
y

k
x u

z
u

zy
u

yx
u

x
,

Buk≈⌡τ = 0.

It is obvious that T0 and uk do not depend on a placement of
heat sources. So, one can first solve m + 1 boundary value
problems, store the distribution T0 and uk, k = 1, …, m, and then
search the permutations (arrangements) using (5) to obtain
temperature fields generated by the concrete arrangement of
heat sources. As a result the geometric inverse problem (1)–(4)
is reduced to the problem of discrete optimization (3)–(5).

The structure of functionals Rl and E, which appear in real
problems, and a representation of temperature fields in form (5)
allow using the branch and bound method to solve problem (3)–
(5).

As an example consider the problem of minimizing the
maximum (in domain τ) temperature under the condition of
non-exceeding the specified temperature in given check points.
That is min),,(max)(

),,(
Ζ

τ
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, Rl = T(xl, yl, zl) –

 Tl
*  0. Let the heat sources be numbered in the order of

decreasing heat generation rate.
It is obvious that the function uk describes the temperature

field generated by the unit source at the kth location under zero
boundary conditions. Let the temperature be measured in
Kelvin. So, the value of functions T0 and uk in any point of
domain τ can be only positive.

Specify some initial placement of sources ↓1 and find
T1 = T(↓1) and E1 = E(T1).

Start to search the sources from the first one with the higher
heat generation rate. Place it sequentially at all locations. For
each placement find the temperature distribution generated by
this sources along with fixed sources and boundary conditions:
T(1,k) = T0 + Qkuk = T0 + P1uk/V. For this temperature field
calculate the value of the functionals Rl. As uk and Qk are
positive according to (5), any placement of remaining sources
increase (according to (5)) the temperature at any point of the
domain τ. Hence, it also increases the value of the functionals
Rl. Therefore, if one of these functionals is positive at
temperature T(1,k), any placements of remaining sources is not
permissible, as it violates limitations (3). That is all
permutations (arrangements), in which first source placed at the
kth location, can be excluded from the search. Reasoning
similarly we can exclude these placements if there is a point in
which T(1,k) is not less than E1 (i.e. E(T(1,k)) ∫ E1), as the value of
functional E the field generated by any placement of remaining
sources is greater than E(T(1,k)).

If placing the first sources does not result in the violation of
inequalities (3) and condition E(T(1,k)) < E1 holds, it is necessary
to fix the first source at the kth location and proceed to the
second source. Similarly to the first sources the second one is

sequentially placed at each free location. For each case the
temperature distribution, which is generated by these two
sources, is calculated as T(1,k,2,s) = T(1,k) +Qsus (s  k). Then
condition T(1,k,2,s) < E1 is examined in each point of the domain
τ. Limitations (3) are also verified for the temperature
distribution T(1,k,2,s). If one of these inequalities is violated, it
may be concluded that any permutation (arrangement) in which
the first source placed at the kth location and the second source
placed at sth location, cannot be a solution of the problem. That
is, one can skip searching the remaining sources in this case.

If the condition E(T(1,k,2,s)) < E1 and limitations (3) are valid
for the field T(1,k,2,s), we proceed to the third source and so on. If
this procedure results in an exhaustion of all sources or
locations and inequalities (3) and E(T2) < E1 (T2 is the
temperature field generated by all sources), we obtain a
permutation (arrangement) ↓2, which is permissible and better
(in the sence of (4)) than ↓1. It is necessary to store ↓2 as a new
approximation of the solution and replace E1 by E2 = E(T2) in
the following calculations. Such a procedure is continued until
all permutations (arrangements) are examined.

If after fixing the next sources at some location investigate
all variants of placing the remaining sources, it is necessary to
store min(n, m) temperature field (T(1,k), T(1,k,2,s) etc.) in the
computer memory at the same time to realize this procedure.

If the problem is formulated without condition (3) or (4),
the suggested procedure is also applicable. In the first case ((3)
is absence and (4) is available) all permutations (arrangements)
are permissible and it is necessary examine only inequality
T(1,k,2,s…) < Ej for each point of the domain τ. In the second case
((4) is absence and (3) is available) it is not possible to specify
initial placement. If we obtain a permutation (arrangement)
during the search, which do not violate limitations (3), the
calculation process can be stopped and this combination is the
solution of problem.

Investigations have shown that the time consumption of the
branch and bound method is less than that of exhaustive search
when heat generation rates of sources are significantly different
and heat removal within the domain and from its boundaries are
non-uniform. Otherwise time savings are negligible and can
also turn negative, as at the exhaustive search conditions (3) and
inequality T < Ej are not verified for intermediate temperature
fields.

