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ABSTRACT
In this paper we examine the inverse problem of

identification of the three thermal conductivity components of
an orthotropic cube. For the solution of such parameter
estimation problem, we consider two different versions of the
Levenberg-Marquardt method and four different versions of the
conjugate gradient method. The techniques are compared in
terms of rate of reduction of the objective function with respect
to the number of iterations, CPU time and accuracy of the
estimated parameters. Simulated measurements with and
without measurement errors are used in the analysis, for three
different sets of exact values for the parameters.

NOMENCLATURE
I number of transient measurements per sensor
J sensitivity coefficients
J sensitivity matrix defined by equation  (7)
k1,k2,k3 thermal conductivities in the x, y and z directions,

respectively
M number of sensors
P vector of unknown parameters
S least-squares norm defined by equation (5)
T vector of estimated temperatures
th , tf heating time and final time
Y vector of measured temperatures

GREEKS
σ standard deviation of the measurement errors

INTRODUCTION
In nature, several materials have direction-dependent

thermal conductivities including, among others, woods and
crystals. This is also the case for some man-made materials, for
example, composites. Such kind of materials is denoted
anisotropic, as an opposition to isotropic materials, in which
the thermal conductivity does not vary with direction. A special
case of anisotropic materials involve those where the off-
diagonal elements of the conductivity tensor are null and the
diagonal elements are the principal conductivities along three
mutually orthogonal directions. They are referred to as
orthotropic materials (Ozisik, 1993).

As a result of the importance of orthotropic materials in
nowadays engineering, a lot of attention has been devoted in the
recent past to the estimation of their thermal properties, by
using inverse analysis techniques of parameter estimation
(Sawaf and Ozisik, 1995, Sawaf et al, 1995, Taktak et al, 1993,
Taktak, 1992, Dowding et al, 1995, 1996, Mejias et al, 1999).

In this paper we present a comparison of different methods
of parameter estimation, as applied to the identification of the
three thermal conductivity components of an orthotropic solid,
by using simulated experimental data. Such a physical problem
was chosen for comparison of the methods because it requires
non-linear estimation procedures, since the sensitivity
coefficients are functions of the unknown parameters.
Experimental variables used in the analysis, such as the duration
of the experiment, location of sensors and boundary conditions,
were optimally chosen (Mejias et al, 1999). The methods
examined in this work include: the Levenberg-Marquardt
Method (Levenberg, 1944, Marquardt, 1963, Beck and Arnold,
1977, Moré, 1977, Mejias et al, 1999, Ozisik and Orlande,
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1999) and the Conjugate Gradient Method versions of Fletcher-
Reeves, Polak-Ribiere, Powell-Beale and Hestenes-Stieffel
(Alifanov, 1994, Daniel, 1971, Ozisik and Orlande, 1999,
Powell, 1977, Hestenes and Stiefel, 1952, Fletcher and Reeves,
1964, Colaço and Orlande, 1999). Such methods are compared
in terms of the rate of reduction of the objective function,
accuracy of estimated parameters and effects of the initial-guess
on the convergence. Different sets of values are used for the
thermal conductivity components in order to generate the
simulated measurements, thus representing several practical
engineering materials (Mejias et al, 1999), as described next.

DIRECT PROBLEM
The physical problem considered here involves the three-

dimensional linear heat conduction in an orthotropic solid, with
thermal conductivity components 1k , 2k and 3k  in the x, y and
z directions, respectively. The solid is considered to be a
parallelepiped with sides a, b and c, initially at zero
temperature. For times t > 0, uniform heat fluxes )(1 tq ,

)(2 tq and )(3 tq  are supplied at the surfaces x = a, y = b and
z = c , respectively, while the other three remaining boundaries
at x = 0, y = 0 and z = 0 are supposed insulated. The
mathematical formulation of such physical problem is given in
dimensionless form by
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T = 0 for t = 0  ;  in 0 ≤ x ≤ a , 0 ≤ y ≤ b , 0 ≤ z ≤ c (1.h)

In the direct problem associated with the physical problem
described above, the three thermal conductivity components k1,
k2 and k3, as well as the solid geometry, initial and boundary
conditions, are known. The objective of the direct problem is
then to determine the transient temperature field T(x, y, z, t) in
the body.

