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ABSTRACT
In first part, the method described here is to measure

thermal conductivity of super insulating materials. The principle
is based on a simple transient experiment and a single
temperature measurement. The main idea is to control the heat
flux diffusion in the sample by adjunction of a semi-infinite
highly conductive medium.

In second part, we present a transient method to
estimate thermophysical properties and viscosity of fluid in
Couette flow. It is an extension of the previous method.

INTRODUCTION
Designing an experimental device to estimate

thermophysical conductive properties of superinsulating
materials is generally difficult.

The use of the transient flash method (see Parker and
al , 1961; Degiovanni, 1977) to measure thermal diffusivity is
also difficult due to the influence of heat losses around the
sample. Some authors (see Martin et al, 1994) have tried to
improve the experiment by adding 2 metal plates on either side
of the sample. However, the experiment becomes more
complicated and the influence of the lateral heat losses is only
attenuated.

The popular hot wire method (see Carslaw and Jaeger,
1959) is easier to implement. However, even if the cylindrical
semi-infinite medium assumption avoids the problem of
considering heat losses and at medium faces, some loss effects
are possible at the ends of the wire. Moreover, large
temperature gradients around the wire, due to the geometry, can

introduce some estimation errors in the case of non-linear heat
transfer.

The new device proposed here tries to combine all
advantages of previous methods. The main idea is to control the
heat flux diffusion inside the insulating sample by addition of a
highly conductive metal support. No regulated heat sink and
fluxmeter is then needed. A probe similar to the hot wire system
is used to measure only one temperature evolution on a planar
heating device. Therefore, the transfer becomes quite 1D and
steady, even if a model considering 2D geometry and transient
state is necessary.

In second part, an extension of this method is proposed
for thermal characterization of fluid in Couette flow. The main
difficulty is to solve the transient heat transfer trough the
multilayer system (see David and al, 1993; Soliman and al,
1967; Osizik). We present in this paper an extension of
quadripole formalism.

NOMENCLATURE
A, B, C, D Quadripole elements
Q Excitation heat flux
Rc Contact resistance
T Temperature
a Thermal diffusivity
x, y, z Spatial coordinate
p Laplace parameter
t Time
E Thermal effusivity
b, L Lateral dimensions
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e Thickness
↔Ι≥ Thermal conductivity
÷Ι=♥ Laplace-Fourier flux
°Ι=≥ Laplace-Fourier temperature
±cp Volumetric thermal capacity
∼Ι=∂ Fourier parameter
i indice relative to i-layer

INSULATING MEDIA CHARACTERIZATION

Modelling
The device described in figure 1 can be modeled using

the following system:

Figure 1-a: Scheme of the device

Figure 1-b : Main geometrical parameters of the device

Transfer inside the heating layer (medium 1):

This layer is metallic and considered to be infinitely
thin. Thus temperature distribution is assumed to be uniform
versus z-direction. It yields then:
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Where Q is the Joule effect heat flux and )ez( 12 Ζχ

describes the heat flux penetrating inside the insulating sample
(medium 2).

Transfer inside the insulating sample (medium 2)
and inside the conductive medium (medium 3):

Heat transfer is here assumed to be purely conductive
and the sample isotropic. It yields:
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with flux and temperature continuity at interfaces between
media 1and 2, and media 2 and 3.

Initially, the whole system is assumed to be at uniform
temperature To. A new variable is then considered such as

ToTT *
ii ϑΖ .

To write the previous system in a less complex form,
Laplace and Fourier transforms yields:
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Then equation (2) becomes an ordinary differential
equation:

in
i

i

a
p

dy
d

°∼
° �

��
�

�
Τφ 2

2

2
(4)

with heat flux definition such as:
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Expressions (4) and (5) are then equivalent to a
quadripole presentation (see Batsale et al, 1994) such as:
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The solution of (6) gives a simple relationship between
temperature and flux vector at boundaries of each medium such
as:



3 Copyright © 1999 by ASME

�

�
�
�
�
�

�

�

�
�

�
�

�
γ

�
�
�
�
�
�

�
�
�
�
�

�

�

Ζ

Ζ

ϑ

Ζ

ϑ

Ζ

)e,p,(

)e,p,(

)e,p,(

)e,p,(

i

1j
jni

i

1j
jni

1i

1j
jni

1i

1j
jni

∼÷

∼°

∼÷

∼°

i

i

i

i

D
B

 
C
A

(7-a)
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Medium 3 is considered as semi-infinite so that the
transformed temperature distribution is under the form:
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The entire system can be described in transformed
space as:
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The transformed temperature measured on the heating
plate is then:

≡ …
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Such an expression is rather complex and can be
inverted in real space by numerical computation. Nevertheless,
some asymptotic expansions can give some insights to the
physical behavior of the system.