If both the exhaustive search and the branch and bound
method are not applicable due to giant time expenses, one
should use another methods of discrete optimization to solve
problem (3)–(5). Such methods are described in detail in (Plane
and McMilland, 1971; Philips et al., 1976). In this case formula
(5) should be used to calculate temperature field and the
functionals Rl and E for concrete permutation (arrangement).

If the extremal condition (4) is absent in the problem
statement and it is impossible to use neither the exhaustive
search nor the branch and bound method, the problem (3)–(5) is
not a discrete optimization one. It can be solved by the random
search. Another way consists of reducing it to the problem of
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discrete optimization. It can be made by introducing a formal
extremal condition. If during the solution process some
permutation (arrangement), which satisfies limitation (3), is
obtained, we may stop the calculations and assume this
permutation (arrangement) as a final result. As a formal
functional E(T), we can set some combination of Rl(T) (for

example, E(T) = minRl(T) or 
Ζ
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r

l
l TRTE

1
)()( ) and then

minimize it. Condition (4) can be formulated on the basis of
some additional thermal reasoning.

Different Discretization of Domain
If problem (1)–(2) is non-linear, the superposition principle

is not applicable. And when an inverse problem is solved it is
necessary to solve problem (1)–(2) for each investigated
permutation (arrangement). As stated above, the heat
conduction problem must be solved by a numerical method
(Richtmyer and Morton, 1967; Patankar, 1980) and temperature
is examined in the nodal points.

To reduce the time expended on direct problems, it is
suggested to introduce two sets of nodes in the domain τ. The
number of points in the first set is small and the solution of
problem (1)–(2), which is obtained with the help of this
discretization, is crude. The number of points in the second set
is large to provide the necessary accuracy of the solution.

From now assume that condition (4) is written in the form
of E(T)min. Assume that both limitation (3) and condition (4)
are specified in the problem. Otherwise the procedure stated
below should be slightly modified, as it was made at the end of
the previous paragraph.

Chose one of the discrete optimization methods (Plane and
McMilland, 1971; Philips et al., 1976), allowing to find a
sequence of permutations (arrangements) µ = {↓1, ↓2, …, ↓*},
which is minimizing the functional E. Here ↓* is the
approximate solution of the problem. As a rule such methods
introduce a distance function in the set of permutations
(arrangements), and the solution process consists of examining
the functional E in the points of some neighborhood of the
current approximation of solution. If one of these points
improves the value of functionals, the neighborhood center is
placed at this point and it becomes a new element of minimizing
sequence. This procedure implies solving the boundary value
problem (1)–(2) for each examined permutation (arrangement).

The first stage of the suggested procedure consists of
constructing the minimizing sequence, using the first set of
nodal points to discretize the domain τ. Since in this case the
solutions of the direct problems are crude, the values of
functionals E and Rl are calculated with certain error. It is quite
natural to expect that the real temperature fields generated by
some elements of the minimizing sequence can violate
conditions (3), or the functional E is not monotone decreasing
at the µ.

Therefore at the second stage it is necessary to take some
errors ≤0, ≤1, … ≤r, the value of which can be calculated from

the solution accuracy of the direct problem on the basis of the
forms of E and Rl. Then the continuous subsequence µ2 of last
elements of µ is selected. This subsequence includes the
permutations (arrangements), which satisfy one of the following
inequalities

E(T(↓j))  E(T(↓*)) + ≤0,       Rl(T(↓j)) ∫ –≤l. (6)
After that the second more detailed discretization of

domain τ is used, and the temperature field and values of
functionals E and Rl are recalculated for all elements of this
subsequence. Using these improved values of functionals the
best permutation (arrangement) ↓+ can be obtained.

Note the use of crude discretizations. When the
neighborhood of permutations (arrangements) is examined, the
best points in this neighborhood may not be obtained. Therefore
suggested procedure should be modified in the following way to
take this aspect into consideration. All examined permutations
(arrangements), which satisfy one of inequalities (6), should
also be added to µ2. For that it is necessary to store each
permutation (arrangement), which was encountered during
calculation process, along with the values E and Rl for it.

The another way of modification consists of the following.
After the recalculation and obtaining the permutation
(arrangement) ↓+ the new minimizing sequence is found. At that
the values of functionals E and Rl are calculated using more
detailed discretization of the domain τ, and ↓+ is taken as the
first element of the new minimizing sequence µ+.