By following the same approach of Taktak et al (1993), we
assume the boundary heat fluxes to be pulses of finite duration
th, that is,
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where jq  is the dimensionless magnitude of the applied heat
flux.

The solution of problem (1) with boundary heat fluxes
given by equation (2), can be obtained analytically as a

superposition of three one-dimensional solutions by using the
split-up procedure (Mikhailov and Ozisik, 1994) for 0 < t ≤ th.
We obtain for 0< t ≤ th
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After the heating period, problem (1) becomes
homogeneous with initial temperature distribution given by
equation (3.a) for t = th. Hence, it can easily be solved by
separation of variables (Ozisik, 1993). Since the initial
condition at t = th obtained from equation (3.a) is a
superposition of three one-dimensional solutions, such is also
the case for the solution for t > th. The temperature field for
t > th is given by
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INVERSE PROBLEM
For the inverse problem considered here, the thermal

conductivity components k1, k2 and k3 are regarded as unknown,
while the other quantities appearing in the formulation of the
direct problem described above are assumed to be known with
high degree of accuracy.

For the estimation of the vector of unknown parameters
PT = [k1, k2 , k3], we assume available the transient readings of
M temperature sensors. Since it is desirable to have a non-
intrusive experiment, we consider the sensors to be located at
the insulated surfaces x = 0, y = 0 and z = 0. We note that the
temperature measurements may contain random errors. Such
errors are assumed here to be additive, uncorrelated, and
normally distributed with a zero mean and a known constant
standard-deviation σ  (Beck and Arnold, 1977). Therefore, the
solution of the present parameter estimation problem can be
obtained through the minimization of the ordinary least-squares
norm

])([])([)( PTYPTYP −−= TS (5)
where
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and each element )]([ Pii TY
��

−  is a row vector of length equal to
the number of sensors M, that is,
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for  i = 1,..,I (6.b)
We note that Yim and Tim(P) are the measured and

estimated temperatures, respectively, for time ti, i=1,…,I, and
for the sensor m, m=1,…,M.  The estimated temperatures are
obtained from the solution of the direct problem given by
equations (3,4), by using the current available estimate for the
vector of unknown parameters    PT = [k1, k2 , k3].

The methods considered in this paper for the minimization
of the least squares norm (5) make use of the sensitivity matrix.
For the present case, involving multiple measurements to
estimate the vector of unknown parameters PT = [k1, k2 , k3],  the
sensitivity matrix is defined as
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The elements of the sensitivity matrix are denoted
Sensitivity Coefficients. Due to the analytical nature of the
solution of the direct problem given by equations (3,4), we can
also obtain analytic expressions for the sensitivity coefficients.
Since the solution of the direct problem is obtained as a
superposition of one-dimensional solutions, we note that the
sensitivity coefficient with respect to k1 is a function of x, but
not of y and z. The expressions for the sensitivity coefficients
with respect to k1 are obtained as
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and analogous expressions can be obtained for the sensitivity
coefficients J2 and J3 with respect to k2 and k3, respectively. We
note that the present estimation problem is non-linear, since the
sensitivity coefficients are functions of the unknown
parameters.

METHODS OF SOLUTION
For the minimization of the least squares norm (5), we

consider here the Levenberg-Marquardt Method (Levenberg,
1944, Marquardt, 1963, Beck and Arnold, 1977, Mejias et al,
1999, Ozisik and Orlande, 1999) and the Conjugate Gradient
Method versions of Fletcher-Reeves, Polak-Ribiere, Powell-
Beale and Hestenes-Stieffel (Alifanov, 1994, Daniel, 1971,
Ozisik and Orlande, 1999, Powell, 1977, Hestenes and Stiefel,
1952, Fletcher and Reeves, 1964, Colaço and Orlande, 1999).
These methods can be suitably arranged in iterative procedures
of the form

kkk PPP ∆+=+1 (9)

where ∆Pk is the increment in the vector of unknown parameters
at iteration k. The computation of ∆Pk for each of the methods
considered here are addressed next.

