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ABSTRACT
An iterative algorithm based on the conjugate gradient

method is developed in order to estimate simultaneously the spa-
tial location and the strength of heat sources within two dimen-
sional shaped bodies. The case of punctual sources, together with
temperature sensors located on the boundary of the body, is stud-
ied. The iterative regularization princilple is used to avoid the
amplification of the measurement errors on the computed solu-
tion.

NOMENCLATURE
A strenght of the source
c heat capacity
J(S) functional equation (8)
JS

0

gradient of J(S)
h heat transfer coefficient
ni normal unit vector on Γi

T temperature
(x0;y0) location of the source
Γi boundary surface i
λ thermal conductivity
δT sensitivity function
ψ adjoint function
ρ density

INTRODUCTION
The numerical resolution of the Direct Heat Conduction

Problem (DHCP) requires the knowledge of a set of data which
involves : the geometrical data (shape of the body), the medium

data (heat capacity, density, thermal conductivity, heat transfer
coefficient), the ” source ” data (heat flux density, fixed temper-
ature on the boundary, heat sources within the body) , the initial
condition (spatial distribution of the temperature field at the ini-
tial time). When some part of this set of data is unknown, the
DHCP solution cannot be computed, the numerical resolution
of the Inverse Heat Conduction Problems (IHCP) aims to deter-
mine the unknown part of these data from additional informa-
tion. These new data are usually given by temperature sensors
which are located on the boundary or inside the body. During
the last decade, due to the tremendous advancement in scien-
tific computation, an increasing attention has been devoted to the
techniques for solving multidimensional IHCP. Numerical reso-
lutions of IHCP are well known to be ill - conditioned, therefore
some regularizing process has to be considered to avoid numer-
ical instabilities on the computed solutions. Several approaches
are available (Alifanov, 1994), (Jarny et al, 1991), (Beck, 1977).
A general approach consists in solving IHCP with numerical op-
timization tools like the conjugate gradient method. Combined
with the use of a Finite Element Library, It is a powerful method
which offers a wide field of practical applications in inverse ther-
mal analysis. In this work, some results are presented on the
estimation of heat sources within two dimensional shaped bod-
ies. This problem has been considered by several authors (Silva
Neto et al, 1992), (Le Niliot, 1998),(Park H.M. et al, 1999) es-
pecially in the case of punctual sources and assuming the spatial
location is known. In this paper it is shown how the simultaneous
determination of the spatial location and the strength of ponctual
heat sources can be achieved from temperature histories deliv-
ered by sensors located on the boundary of the body. Numerical
experiments show that the influence of the error measurements
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on the computed solution can be strongly reduced according to
the iterative regularization principle.

DIRECT HEAT CONDUCTION PROBLEM (DHCP)
The heat conduction process involving heat source is con-

sidered within an arbitrary shaped domain Ω with the boundary
Γ1[Γ2. The set of equations of the DHCP are written in the form
of a parabolic problem

ρc
∂T
∂t

�λ∆T = S(x;y; t) in Ω; t > 0 (1)

λ
∂T
∂n1

+hT = hTe on Γ1; t > 0 (2)

λ
∂T
∂n2

= 0 on Γ2; t > 0 (3)

T = T0 in Ω; t = 0 (4)

Solving the DHCP consists in the determination of the temper-
ature field T (x;y; t) on the domain Ω, at each time t, when the
medium data ρC, λ , the heat transfer coefficient h, the exter-
nal temperature Te, the heat source S(x;y; t) and the initial field
T0, are assumed to be known. In this study, the heat source is
considered with the following form

S(x;y; t)= A(t):F(x;y;x0;y0)Z
Ω

FdΩ = 1
(5)

where A and F are respectively the strength and the spatial dis-
tribution of the source.

The goal is to determine the strength A(t), and the location
(x0; y0) for a prescribed spatial distribution F .

PONCTUAL HEAT SOURCE
The spatial distribution of the heat source to be determined

is described by a gaussian function

S(x;y; t) =
P(t)
πω2 exp

�
�

(x� x0)2 � (y� y0)2

ω2

�
(6)

where P(t) is the intensity (W=m) and ω is a parameter used
to simulate a punctual heat source, it is chosen equal to the mesh
size. We consider

A(t) =
P(t)
πω2 (7)

and (x0; y0) is the source location.