As a rule the first set of nodal points can be constructed so
that only one node is put in each location and the number of
points between location is minimal.

If the number of elements in µ2 is too large for exhaustive
search, the additional sets of node points may be introduced so
that the number of nodal points (and hence the solution
accuracy) is increased when one set changes another. This
allows gradually to narrow a collection of permutations
(arrangements), which were selected after the first stage, by the
means of the passage from the more crude discretization to a
more accurate one. After recalculation of temperature field it is
necessary to sort the remaining permutations (arrangements) in
decreasing order (for E), select new ↓*, reduce errors ≤0, ≤1, …
≤r, and execute new choice of supposed solution using (6).

The solution process may be changed by modifying the
number of sets of nodal points, values of errors ≤0, ≤1, … ≤r, and
discrete optimization method used at the first stage.

If the number of heat sources and locations is small, it is
possible to use exhaustive search along with sorting at the first
stage, when the coarser discretization is used to construct the
minimizing sequence µ.

Some methods of discrete optimization allow finding the
several local minimums, i.e. construct the several sequences of
µ-kind, and each sequence is finished at a local minimum. In
this case it is necessary to choose best (in the sense of (4)) ↓*

among all local minima, and select permutations (arrangements)
from all sequences using (6). After that we can use a more



5 Copyright © 1999 by ASME

accurate discretization of the domain τ and continue the
calculations as described above.

If coefficients appearing in equation (1) and boundary
conditions (2) depend slightly on the temperature, the suggested
procedure can also be modified in the following way. At the
beginning of the first stage, problem (1)–(2) is linearized and
the direct heat conduction problem for each examined
permutation (arrangement) is solved, using principles described
in previous paragraph. As the superposition principle
significantly reduces computational times, it is possible to try
using the exhaustive search or branch and bound methods like it
was described above.

Selection of Initial Placement of Sources
In most methods of discrete optimization the search is

started from some initial permutation (arrangement). It can be
obtained, using a random search or taking in to account a form
of optimized functional E. As an example, consider a case when
condition (4) consists of minimizing the maximum value of the
temperature in the domain τ. Let the heat sources be arranged
in the order of decreasing heat generation rate.

In this case an initial permutation (arrangement) can be
chosen so that a source with higher rate of heat generation
occupies a location with more intensive heat removal in the case
of uniform heat generation rate. For that it is necessary to find a

temperature field specifying nVPQ
n

i
ik

Ζ

Ζ

1
 for all k. If the

problem is linear, this temperature distribution can be calculated
according to (5). Otherwise it is necessary to solve problem
(1)–(2) with above-mentioned Qk. After that locations are
enumerated in the order of increasing their temperature. By the
temperature of location we understand the temperature of its
center or the volume averaging temperature. Then first source
associates with the first location, the second source – the second
location and so on. If the number of sources is greater than
number of locations, the arranging of sources is started from the
(n – m + 1)th source in order that high-power sources are idle.
This placement provides quite even distribution of temperature,
and hence functional E takes quite good approximation of its
optimal value.

TEST CASES AND RESULTS
To illustrate the feasibility of suggested procedure, we

consider two cases of arranging the heat sources within the 2D

rectangular domains. So 0
�
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z z  in equation (1).

Case#1
It is necessary to arrange 6 sources at the rectangular plate

so that the functional min),(max)(
),(

Ζ
τ

yxTTE
yx

. Limitation

(3) are absent. The dimensions of plate are 0.18⌠0.12 m, its
thickness is 0.002 m. The sizes of sources and locations are
0.03⌠0.03 m. The coordinates of centers of locations and the

power of sources are given in table 1. The thermal conductivity
of the plate is 30 W/(K m). The boundary of the plate is heat-
insulated. The external temperature Tf = 0 C, the convective
heat transfer coefficient at the bottom side of the plate
∼1 = 10 W/(K m2) and at the top side it depends on coordinates:
∼1 = 10 + 100x + 50y W/(K m2). So the term ∼(T – Tf) in
equation (1) has the form of ∼1(T – Tf) + ∼2(T –
 Tf) = (∼1 + ∼2)(T – Tf). Consider two discretization of the
domain. In the first coarse discreatization the size of node is
0.03 m, so only one node is put in each location and there is one
nodal point between the locations. And in the second more
accurate discretization the size of node is 1/3 cm, so 81 nodes
are put in each location and there are 9 nodal point between
location in each direction.