1. Levenberg-Marquardt Method
The so-called Levenberg-Marquardt Method was first

derived by Levenberg (1944) by modifying the ordinary least
squares norm. Later Marquardt (1963) derived basically the
same technique by using a different approach. Marquardt’s
intention was to obtain a method that would tend to the Gauss
method in the neighborhood of the minimum of the ordinary
least squares norm, and would tend to the steepest descent
method in the neighborhood of the initial guess used for the
iterative procedure.

The increment ∆Pk for the Levenberg-Marquardt Method
can be written as

])([)(])[( 1 kTkkkkTkk PTYJJJP −Ω+=∆ −µ (10)

where µ
k  is a positive scalar named damping parameter, and

ΩΩΩΩ
k
 is a diagonal matrix.

The purpose of the matrix term µk ΩΩΩΩ
k in equation (10) is to

damp oscillations and instabilities due to the ill-conditioned
character of the problem, by making its components large as
compared to those of JTJ, if necessary. The damping parameter
is made large in the beginning of the iterations, since the
problem is generally ill-conditioned in the region around the
initial guess used for the iterative procedure, which can be quite
far from the exact parameters. With such an approach, the
matrix JTJ is not required to be non-singular in the beginning of
iterations and the Levenberg-Marquardt Method tends to the
Steepest Descent Method, that is, a very small step is taken in
the negative gradient direction. The parameter µk  is then
gradually reduced as the iteration procedure advances to the
solution of the parameter estimation problem, and then the
Levenberg-Marquardt Method tends to the Gauss Method
(Beck and Arnold, 1977, Ozisik and Orlande, 1999).

The following criteria are used to stop the iterative
procedure of the Levenberg-Marquardt Method:
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(i) 1
1 )( ε<+kS P (11.a)

(ii) [ ] 2)()( ε<− kTk PTYJ (11.b)

(iii) 3
1 ε<−+ kk PP (11.c)

where ε1, ε2 and ε3 are user prescribed tolerances and || . || is the

vector Euclidean norm, i.e., 2
1

)( xxx T= , where the
superscript T denotes transpose.

The criterion given by equation (11.a) tests if the least
squares norm is sufficiently small, which is expected to be in
the neighborhood of the solution for the problem. Similarly,
equation (11.b) checks if the norm of the gradient of S(P) is
sufficiently small, since it is expected to vanish at the point
where S(P) is minimum. Although such a condition of vanishing
gradient is also valid for maximum and saddle points of S(P),
the Levenberg-Marquardt method is very unlike to converge to
such points. The last criterion given by equation (11.c) results
from the fact that changes in the vector of parameters are very
small when the method has converged.

Different versions of the Levenberg-Marquardt method
can be found in the literature, depending on the choice of the
diagonal matrix ΩΩΩΩ

k and on the form chosen for the variation of
the damping parameter µk. We illustrate here the computational
algorithm of the method with the matrix  ΩΩΩΩ

k taken as

])[( kTkk diag JJ=Ω (12)

Suppose that temperature measurements are given at times
ti , i=1,...,I. Also, suppose that an initial guess P0 is available for
the vector of unknown parameters P. Choose a value for µ0, say,
µ0 = 0.001 and set k = 0. Then,

Step 1. Solve the direct heat transfer problem given by
equations (1) with the available estimate Pk .

Step 2. Compute S(Pk) from equation (5).
Step 3. Compute the sensitivity matrix Jk defined by

equation (7) and then the matrix ΩΩΩΩ
k
 given by

equation (12).
Step 4. Compute the increments for the unknown parameters

by using equation (10).
Step 5. Compute the new estimate P

k+1
 as

kkk PPP ∆+=+1 (13)
Step 6. Solve now the direct problem (1) with the new

estimate  P
k+1

 in order to find T(P
k+1

). Then
compute S(P

k+1
), as defined by equation (5).

Step 7. If S(P
k+1

) ≥ S(P
k
), replace µ

k
 by 10µ

 k
 and return to

step 4.
Step 8. If S(P

k+1
)< S(P

k
), accept the new estimate P

k+1 and
replace µ

k
 by 0.1µ

 k
.

Step 9. Check the stopping criteria given by equations
(11.a-c). Stop the iterative procedure if any of them
is satisfied; otherwise, replace k by k+1 and return
to step 3.