FORMULATION OF THE IHCP
Additional information are provided by Ns sensors located

within the spatial domain or on its boundary, on the time inter-
val [0; t f ]. Let Ym(t); (m = 1; ::Ns) be the temperature histories
delivered at the location (xm; ym). Solving the IHCP consists
in the determination of the source S which matches the solution
of the DHCP T (xm;ym; t;S) with the data Ym(t). Because of ill-
posedness, the IHCP is solved in the least square sense, by mini-
mizing the residual functional

J(S) =
1
2

Z t f

0

Ns

∑
m=1

jT (xm;ym; t;S)�Ym(t)j
2dt (8)

with T (x;y; t;S) solution of equations (1)-(4)

MINIMIZATION OF THE FUNCTIONAL J(S)
Minimization of J(S) is achieved by using the conjugate gra-

dient method (CGM). Let S be the unknown vector to be deter-
mined.

ST = [x0;y0;Ak (k=0;::Nt)] (9)

where Nt is the number of time step. The (CGM) is iterative, at
each iteration, the previous estimate Sn is corrected by

Sn+1 = Sn� γndn (10)

where the search direction dn and the step length γn are deter-
mined in order to have

J(Sn+1) < J(Sn) (11)

The vector [dx0;dy0;dAk (k=0;::Nt)], is chosen according to the
CGM rules

dn = J
0

S
n
+βnJ

0

S
n�1

β0 = 0

βn =
< J

0

S
n
;J

0

S
n
� J

0

S
n�1

>

kJ
0

S
n
k2

(12)
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where J
0

S
n

is the gradient of the J(S) at the iteration n

J
0

S = [J
0

x0
;J

0

y0
;J

0

Ak (k=0;::Nt)] (13)

k:k is the vector norm associated to the scalar product < :; : >

The step length γn is given by

γn =

Ns

∑
m=1

Z t f

0
δT (xm;ym; t;Sn)[T (xm;ym; t;Sn)�Ym(t)]dt

[δT (xm;ym; t;Sn)]2
(14)

where δT is the sensitivity function which results of the variation
δS of the source.

SENSITIVITY EQUATIONS
Solving the sensitivity equations consists in the determina-

tion of the temperature variation δT which results of a variation
δS of the source. The linearity of the equations (1)-(4) leads to

ρc
∂δT
∂t

�λ∆δT = δS

δS = FδA+A

 
∂F
∂x0

δx0 +
∂F
∂y0

δy0

!
in Ω; t > 0

(15)

λ
∂δT
∂n1

+hδT = 0 on Γ1; t > 0 (16)

λ
∂δT
∂n2

= 0 on Γ2; t > 0 (17)

δT = 0 in Ω; t = 0 (18)

and the associated variation of the functional J(S) is

δJ(S) =
Ns

∑
m

Z t f

0

Z
Ω
(T (x;y; t;S)�Ym(t))δ(x� xm)δ(y� ym)δTdtdΩ

(19)
where δ(:) is the Dirac impulse. By definition, J

0

S(x;y; t;S) satis-
fies

δJ(S) =
Z t f

0

Z
Ω

J
0

S(x;y; t;S)δSdtdΩ (20)

In order to get J
0

S(x;y; t;S), equation (19) has to be put in the
form of equation (20). This is done by making stationary the
Lagrangian associated to the optimization problem, equation (8)

LAGRANGIAN AND ADJOINT EQUATIONS
Let us introduce the Lagrangian L(T;S;ψ)

L((T;S;ψ)) =

1
2

Z t f

0

Z
Ω

Ns

∑
m=1

(T (x;y; t;S)�Ym(t))
2δ(x� xm)δ(y� ym)dtdΩ

+
Z t f

0

Z
Ω
(ρc

∂T
∂t

�λ∆T �S)ψdtdΩ
(21)

where T;S;ψ can be independent functions. The Lagrangian
multiplier ψ is, as the function T, a function of x;y, and t. ψ
being fixed, the differential of L satisfies

δL =
∂L
∂T

δT +
∂L
∂S

δS (22)

Let us take ψ solution of the following equation (so called
adjoint equation)

∂L
∂T

δT = 0; 8 δT (23)

then by taking T solution of the equations (1)-(4), it comes

δJ = δL =
∂L
∂S

δS (24)

where

∂L
∂S

δS =�

Z t f

0

Z
Ω

ψδS dtdΩ

=�

Z t f

0

Z
Ω

ψFδA dtdΩ�

Z t f

0

Z
Ω

ψA
∂F
∂x0

δx0 dtdΩ

�

Z t f

0

Z
Ω

ψA
∂F
∂y0

δy0 dtdΩ

(25)
and the gradient components J

0

S(x;y; t;S) are easily extracted
from equation (25),

J
0

A(t) = �

Z
Ω

ψF dΩ (26)

