
1 Copyright © 1999 by ASME

Inverse Problems in Engineering : Theory and Practice
3rd Int. Conference on Inverse Problems in Engineering

June 13-18, 1999 Port Ludlow, WA, USA

HT16

FLASH EXPERIMENT ON A SEMITRANSPARENT MATERIAL :
INTEREST OF A REDUCED MODEL

M. LAZARD1, S. ANDRE1, D. MAILLET1,D. DOERMANN2, A. DEGIOVANNI1
1 : LEMTA-UMR 7563 INPL, UHP, CNRS BP 160  54516 Vandœuvre-lès-Nancy Cedex France

2 : INSA de LYON 20, Av. A. Einstein 69621 Villeurbanne France

ABSTRACT
The subject deals with a reduced model of the conductive-

radiative transient transfer in a participating medium. The
accuracy of the analytical solution based on the well-known
two-flux approximation and expressed with global radiative
coefficients is tested in the case of sharp thermal excitation by a
heat pulse on the front face of anisotropically scattering media.
A very good agreement is achieved compared with numerical
and analytical simulations involving high forward scattering,
linear anisotropic scattering or Rayleigh scattering. This
reduced model is then used in the inverse approach in order to
determine the intrinsic diffusivity of semitransparent media.

INTRODUCTION
The increasing use of glasses, insulated foams, polymers in

new technological products forced gradually the heat transfer
community to take an interest in the study of combined radiative
and conductive transfer in semitransparent media. Nevertheless
only a limited amount of work is available on the inverse
problem in this field [1, 2, 3].

Concerning the thermal diffusivity measurement, a lot of
authors tried to extend the use of the flash method, first
developed for opaque materials [4], to semitransparent media
[5]. In those participating media, the measured diffusivity is an
apparent one. It takes both conductive and radiative transfers
into account. In order to obtain the phonic diffusivity, which is
an intrinsic parameter, it is necessary to build a model including
both radiative and conductive effects. As a consequence, the
number of parameters increases. The aim of this study does not
consist in evaluating all the parameters: it will be utopian with
only one information namely the evolution of the rear face
temperature. We rather try to show that a reduced model is able
to reproduce the thermal behavior of absorbing, emitting and
anisotropically scattering in a realistic way. More specifically, it
allows to reach the phonic diffusivity which is a significant
parameter for the engineering calculations.

NOMENCLATURE
a : phonic diffusivity (m2s-1)

pcρ : volumetric heat capacity (J.m-3K-1)
e : slab thickness (m)
k : intrinsic thermal conductivity

*L : intensity 4
0

24 TnL σπ �

M : global radiative parameter eM )2( σχ +=
N : global radiative parameter eN σ=

plN : Planck number  3
0

24 Tnk σβ �

n : refractive index
*p : dimensionless Laplace variable ape2

*
rq : dimensionless radiative heat flux 4

0
24 Tnqr σ�

T : temperature (K)
*t : dimensionless time 2eat

Greek symbols
β : parameters vector
χ : absorption coefficient (m-1)
φ : heat flux density (W.m-2)
σ : scattering coefficient (m-1)
σ� : Stefan Boltzmannn constant

*
iβσ  : normalised standard deviation on iβ

0τ : gray optical thickness ( ) eσχ +
θ : dimensionless temperature ( )ecQTT pρ0−

Superscripts
+ : refers to the forward direction
- : refers to the backward direction
* : refers to the dimensionless quantities
^ : refers to an estimated quantity
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1. The reduced model

Let consider a semi-infinite slab of a semi-transparent
absorbing, emitting and scattering material (thickness e) (See
Fig. 1). The case of opaque black boundaries is considered as it
emphasizes the radiative effects within the material. The
medium is initially at uniform temperature T0 and receives a
heat pulse (Q: energy of the Flash) on the front face, at
dimensionless time t*=0. We then consider the temperature rise
of the back face, which is the solution of a coupled conductive-
radiative problem.
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Figure 1 : Scheme of the medium

The mathematical formulation of the problem considered in
dimensionless form is given by:
• the energy balance :
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where θ  is the temperature rise with respect to the initial
temperature normalized with respect to the adiabatic
temperature, 0τ  the gray optical thickness, plN  the Planck

number and *
rq the radiative flux defined as the difference

between  the forward and backward intensities ( )*** , tzL +  and

( )*** , tzL − respectively.
• the radiative transfer equation where the two-flux

approximation is used :
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where ( ) eM σχ += 2 , eN σ=  and eP χ2= .