In another version of the Levenberg-Marquardt method
due to Moré(1977) the matrix ΩΩΩΩ

k
 is taken as the identity matrix

and the damping parameter µk is chosen based on the so-called
trust region algorithm. The subroutines of the IMSL (1987) are
based on this version of the Levenberg-Marquardt Method.

2. Conjugate Gradient Method
The Conjugate Gradient Method is a straightforward and

powerful iterative technique for solving inverse problems of
parameter estimation. In the iterative procedure of the
Conjugate Gradient Method, at each iteration a suitable step
size is taken along a direction of descent in order to minimize
the objective function. The direction of descent is obtained as a
linear combination of the negative gradient direction at the
current iteration with directions of descent from previous
iterations. The Conjugate Gradient Method with an appropriate
stopping criterion belongs to the class of iterative
regularization techniques, in which the number of iterations is
chosen so that stable solutions are obtained for the inverse
problem (Alifanov, 1994, Ozisik and Orlande, 1999).

The increment in the vector of unknown parameters at
each iteration of the conjugate gradient method is given by

kkk dP β=∆ (14)

The search step size βk is obtained by minimizing the
objective function given by equation (5) with respect to βk. By
using a first-order Taylor series approximation for the estimated
temperatures, the following expression results for the search
step size(Ozisik and Orlande, 1999):

][][
)]([][

kkTkk

kTkk
k

dJdJ
PTYdJ −=β (15)

The direction of descent dk is given in the following
general form

qkkkkk S ddPd ψγ ++−∇= −1)( (16)

where γk and ψk are conjugation coefficients and )( kS P∇ is the
gradient vector given by

)]([)(2)( kTkkS PTYJP −−=∇ (17)

The superscript q in equation (16) denotes the iteration
number where a restarting strategy is applied to the iterative
procedure of the conjugate gradient method. Restarting
strategies were suggested for the conjugate gradient method of
parameter estimation in order to improve its convergence rate
(Powell, 1977).

Different versions of the Conjugate Gradient Method can
be found in the literature depending on the form used for the
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computation of the direction of descent given by equation (16)
(Alifanov, 1994, Daniel, 1971, Ozisik and Orlande, 1999,
Powell, 1977, Hestenes and Stiefel, 1952, Fletcher and Reeves,
1964, Colaço and Orlande, 1999). In the Fletcher-Reeves
version, the conjugation coefficients γk and ψk are obtained
from the following expressions

)]([)]([
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1T1

T

−− ∇∇
∇∇= kk

kk
k

SS
SS

PP
PPγ    with γ0 = 0 for k = 0 (18.a)

ψk = 0       for k = 0,1,2,… (18.b)

In the Polak-Ribiere version of the Conjugate Gradient
Method the conjugation coefficients are given by
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ψk = 0       for k = 0,1,2,… (19.b)

For the Hestenes-Stiefel version of the Conjugate Gradient
Method we have
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Powell(1977) suggested the following expressions for the
conjugation coefficients, which gives the so-called Powell-
Beale’s version of the conjugate gradient method
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+

ψ with ψ0 = 0

for k = 0
(21.b)

In accordance with Powell(1977), the application of the
conjugate gradient method with the conjugation coefficients
given by equations (21) requires restarting when gradients at
successive iterations tend to be non-orthogonal (which is a
measure of the local non-linearity of the problem) and when the
direction of descent is not sufficiently downhill. Restarting is
performed by making ψk = 0 in equation (16).

The non-orthogonality of gradients at successive iterations
is tested by using:

( ) )]([)]([2.0)]([)]([ TT1 kkkk SSSSABS PPPP ∇∇≥∇∇ − (22.a)
where ABS (.) denotes the absolute value.

A non-sufficiently downhill direction of descent (i.e., the
angle between the direction of descent and the negative gradient
direction is too large) is identified if either of the following
inequalities are satisfied:

)]([)]([2.1)]([][ TT kkkk SS-S PPPd ∇∇≤∇ (22.b)
or

)]([)]([8.0)]([][ TT kkkk SS-S PPPd ∇∇≥∇ (22.c)

In Powell-Beale’s version of the conjugate gradient
method, the direction of descent given by equation (16) is
computed in accordance with the following algorithm for k ≥1:

STEP 1: Test the inequality (22.a). If it is true set q = k-1.
STEP 2: Compute γk with equation (21.a).
STEP 3: If k = q+1 set ψk = 0. If k ≠ q+1 compute ψk with

equation (21.b).
STEP 4: Compute the search direction dk(X,Y,τ) with equation

(16).
STEP 5: If k ≠ q+1 test the inequalities (22.b,c). If either one of

them is satisfied set q = k-1 and ψk=0. Then
recompute the search direction with equation (16).