J
0

x0
=�

Z t f

0

Z
Ω

ψA
∂F
∂x0

dtdΩ (27)
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J
0

y0
=�

Z t f

0

Z
Ω

ψA
∂F
∂y0

dtdΩ (28)

It can be noted that JA
0

is a function of time, like the function
A(t), Jx0

0

and Jy0

0

are real numbers like x0 and y0.
Let us develop equation (23). From the definition of the

Lagrangian, (21), we have

∂L
∂T

δT =
Z t f

0

Z
Ω

Ns

∑
m=1

(T (x;y; t;S)�Ym(t))δ(x� xm)δ(y� ym)δTdtdΩ

+
Z t f

0

Z
Ω
(ρc

∂δT
∂t

�λ∆δT )ψdtdΩ
(29)

integration by parts give

Z t f

0

∂δT
∂t

ψdt = [ψδT ]
t=t f
t=0 �

Z t f

0

∂ψ
∂t

δTdt (30)

Z
Ω

λ∆δT ψdΩ =
Z

Γ1

(λ
∂ψ
∂n1

+hψ)δTdΓ1 +
Z

Γ2

λ
∂ψ
∂n2

δTdΓ2

+
Z

Ω
λ∆ψ δTdΩ

(31)
then with the boundary and initial conditions (16), (17), (18),
equation (29) can be written in the new form

∂L
∂T

δT =
Z

Ω

Z t f

0
(�ρc

∂ψ
∂t

�λ∆ψ)δT dtdΩ

+
Z

Ω

Z t f

0

Ns

∑
m=1

(T (x;y; t;S)�Ym(t))δ(x� xm)δ(y� ym)δT dtdΩ

+
Z

Γ1

Z t f

0
(λ

∂ψ
∂n1

+hψ)δT dtdΓ1

+
Z

Γ2

Z t f

0
λ

∂ψ
∂n2

δT dtdΓ2+
Z

Ω
ψ(t = t f )δT dΩ

(32)
Therefore equation (23) is satisfied by taking the lagrange multi-
plier ψ solution of the following set of equations

�ρc
∂ψ
∂t

�λ∆ψ =

Ns

∑
m=1

(T (x;y; t;S)�Ym(t))δ(x� xm)δ(y� ym) in Ω; t > 0
(33)

λ
∂ψ
∂n1

+hψ = 0 on Γ1; t > 0 (34)

λ
∂ψ
∂n2

= 0 on Γ2; t > 0 (35)

ψ = 0 in Ω; t = t f (36)

Equations (33)-(36) are linear, the solution of which ψ is com-
puted backward in time on the interval [0; t f]

NUMERICAL ALGORITHM
Each iteration of the CGM includes the numerical resolu-

tion of three distinct parabolic set of equations. The iterative
algorithm has the following structure

a) Choose an initial guess S0

b) Solve the direct problem, equations (1)-(4), to compute
T (xm;ym; t;Sn), and J(Sn), equation (8)

c) Solve the adjoint problem ,equations (33-36) to compute the
vector J

0

Sn , equations (26-28)
d) Solve the sensitivity problem, equations (15-18), to compute

γn, equation (14), and the new vector Sn+1 equation (10)
e) Stopping condition

if
�

J(Sn+1) > J(Sn) or J(Sn) < ε
�

go to f)

else set n = n+1 go to b)
f) End

ε is defined according to the iterative regularization principle
which is illustrated in the following section.

NUMERICAL EXPERIMENTS
The spatial domain considered is a square, see figure (1),

L = 0:05m. The values of the thermophysical parameters are :
λ = 0:17W=K:m, a = 1:210�07m2

=s, h = 10W=m2
:K, the ini-

tial temperature T0 = 293K, and the external temperature Te =
293K. A regular mesh with 11�11 = 121 nodes is considered.
ω= 6:10�3m. The parabolic solver of the Finite Element Library
MODULEF is used to compute the solution of the DHCP.

Two cases have been studied :
case#1: x0 = 0:01m; y0 = 0:04m
case#2: x0 = 0:03m; y0 = 0:01m

The temperature responses delivered by four sensors lo-
cated at the middle of each side of the domain,to a time vary-
ing strength A(t) of the source, are shown on figures (2) and (3).
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Figure 2. TEMPERATURE RESPONSES : case#1

These responses are corrupted by adding a zero mean gaussian
noise, to build the simulated additional data Ym(t) required to
solve the IHCP.

Y k
m = T k

mexact +σek
m m = 1; :::Ns; k = 0; :::Nt (37)

where σ is the standard deviation of the noise (assumed to
be identical for each sensor) and ek

m is the normally distributed
randum number.