The reduced radiative heat flux is then given by:
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with :
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C1  and  C1 are determined by the radiative boundaries
conditions.
The assumption of a linear transfer allows to express the second
derivative of the radiative flux as a linear combination of the
radiative flux itself and of the derivative of the temperature rise
(differential approximation [6]):
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Applying then the Laplace transform
**

0
*** )exp(),( dttptz+∞ −= θθ  , the temperature rise is

obtained as the solution of the following fourth order
temperature differential equation :
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Here the quadrupole formulation [6, 7] is used to solve this
ordinary differential equation in the Laplace domain. It provides
a transfer matrix for the semitransparent layer that links linearly
the input temperature-heat flux column vector at the front side
(z=0) and the output vector at the rear side ( z=1) :
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2. The “exact” model

Numerical simulations give the thermal behavior of
absorbing, emitting and anisotropically scattering media such as
foams. D. Doermann and al [8] developed a precise numerical
model based on a discrete ordinates method with a 24 directions
Gauss quadrature and Henyey-Greenstein phase function
approximation. Moreover we have built an analytical model
based on an efficient kernel substitution in order to take the
effects of a linear anisotropic scattering or a Rayleigh scattering
into account.

Those fine simulations reproduce the thermal behavior of
most of anisotropic scattering media in a very precise way.
These references will be used in sections 3.2 and 3.3.
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3. The inverse problem of parameters estimation

3.1 Estimation method: criteria and
optimizer

The Levenberg-Marquardt algorithm uses the Gauss-
Newton’s nonlinear least squares method to estimate the values
of unknown parameters [9]. It consists in finding suitable values
of the β parameters by an iterative process to fit the theoretical
curve ( )βθ  obtained with the two-flux model with the
simulated reference points ( )βΘ  (subscript j refers to time tj).

Let J be this sum: ( ) ( )( )2
−=

j
jjJ βθβΘ . It is also possible to

add a noise on ( )βΘ  in order to test the stability of our model

reduction. Minimizing J with respect to βi  is equivalent to
make its derivatives equal to zero. The sensitivity coefficient Xi
naturally appears in this minimization. It is defined by the
following relation:
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By a linear expansion of the model around the solution, one can
obtain an analytical relation between the estimated values β̂  of
the parameters and their real values β  :

( ) )(ˆ 1 tXXX tt εββ −+= (8)
(εεεε(t) being the noise at time t). This relation shows that :
• ( ) ββ =ˆE : expected values of parameters

• ( ) ( ) 12ˆ −= XXV t
εσβ : variance of parameters

( σε=: Standard deviation of noise)
The previous relation is very important because il allows to
evaluate the errors on the estimated parameters. It also clearly
shows that if the signal is not corrupted by the measurement
noise, one can expect to estimate the parameters with a high
accuracy, even if their effects on the signal are strongly coupled.
In contrast, in the case of a noisy signal, errors on the values of
the estimated parameters directly depend on the noise level,
particularly if they are strongly coupled.

In order to compare the sensitivities, one can use the
reduced sensitivities, which are independent on the values of the
parameters and on their units:
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3.2 The parameters
The four parameters of the reduced model are :
• The thermal intrinsic diffusivity a
• The global coefficients M and N for the radiative transfer
• The Planck number Npl , expressing the relative importance

of the two modes of heat transfer.

In a non-scattering medium the coefficient N=0 and in the
purely scattering medium M=N. Moreover, the parameter P
representing the hemispherical absorption is related to M and N:
M=N+P. This relationship appears in the two-flux formulation
but is intrinsic to this approximation in that way that it
expresses the conservation of radiant energy. Therefore P is not
a new parameter and relation M=N+P can not be broken. In
other words, anisotropically scattering medium can be dealt
with the reduced model but only the two radiative parameters M
and N equivalent to optical thicknesses must be considered.

Figure 2 shows that the reduced model is able to
reproduce the thermal behavior of participating medium in the
case of the flash method, even if the phase function corresponds
to highly anisotropic conditions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9

Direct Isotropic Model (M, N, a)nominal

Exact Model Henyey - Greenstein (g=0.9)
Inverse Model (M, N, a)estimated

Time t,s

N
or

m
al

iz
ed

 T
he

rm
og

ra
m

s

Figure 2 : Two Flux model / Anisotropic Model
In fact, the case with the parameter g=0.9 for the Henyey-
Greenstein phase function represents a highly anisotropic
forward scattering. This explains a most accentuated rear face
temperature jump at time t=0 (black boundaries) compared to
the direct modeling of the isotropic scattering case (exact two-
flux formulation). In most unfavorable conditions (high
radiative effects, highly anisotropic scattering), the reduced
model has been proved to be able to reproduce exact behaviors.