The iterative procedure given by equations (9,14-21) does
not provide the conjugate gradient method with the stabilization
necessary for the minimization of the objective function (5) to
be classified as well-posed. Therefore, as the estimated
temperatures approach the measured temperatures containing
errors, during the minimization of the function (5), large
oscillations may appear in the inverse problem solution.
However, the conjugate gradient method may become well-
posed if the Discrepancy Principle (Alifanov, 1994) is used to
stop the iterative procedure.

In the discrepancy principle, the iterative procedure is
stopped when the following criterion is satisfied

ε<+ )( 1kS P (23)

where the value of the tolerance ε is chosen so that sufficiently
stable solutions are obtained. In this case, we stop the iterative
procedure when the residuals between measured and estimated
temperatures are of the same order of magnitude of the
measurement errors, that is,

σ≈imim TY - (24)

where σ  is the standard deviation of the measurement errors,
which is supposed constant and known. By substituting
equation (24) into equation (5), we obtain ε as

2σ=ε MI (25)

If the measurements are regarded as errorless, the
tolerance ε can be chosen as a sufficiently small number, since
the expected minimum value for the objective function (5) is
zero.

The iterative procedure of the conjugate gradient method
can be suitably arranged in the following computational
algorithm.

Suppose that temperature measurements and an initial
guess P0 is available for the vector of unknown parameters P.
Set k = 0 and then
Step 1. Solve the direct heat transfer problem (1) by using

the available estimate Pk and obtain the vector of
estimated temperatures T(Pk).
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Step 2. Check the stopping criterion given by equation (23).
Continue if not satisfied.

Step 3. Compute the sensitivity matrix Jk defined by
equation (7).

Step 4. Compute the gradient direction )( kS P∇  from
equation (17) and then the conjugation coefficients
from equations (18), (19), (20) or (21). Note that
Powell-Beale’s version requires restarting if any of
the inequalities (22.a-c) are satisfied.

Step 5. Compute the direction of descent dk by using
equation (16).

Step 6. Compute the search step size βk  from equation (15).
Step 7. Compute the increment ∆Pk with equation (14) and

then the new estimate Pk+1 with equation (9). Replace
k by k+1 and return to step 1.

RESULTS AND DISCUSSIONS
For the results presented below, we assumed the solid with

unknown thermal conductivities to be available in the form of a
cube, so that a = b = c = 1. Also, the heat fluxes applied on the
boundaries x = a = 1, y = b = 1 and z = c = 1 were assumed to
be of equal magnitude during the heating period 0 < t ≤ th, so
that 1=jq in equation (2), for j = 1,2,3. Different experimental
variables, such as the number and locations of sensors, heating
time and final time, optimally chosen by Mejias et al (1999),
were used here for the analysis of test-cases involving different
values for the unknown thermal conductivity components. The
test-cases examined here are summarized in table 1, together
with their respective optimal values of heating and final times.
The readings of three sensors (M=3) located at the positions
(0,0.9,0.9), (0.9,0,0.9) and (0.9,0.9,0) were used for the
estimation of the unknown thermal conductivity components.
One hundred simulated measurements per sensor, containing
additive, uncorrelated and normally distributed errors with zero
mean and constant standard-deviation, were assumed available
for the estimation procedure.

The computational algorithms presented above for the
Levenberg-Marquardt method, as well as for the different
versions of the conjugate gradient method, were programmed in
FORTRAN 90 and applied to the estimation of the parameters
shown in table 1, by using simulated measurements with
standard deviations of σ = 0 (errorless measurements) and
σ  = 0.01Tmax, where Tmax is the maximum measured
temperature. For the comparison presented below, we also
considered the IMSL (1987) version of the Levenberg-
Marquardt method in the form of the subroutine DBCLSJ.
Upper and lower limits for the unknown parameters, required
by such subroutine, were taken as 10-3 and 104, respectively.
The same limits were also considered in the implementation of
the other estimation techniques. Table 2 summarizes the
techniques used in the present paper.