Physical behavior of the system throught asymptotic
assumption
 Asymptotic behavior of (11) when ( 0e)c( 11p Ζ±  and

↔ 3   )
Expression (11) yields then:
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In real space a relationship between the temperature
measured at the center of the plate (x=0, y=0) gives:
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- Where Rc is the constriction resistance between the
heating plate and the semi-infinite cool plate. The definition of
Rc is then :
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- ↔ 3    is assumed to be equivalent to Dirichlet
zero temperature condition at z=e1+e2+e3 depth.
 Asymptotic behavior of (11) when ( 0e)c( 11p Ζ±  and

0e)c( 22p Ζ± )
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In real space, a relationship between the temperature
measured at the center of the plate (x=0, y=0) gives:
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Such an approximated expression as (16) is more
convenient to understand the physical evolution of temperature
T(x=0,y=0,t) (see an example of comparison between
expression (11) and (16) on figure 2).

The first term depends only on the properties of
medium 3. The second term (constant) depends only on thermal
conductivity ↔2 and geometrical parameters
A first simple estimation method is deduced:

* Estimation of 
3p3 )c(

Q

±↔
 with the slope versus

t  (see figure 2).
* Estimation of RcQ  with the origin ordinate

(extrapolated).
* The value of 2p )c( ±  is fixed at 1p )c( ±  to begin the

numerical estimation.
Since the Joule effect energy is estimated by electrical

measurement on the heating resistance, estimation of effusivity

3p3 )c( ±↔  of medium 3 is a good way to verify the

conservation of the heat flow inside the system.
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t
Figure 2: Example of comparison between expression (11) and
(16).

This non dependence between thermophysical
properties of media 2 and 3 can constitute the basic step to
implement a classical numerical estimation method which
minimize the norm between experimental values and exact
expression (11) (see Beck, 1977). We have used a Nelder Mead
minimization algorithm (see Press and al, 1986).

Experiment and result

Description of the device:
The scheme of the device is given on figure 1.
The heating probe is made with two thin foil resistance

(Minco type) in which a K-type thermocouple is inserted to
measure the temperature evolution of the probe. An electric
generator supplies a step power excitation to the probe. The
thermocouple signal is recorded on a digital oscilloscope.

The only precaution with the samples is to respect the
size, parallelism and symmetry.

10-cm thick brass cylinder is used as a conductive
semi infinite medium.

The validation of the device has been made using other
classical methods (such as hot wire, hot plane,...).

The material used is a sample of furnace thermal
insulation: Isosilikat (or Calsil ).

Hot Wire method constructor
data

our method

↔=Ε=W/mK) 0.086 0.088 0.087
(±cp)2 (J.m-3.K-1) 2.33 105 2.69 105

E3 2.32 104 2.23 104

We have observed that the rough estimation from the
expression is very accurate.
Calculation of the constriction resistance Rc (14), gives an
excellent first estimation of the thermal conductivity ↔2. In the
proposed case, we obtain ↔2=0.087 W/mK. We begin the
numerical estimation with this first value.

Study of measurement noise influence :

This problem can be studied with the linear least
square approach (Beck et Arnold, 1977). The measurement

temperature )(tT  is linked to real temperature )(tT  by the
following expression :

)()()( tetTtT TΗΖ (17)
Where )(teT  is a random variable called « measurement
error ». The mean value is assumed to be zero and stantard
deviation to be constant for each t considered, such as (from
expression (16)).
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Where [X] is the sensitive matrix and :
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The optimal estimation is then :
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The estimation parameters vector can be written

: ϒϒϒ eΗΖ , where ϒ  is the real parametres vector and eϒ  is
« the estimation parameters error »

Then eϒ  is linked to eT  by the relationship :
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with X sensitivities matrix and ″ stantard deviation on noise
measurement :
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With linear expression (16), we obtain the covariance

matrix (figure 4) :
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These values indicate a very good occuracy. So we can
estimate parameters but we can also know the estimation error
on these parameters. Therefore slight systematic errors can
occur with the determination of the other remaining
thermophysical properties such as ↔2, ±c2, etc …

Remarks:
* Limitations relative to thermal contact resistance:

One of the main assumptions here is to neglect the
thermal contact resistance between layers 1, 2 and 3. This
induces a limitation with the samples to be measured. One
criterion can be established:
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* Choice of the sizes
In order to fit with the previous assumption (adiabatic

on lateral faces), it is important that the dimensions of the
system be LeebL 32 [[[[  and - .

CHARACTERIZATION OF FLUIDS IN COUETTE FLOW
We present here an extension of our method to the

characterization of fluid in Couette flow. The conductive media
is now a cylinder, which shear the fluid and impose a fixed
temperature at the interface fluid – conductive media.

Scheme of the experimental device is given by figure
3.

Figure 3: Experimental device for the characterization of fluid

Fluid is inserted between a polyamide layer and a
conductive cylinder. The heating probe is made with two thin
foil resistance (MINCO type) in which a K-type thermocouple
is inserted to measure the temperature evolution of the probe.
An electric generator supplies a step power excitation to the
probe. The thermocouple signal is recorded on a digital
oscilloscope.

Modeling

Fluid in plug flow
In first case, we model the transient heat transfer

through a fluid in plug flow (figure 4). We assume to be in
Cartesian coordinates (L>>e). Heat transfer is here assumed to
be purely conductive and the sample isotropic. We neglect
viscosity effect. It yields:
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with flux and temperature continuity at interfaces between
different layers.