Table 1
Location x, m y, m Source P, W

1st 0.03 0.03 1st 6
2nd 0.09 0.03 2nd 5
3rd 0.15 0.03 3rd 4
4th 0.03 0.09 4th 3
5th 0.09 0.09 5th 2
6th 0.15 0.09 6th 1

The number of all possible permutation is equal to
6! = 720. It is not too large, so it is possible to use the
exhaustive search when the minimizing sequences µ is
constructed.

Figure 1. Maximal temperature versus permutation
number (case#1).

Figure 1 illustrates the necessity of recalculation of value of
functional E using the more accurate discretization. N is the
permutation number. All permutations are numbered in the
order of decreasing maximal temperature, which is calculated
using the first discretization. Line 1 illustrates it. Line 2 is the
values of functional E, which are calculated using the second
discretization. One can see that line 2 is not monotone
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decreasing, and the best permutation ↓*, which is obtained at the
first stage, differs from the improved one ↓+.

Carried out calculations yielded the following results.
↓* = (5, 2, 4, 3, 6, 1). After the recalculation of functional E for
last 166 permutations (≤0 = 5.6), the new permutation
↓+ = (6, 2, 5, 3, 4, 1) was obtained.

Case#2
This case differs from case 1 in the following. The plate

sizes are 0.18⌠0.18 m. The number of location and sources is 9.
The coordinates of centers of locations and the power of
sources are given in table 2.

Table 2
Location x, m y, m Source P, W

1st 0.03 0.03 1st 9
2nd 0.09 0.03 2nd 8
3rd 0.15 0.03 3rd 7
4th 0.03 0.09 4th 6
5th 0.09 0.09 5th 5
6th 0.15 0.09 6th 4
7th 0.03 0.15 7th 3
8th 0.09 0.15 8th 2
9th 0.15 0.15 9th 1

The number of all possible permutation is equal to
9! = 362880. It is too large, so it is not possible to use the
exhaustive search. All permutations, which differ from a given
permutation only in two elements, were considered as its
neighborhood when the minimizing sequences was constructed.

Figure 2. Maximal temperature versus iteration
number (case#2).

Figure 2 illustrate the iterative process of determination of
the sequences µ and µ+. N is an iteration number, line 1
corresponds to µ and line 2 corresponds to µ+. The crosses
under line 1 are recalculated values of maximal temperature
with the usage of the second discretization (≤0 = 10). Dotted

continuation of line 1 illustrates the increase of functional E
calculated for the permutations from µ+ with the usage of the
first coarse discretization.

The sequences µ = (↓0, ↓1, ↓2, ↓3, ↓4, ↓5, ↓6) and
µ+ = (↓7, ↓8, ↓9) along with the values of maximal temperature
are given in table 3. In this case ↓7 = ↓3.

Table 3
Iteration
number

Permutation Tmax, C,
calculated using

the first
discretization

Tmax, C,
calculated using

the second
discretization

0 (1, 2, 3, 4, 5,
6, 7, 8, 9)

133.98 –

1 (9, 2, 3, 4, 5,
6, 7, 8, 1)

93.27 –

2 (9, 5, 3, 4, 2,
6, 7, 8, 1)

85.66 76.76

3 (9, 5, 3, 7, 2,
6, 4, 8, 1)

84.30 75.28

4 (8, 5, 3, 7, 2,
6, 4, 9, 1)

83.88 75.30

5 (5, 8, 3, 7, 2,
6, 4, 9, 1)

83.04 76.22

6 (5, 7, 3, 8, 2,
6, 4, 9, 1)

82.94 76.10

7 (9, 5, 3, 7, 2,
6, 4, 8, 1)

– 75.28

8 (5, 9, 3, 7, 2,
6, 4, 8, 1)

– 74.61

9 (5, 7, 3, 9, 2,
6, 4, 8, 1)

– 74.54

Note the both case#1 and case#2 are liner problems and the
superposition principle was used to calculate the temperature
fields.

CONCLUSION
The procedure of arranging the heat sources in the fixed

locations is presented. It is based on the minimization of a
criterion functional and takes in to account the temperature
limitations. Usage of different discretizations allows reducing
computational times. In the linear cases it is proposed to use the
superposition principle to calculate the temperature fields. The
numerical examples illustrated utility of this procedure as it is
allowed to reduce computational times without coarsening the
solution.

Note, suggested procedures reduce only time expended on
the solving the direct heat conduction problems, which arise
during examination of inverse problem. The choice of concrete
discrete optimization method has also an influence on the
efficiency of solution process. A detailed discussion of this
problem is found in the literature on the subject (Plane and
McMilland, 1971; Philips et al., 1976; Stoyan and Putyatin,
1988).
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