Table 1 Input data for all the simulations
Pulse of energy Q 8600 J/ m2

Heat capacity ρ c P 2 106 J/ m3 K
Thermal conductivity k 1 W/mK
Reference Temperature T0 800 K
Refractive index n 1
Thickness of the slab e 2.1552 10-3 or 7 10-4 m
Radiative parameter M 0.1108 or 1.2
Radiative parameter N 0.0892 or 1

Our attention will now be focused on the problem of
possible parameters estimation. The sensitivity and the
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correlation coefficients analysis reveals that the Planck Number
has a low sensibility (Figure 3) or is correlated with the other
parameters.
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Figure 3 : Example of Reduced Sensitivities to the
Parameters

It is possible to consider three parameters now on since,
assuming the heat capacity of the sample known, the Planck
number is then expressed as a function of the three parameters:
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Moreover it has been proved that any linear bi-univoque
reparametrisation of a problem leads to same results in terms of
normal values and standard deviation. Therefore the estimation
of the parameters ( )aNM ,, allows to evaluate the values of the
absorption coefficient, the scattering coefficient, the optical
thickness or the albedo with the same accuracy (standard
deviation) as it had been made with the same reduced model
written with ( )aee ,,σχ or ( )Npl,, 00 ωτ .

3.3 Parameters estimation

3.3.1 Isotropic scattering:
Here the temperature Θ is simulated with the two-flux

model. To simulate the measured data Θε containing
measurement errors, random errors of normal distribution and
of standard deviation σε are added to the exact quantities.
Several test cases were run using input data with and without
measurement errors. For the cases with no measurement errors
(i. e. σ==0) the exact values for the parameters were recovered.
A run with M=1.2, N=1 and a=5 10-7 presented in Figure 4 is
obtained using a reduced standard deviation of noise σ∗=0.005.

The residuals between the thermogram with noise Θε==and the
estimated thermogram θ= are very small.
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Figure 4 : Simulated and Estimated Thermograms

Table 2 shows the results of 10 runs in the same
conditions as the test case (Figure 4), using initial guesses
M0=0.9, N0=0.75, a0=3.75 10-7. One can notice that the
diffusivity is estimated with a high accuracy (error less than
1%). The errors on the optical parameters are high even if the
noise level is relatively small (0.5%).

Table 2 Estimated values (10 simulations with noise)
True values M=1.2 N=1 a=5. 10-7

Mean iβ 1.20744 1.02657 5.0043 10-7

Standard deviation iβσ 0.02776 0.08717 2.725 10-9

Normalized iii
βσσ

ββ
=* 2.3% 8.5% 0.5%

3.3.2 Anisotropic scattering
Now we want to test the robustness of the reduced

model in the case of anisotropic scattering. The rear face exact
temperature Θ  is simulated with precise numerical or analytical
models which take the anisotropic effects into account. No
noise is added to the thermogram Θ==since the aim is to test
whether it is possible or not to evaluate the phonic diffusivity
with the reduced model. Several type of anisotropic scattering
phase functions have been considered in the exact model.

Table 3 Estimated parameters with the reduced model
True values M=0.1108 N=0.0892 a=5. 10-7

Type of scattering M̂ N̂ â
Henyey-Greenstein g=0.9 0.00154 0.0005 4.929 10-7

L. A. S. forward x=+1 0.084056 0.074966 5.005 10-7

L. A. S. backward x=-1 0.13308 0.11155 5 10-7

Rayleigh 0.11013 0.08833 4.999 10-7
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For the Henyey-Greenstein highly anisotropic phase function,
the estimated radiative parameters M̂  and N̂  are very different
from the input exact model values. Indeed they take the
anisotropy into account. On the other hand, in the case of a
Rayleigh scattering, M̂ and N̂  are very close to the true values.
When the scattering is rather forward, the increase of the
temperature jump at the beginning is equivalent to a decrease of
the Planck number. As a consequence M̂  and N̂  are
underestimated. Nevertheless the intrinsic diffusivity is
relatively well estimated in all cases. As expected, the phonic
diffusivity of absorbing, emitting and anisotropically scattering
media could be estimated with the reduced model.