0 5000 10000
Time (s)

20

25

30

T
e
m

p
e
ra

tu
re

 (
o
C

)

S1

S2

S3

S4

Figure 3. TEMPERATURE RESPONSES : case#2
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Figure 4. IDENTIFICATION OF THE LOCATION : case#1, σ = 0:05

NUMERICAL RESULTS
� Case#1
The initial guess of the source location is taken at the cen-

ter of the square x = 0:025m y = 0:025m. The initial guess of
the strength of the source is taken equal to zero. An alternate
iterative research process of the conjugate gradient has been per-
formed : instead of modifying the location and the strength at
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Figure 5. IDENTIFICATION OF THE STRENGTH : case#1, σ = 0:05
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Figure 6. IDENTIFICATION OF THE LOCATION : case#1, σ = 0:2

each iteration, one iteration is used to correct the location keep-
ing the strength unmodified, the following iteration is used to
correct the strength while the location is hold, and so on. On fig-
ure (4) and (6) are shown the computed locations resulting of this
minimization process, with a noise level σ= 0:05 and σ= 0:2 re-
spectively. Figure (8) illustrates the convergence of the sequence
J(Sn) : asymptotic values Jas are observed, they are directly re-
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Figure 7. IDENTIFICATION OF THE STRENGTH : case#1, σ = 0:2
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Figure 8. MINIMIZATION OF J(Sn): case#1

lated to the noise level σ as indicate in Table 1. The final number
of iterations n� is chosen according to the following equation

Jas = J(Sn�

) = Nt:Ns:σ2 = ε (38)

When the iterative process is stopped at the iteration number n�,
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Table 1. RESULTS OF IDENTIFICATION OF (x0, y0), case#1

σ ε Jas n� x0 y0

0.05 0.6 0.5990 242 0.0102 0.0396

0.2 9.6 9.6049 155 0.0110 0.0387

Table 2. RESULTS OF IDENTIFICATION OF (x0, y0), case#2

σ ε Jas n� x0 y0

0.05 0.6 0.6235 63 0.0299 0.0099

0.2 9.6 9.5908 59 0.0296 0.0098
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Figure 9. IDENTIFICATION OF THE LOCATION : case#2, σ = 0:05

no instability occur on the computed solution as it is shown on
figure (5). Figure (7) illustrates the iterative regularization prin-
ciple :
- with σ = 0:2 and n� = 155, the computed strength A(t) is sta-
ble, close to the exact values; if the iterative process is continued,
for example n = 186, oscillations appear.
- with a lower noise level σ = 0:05, the final number n� = 242 is
greater and the computed strength is more accurate figure (5)

� Case#2
The same initial guess is considered. Figures (9) and (11)

illustrates the convergence of the computed source locations to
the exact values. Figures (10) and (12) show the influence of the
noise level on the computed strength A(t) . Results are similar to

0 5000 10000
Time (s)

−10
4.7

−10
4.5

−10
4.0

10
4.0

10
4.5

10
4.7

10
4.8

10
5.0

A
(t

) 
W

/m
3

Exact solution
Estimated solution at n = 63

σ = 0.05

Figure 10. IDENTIFICATION OF THE STRENGTH : case#2, σ = 0:05
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Figure 11. IDENTIFICATION OF THE LOCATION : case#2, σ = 0:2

case#1. It can be observed that the final numbers of iterations de-
pends on the level noise, like in the previous case. The influence
of the sensor locations must be also noted. The distance between
the nearest sensor and the source is lower than in case#1, then
for σ = 0:05, instead of n� = 242 only n� = 63 iterations are re-
quired, and for σ=0.2, instead of n� = 155, n� = 59 are sufficient
table 2.
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Figure 12. IDENTIFICATION OF THE STRENGTH : case#2, σ = 0:2
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Figure 13. MINIMIZATION OF J(Sn): case#2

CONCLUSION
The inverse heat conduction problem which consists in the

determination of the location and simultaneously the time vary-
ing strength of a heat ponctual source within a two dimensional
arbitrary shaped body, has been computed by the conjugate gra-
dient method, using a parabolic solver of the Finite Element Li-
brary MODULEF. The spatial distribution of the source has been

described by a stiff gaussian function in order to approximate a
punctual distribution. The iterative regularization principle to-
gether with the use of the conjugate gradient method has been
illustrated. To avoid instabilities on the computed strength, the it-
erative process of minimization has to be stopped when the resid-
ual functional reaches a critical value which depends on the noise
level.
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