Tables 3 to 5 present the results obtained for the CPU
time, average rate of reduction of the objective function with

respect to the number of iterations (r) and RMS error (eRMS),
obtained with each of the techniques summarized in table 2, for
the test-cases 1 to 3, respectively. The computations were
performed in a Pentium 100 MHz, under the Fortran
PowerStation platform. The results presented in tables 3 and 4
were obtained with an initial guess P0=[0.1,0.1,0.1] for the
unknown parameters, while an initial guess of P0=[0.5,0.5,0.5]
was required for convergence of any of the methods for test-
case 3 (table 5). For those cases involving simulated
measurements with random errors, the results shown in tables 3-
5 were averaged over 10 different runs, in order to reduce the
effects of the random number generator utilized.

The average rates of reduction of the objective function (r)
were obtained from the following approximation for the
variation of S(P) with the number of iterations (N):

rNCS −=)(P (26)
where C is a constant depending on the data.

The RMS errors were computed as

�
=

−=
3

1

2
,, )(

3
1

j
jestjexRMS kke (27)

where the subscripts ex and est refer to the exact and estimated
parameters, respectively.

Table.1. Test-cases with respective heating and final times.

Exact ParametersCase

k1 k2 k3

th tf

1 1 1.5 2 0.2 0.28

2 1 2 3 0.15 0.2

3 1 15 15 0.03 0.05

Table 2. Techniques used for the estimation of the unknown
parameters.

Technique Method Version
1A Levenberg-Marquardt This paper
1B Levenberg-Marquardt IMSL
2A Conjugate Gradient Method Fletcher-Reeves
2B Conjugate Gradient Method Polak-Ribiere
2C Conjugate Gradient Method Hestenes-Stiefel
2D Conjugate Gradient Method Powell-Beale

The tolerances for the stopping criteria of technique 1A
were taken as ε1= ε2= ε3=10-15 in equations (11.a-c), for cases
involving errorless measurements, as well as measurements with
random errors. For those cases involving errorless
measurements, the tolerances for the stopping criterion of
techniques 2A-D were taken as ε = 10-15 in equation (23). For
those cases involving measurements with random errors, such
tolerances for techniques 2A-D were obtained from
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equation(25) based on the discrepancy principle. We note that
the tolerances for the stopping criteria of technique 1B were set
internally by the subroutine DBCLSJ of the IMSL (1987).

Table 3. Results for test-case 1
Technique σ CPU time (s) r eRMS

0.00 2.4 18 0.001A 0.01Tmax 4.0 4 0.01
0.00 2.5 18 0.001B 0.01Tmax 2.6 4 0.01
0.00 4.7 14 0.002A 0.01Tmax 5.5 2 0.01
0.00 4.7 14 0.002B 0.01Tmax 4.2 3 0.02
0.00 6.3 13 0.002C 0.01Tmax 6.9 2 0.01
0.00 4.4 10 0.002D 0.01Tmax 4.9 3 0.01

Table 4. Results for test-case 2
Technique σ CPU time (s) r eRMS

0.00 2.7 22 0.001A 0.01Tmax 4.3 4 0.01
0.00 3.1 31 0.001B 0.01Tmax 3.0 4 0.02
0.00 7.1 12 0.002A 0.01Tmax 6.6 3 0.02
0.00 4.9 13 0.002B 0.01Tmax 6.0 3 0.02
0.00 6.9 14 0.002C 0.01Tmax 6.0 3 0.02
0.00 5.2 14 0.002D 0.01Tmax 4.9 3 0.03

Table 5. Results for test-case 3
Technique σ CPU time (s) r eRMS

0.00 3.2 23 0.001A 0.01Tmax 5.1 3 0.12
0.00 3.6 27 0.001B 0.01Tmax 3.4 4 0.13
0.00 5.6 12 0.002A 0.01Tmax 8.8 2 0.17
0.00 5.4 10 0.002B 0.01Tmax 9.7 2 0.12
0.00 5.8 9 0.002C 0.01Tmax 17.9 2 0.38
0.00 5.8 9 0.002D 0.01Tmax 12.6 3 0.12

Let us consider first in the analysis of tables 3-5 the cases
involving errorless measurements (σ = 0). Tables 3-5 show that
all techniques were able to estimate exactly the three different
sets of unknown parameters examined, resulting in eRMS = 0.00.