3.4 Investigation of the parameters domain
Attention is now paid on maps represented in the

radiative parameters space. The analysis of sensitivity maxima
to the parameters, of the correlation coefficients and of standard
deviations is performed in order to determine (if they exist)
domains where the parameters could be estimated. Since M
must be higher than N, these radiative parameters do not define
a square domain so we rather consider (M-N)/2= eχ  and
N= eσ  to plot the maps. (M-N)/2 is equal to the absorption
coefficient multiplied by the thickness of the medium. It could
be viewed as an optical thickness due to absorption. In the same
way, N represents the contribution of the scattering to the
optical thickness.

3.3.1 Sensitivity maxima
Figures 5a 5b 5c show that the sensitivity maxima to

the radiative parameters are very small compared with the
sensitivity maxima to the phonic diffusivity (a factor larger than
10). As expected, the phonic diffusivity is the more sensitive
parameter of the model: it has a great influence on the rear face
temperature whereas the radiative parameters appear less
influent. The value of the sensitivity maxima to the diffusivity is
obtained for large optical thickness values, in other words when
the heat transfer is dominated by conduction. The value 0.64 is
the maximum of the maxima sensitivity to diffusivity that can be
reached for an opaque material. It can only be obtained when
the radiative transfer disappears (optical thickness larger than
5). On the contrary, the radiative parameters are sensitive when
their values are small (thin optical thickness). It may appears
paradoxical that a parameter is more influent when it is small.
However, as they expressed the attenuation law within
semitransparent materials in a exponential decay, the smaller the
absorption and scattering coefficients are, the greater their
effects on the thermogram are.
One can appreciate in the figure 5a that above a level of

eχ =0.5 the absorption mechanism is preponderant in that way
that it becomes relatively insensitive to the value of eσ . The
analysis of the sensitivity maxima is not enough to know
whether a parameter could be well estimated or not.

The correlation coefficients must be considered too.

3.3.2 Correlation coefficients
The correlation coefficients are not showed here for

two reasons. First they are always about 0.98 or 0.99. The only
region where the parameters are not so correlated corresponds
to small optical values, the correlation coefficient is then about
0.94. The second reason is that the analysis of the standard
deviation includes both the effects of the sensitivity maxima and
the correlation between parameters.

3.3.3 Standard deviation
The standard deviation is obtained from the variance-

covariance matrix (see section 3.1). It represents the errors on
the estimated parameters. Figures 6a 6b and 6c show
respectively the standard deviation for (M-N)/2, N, a. They are
proportional to the reduced noise level σ *, for instance if
σ*=0.01, this map can be viewed as values of errors expressed
in per cent. Figure 6c shows that the errors on the phonic
diffusivity are very small compared with the errors on the
radiative parameters. It corroborates the results obtained in the
foregoing sections 3.3.1. As we can see in the Figure 6a the
standard deviation on  (M-N)/2 is low when the scattering is
weak and vice versa for the scattering.

It could be surprising that the standard deviation on the
diffusivity is large for large values of optical thickness. The
thermogram is then mainly conductive in this region and the
sensitivity to the diffusivity is maximum. This result can be
explained by the fact that the diffusivity value is obtained with a
non-linear model that takes both conductive and radiative
effects into account. Since in this case the diffusivity is strongly
correlated with optical parameters, which are not well
estimated, the errors on the radiative parameters are then
reported on the diffusivity. This explains the artificial isovalues
in the map (Figure 6c) for 5.2≥eχ . The minimum standard
deviation on the diffusivity is obtained for small values of
absorption, a domain where the correlations between the
diffusivity and the optical parameters are small.

The region in the radiative parameter space where an
identification of the whole parameter vector could be estimated
is very small. On the basis of the foregoing results, the
diffusivity can always be well estimated anywhere in the
previously defined domain contrary to the radiative parameters.

CONCLUSION
A methodology has been developed and tested to determine

thermophysical and radiative properties of a semitransparent
material. The algorithm of Levenberg–Marquardt was used with
simulated data to determine unknown parameters of anisotropic
scattering media. The results obtained for the radiative
parameters M and N must be viewed as first estimates. As
expected, values of the phonic diffusivity completely reproduce
those of the simulated data. This theoretical study will be
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completed with an experimental one involving glasses and
insulating foams excited by a heat pulse in order to determine
the true phonic diffusivity.
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