Initially, the whole system is assumed to be at uniform
temperature To. A new variable is considered ToTT *

ii ϑΖ .
Boundary conditions are given by:

- Temperature and flux periodicity at x=0 and x=L
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Figure 4: main geometrical parameters for a fluid in plug flow

To write the previous system in a less complex form,
Laplace and Fourier transforms yields:

Ε Φ Ε Φ ϑ

Ζ

L

0
xjpt_

n dxeey,xTy, n∂

∼≥ (26)

The equation 18 becomes:

≥
∂

∂
≥ �

�
�

�
ΤΤφ

a
Vj

a
p

dy
d n2

n2

2
 and ↓∂ n2Ln φ (27)

Using quadripole formalism, it becomes a simple
relationship between flux and temperature:
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Considering boundary conditions, it yields the expression of
temperature at y=0:
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For infinite time we obtain:
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We can define the constriction resistance Rc trough the fluid in
plug flow:
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Fluid in Couette flow
We consider the same case but we only change the

velocity profile, in order to simulate a Couette flow.
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Initially, the whole system is assumed to be at uniform
temperature To. A new variable is considered ToTT *

ii ϑΖ .
Boundary conditions are given by:

- Periodicity of temperature and flux at x=0 and
x=L
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For solving the equation, we discretise the fluid layer

on y, and for each layer is assumed in plug flow (figure 5).
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Figure 5: main geometrical parameters for a fluid in Couette
flow

Each elementary layer can be described by the
quadripole defined previously (equation 28). We use a typical
property of quadripole to describe heat transfer trough
multilayer system:
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Where m is the number of layer.

Viscosity effects
We generally, must take account of the effect of

viscosity on the heat transfer. In this case the heat equation
becomes:
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Temperature can be writen as the superposition of
conductive transfer (Tcond) and viscosity effect (Tvisc), it yields:
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We get the following system:

t
T

a
1

x
T

a
)y(V

x
T

y
T condcond

2
cond

2

2
cond

2

⌡

⌡

⌡

⌡

⌡

⌡

⌡

⌡
φΤΤ (36)

t
)t,y(T

a
1

y
)y(V

y
)t,y(T visc

2

2
visc

2

⌡

⌡

↔

↑

⌡

⌡
Ζ

�
��
�

�

�

�
Τ (37)

The equation 36 has been solved in previous section.
We have just to solve equation 37. In Laplace space, equation
37 becomes:
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The solution is given by the quadripole formalism:
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Where Avisq, Bvisq, Cvisq, and Dvisq, are the typical terms of
quadripole and  Xvisc and Yvisc are defined by:
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Experimental results
Fluid used is a rodhorsil oil (ref 47V30000) ↔=0.16

Wm-1K-1, ↑=30 Pa.s and ±cp=1.46 106 Jm-3K-1.
The sensitivity coefficients analysis shows possibility

to estimate thermal conductivity, volumetric heat capacity and
viscosity for Couette [15] flow, by using the thermogrammes
obtained for different velocity values. We used a classical
numerical estimation method, which minimize the norm
between experimental values and exact solution.

For V=0, we obtain the volumetric heat capacity:
±cp=1.38 106 Jm-3K-1 with a relative error of 10.2 %. In the
following table, we show the influence of speed on estimation
results. For V<0.13 ms-1, we have a good estimation of the
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thermal conductivity. The speed influence is reverse for the
estimation of viscosity.

Vmax
(ms-1)

↔=↔=↔=↔=

(Wm-1K-1)
Error
↔=ΕΒΦ↔=ΕΒΦ↔=ΕΒΦ↔=ΕΒΦ

↑↑↑↑====

ΕΕΕΕPa s)
Error
↑=↑=↑=↑=ΕΒΦΕΒΦΕΒΦΕΒΦ

0 0.158 3
0.08 0.161 3 10.5 60
0.13 0.163 4 25.2 25
0.2 0.15 10 31.9 10

0.25 0.165 12 29.8 6
0.31 0.138 15 31.1 4

Figure 6: residuals after convergence of the minimization

The observation of residuals obtained (Vmax = 0.13 ms-1 ) on
figure 6 is giving good agreement of the model and the
convergence of the minimization

CONCLUSION
The new device presented in the first part of this paper

is complementary to the classical hot wire method. Our method
remains simple, but we can control the heat flux diffusion in the
sample.

We show that the calculation of the constriction
resistance calculation in the studied sample quickly gives an
excellent first estimation of the thermal conductivity. We can
estimate the thermal conductivity and the volumetric heat
capacity with an ordinary lest square procedure, which
minimizes the norm between experimental result and complete
model. We also estimate the error on the parameters.

In the second part, we present a new method to
estimate thermal conductivity, volumetric, heat capacity and
viscosity of fluid in Couette flow. We develop an analytical
model based on an extension of quadripole formalism to
describe the heat transfer in fluid layer.
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