The highest rates of reduction of the objective function were
obtained with the Levenberg-Marquardt method and, for such
method, technique 1B had a better performance than technique
1A, except for test-case 1 (table 3) where both techniques were
equivalent. The rates of reduction of the objective function were
of the order of 20 (minimum of 18) or higher for the Levenberg-
Marquardt method, while such rates were of the order of 10
(maximum of 14) for the conjugate gradient method. The CPU
times were generally smaller for the Levenberg-Marquardt
method (techniques 1A and 1B) than for the conjugate gradient
method (techniques 2A-2D).

Tables 3-5 show a strong reduction of the rate of reduction
of the objective function when measurements with random
errors were used in the analysis, instead of errorless
measurements. Such a behavior was also observed in a non-
linear function estimation problem (Colaço and Orlande, 1999).
As for the cases with errorless measurements, the Levenberg-
Marquardt method had a performance superior than that of the
conjugate gradient method in terms of CPU time and rate of
reduction of the objective function, for the cases with
measurements with random errors. All techniques resulted in
accurate estimates for the unknown parameters when
measurements with random errors were used in the analysis; but
relative high RMS errors were noticed with techniques 2A and
2C for test-case 3.

We note that the use of the discrepancy principle was not
required to provide the Levenberg-Marquardt method with the
regularization necessary to obtain stable solutions for those
cases involving measurements with random errors. The
computational experiments revealed that the Levenberg-
Marquardt method, through its automatic control of the
damping parameter µ k , reduced drastically the increment in the
vector of estimated parameters, at the iteration where the
measurement errors started to cause instabilities on the inverse
problem solution. The iterative procedure of the Levenberg-
Marquardt method was then stopped by the criterion given by
equation (11.c). For some cases we also noticed that the
iterative procedure of the Levenberg-Marquardt method was
stopped by the criterion (11.b) when measurements with
random errors were used in the analysis, that is, the norm of
gradient vector became very small.

Table 6 is prepared to illustrate the effect of the initial
guess for the parameters, i.e., P0, over the rate of reduction of
the objective function. Three different initial guesses were
considered for test-case 1, by using errorless measurements in
the analysis. Table 6 shows that, although the rate of reduction
jumped to 24 for technique 1A for the initial guess P0=[3,3,3],
the values of such rate were insensitive to the three initial
guesses, with all techniques examined in this paper. We note
that techniques 2A-D, based on the conjugate gradient method,
did not converge to the exact parameters for initial guesses
larger than P0 = [3,3,3]. On the other hand, techniques 1A and
1B, based on the Levenberg-Marquardt method, were able to
converge to the exact parameters even with initial guesses as
large as P0 = [10,10,10].
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Table 6. Effect of the initial guess on the rate of reduction of the
objective function.

Technique r
P0=[0.1,0.1,0.1] P0=[1,1,1] P0=[3,3,3]

1A 18 16 24
1B 18 16 18
2A 14 12 11
2B 14 13 14
2C 13 13 14
2D 10 13 12

CONCLUSIONS
In this paper we compared 6 different parameter

estimation techniques, based on the Levenberg-Marquardt
method and on the conjugate gradient method, for the
identification of the three thermal conductivity components of
orthotropic solids. The techniques were compared in terms of
rate of reduction of the objective function, CPU time and
accuracy of the estimated parameters.

The foregoing analysis reveals that, besides having the
highest rates of reduction of the objective function, the use of
the Levenberg-Marquardt method also resulted in the smallest
CPU times and in the smallest RMS errors of the estimated
parameters. Such method was able to converge to the exact
parameters even for initial guesses quite far from the exact
values. Hence, the Levenberg-Marquardt method appears to be
the best, among those tested, for the estimation of the three
thermal conductivity components of orthotropic solids.
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