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ABSTRACT
This presentation centers on the application and

modification, if any, of well-known method of Adaptive
Iterative Filter to the solution of various thermal control
problems.  The solution of these problems implemented in
terms of the optimum control theory involves preliminary
constructions of a quality criterion accounting for the initial
mathematical model of the thermal system and control aim.
The ultimate goal of this research is to show the universal
approach to the inverse and control problems that allows the
solution of both problems as problem of parameter
identification by means of the comprehensive method of
Adaptive Iterative Filter.

Numbers of the problems has been solved.  These problems
include: the construction of a optimum law for starting a
turbomachine, the optimization of procedure of vehicle heat
exchanger selection, the identification of optimum thermal
mode of post-implantation activation annealing of
semiconductor materials, the optimization of slag-granulation
process.

INTRODUCTION
The control of a thermal system is aimed at changing the

state of an object and it is desirable that the control procedure
be dependent on the available information about the system
state obtained from its simulation.  The latter can be based on
the solution of external, internal, or combined Inverse Heat
Transfer Problems (IHTP), where some uniqueness conditions,
initially unknown, are identified or the mathematical model of
the phenomenon under study is refined by the limited and rather
approximate data on the temperature field.

NOMENCLATURE
T temperature
∆T temperature differential
τ, t                      time
q, q(T,τ) heat flux*
h, h(T,τ) heat transfer coefficient*
G heat transfer
S frontal surface area of heat exchanger
λ(T) thermal conductivity*
CP specific heat capacity at constant
                           pressure*
CV=CP∗ρ specific heat capacity at constant
                           volume*
L                         latent heat of crystallization
ρ density*
X
r

                       state vector
U
r

                       vector of controlling signals
W
r

                       vector of perturbation
 α
r

                      vector of constraints
Φk,k-1, Fk,k-1,
Gk,k-1                   transition matrices

Ẑ
r

             estimated vector of unknown
                           parameters

Y
~r

             measurements vector
V
r

              vector of stochastic errors of
                           measurements

)(i
kI                     functionals

P                    covariance matrix of estimate errors
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R                         covariance matrix of measurement
                           errors
K                        weight matrix
σ mean square error of measurements
H               measurement matrix
h[•]           operator of relation between    
                           estimated and measured parameters
E[•]           mathematical expectation
*Most of heat transfer parameters denominations correspond
to reference Hewitt, et al., (1996).

Subscripts and Superscripts
i, j                    iteration numbers
k                      number of time steps

Symbols
IHTP               Inverse Heat Transfer Problem
AIF                  Adaptive Iterative Filter
HVAC             Heating, Ventilating, and Air-Conditioning.

MATHEMATICAL MODEL OF THERMAL SYSTEM FOR
SOLVING CONTROL STOCHASTIC PROBLEMS

The main problem for simulation of an engineering system
(including a thermal one) is identification of its state parameters
based, as a rule, on incomplete information.  Such a problem
supposes the definition of the state vector (the temperature
field) and a set of parameters (boundary conditions, thermal
properties, geometrical parameters), which characterize the
system behavior from the viewpoint of formulation and
objective of research performed, for example, simulation and
further control.

The problems of controlling of heat engineering objects are
characterized by complex constraints imposed on the
parameters of the system state and control.  The solution of
these problems implemented in terms of the optimum control
theory involves preliminary construction of a quality criterion
accounting for the initial mathematical model of the thermal
system and control aim.

Since the behavior of thermal or any technical system can
be most totally described in terms of probabilistic characteristic
of its parameters, and because the information obtained from
experiment always bears a random character, the initial model
of heat transfer process under study should be written as non-
linear stochastic equation

                          [ ]k k kY Z Vh
r r rr~ = + ,                           (1)

where
 h[∗] is an operator of the relation between estimated,
unknown parameters kZ

r  (in particular case kZ
r is the vector

of controlling signals U k
r ) and “measured” parameters  kY

r~ ,

that can be represented by the measurements as well as by the
constraints imposed on the system (mostly, for the control

problem), and/or by all known, so-called, rigid parameters of
the object under study;

k
V
r

 is the stochastic (white Gaussian sequence) errors of

measurements that include: 1. direct errors of measurements, 2.
any other errors or accuracy of determination of constraints
imposed on the state or control parameters, 3. accuracy of
discreteness of the mathematical model of process under study,
etc.

On this basis, in the real thermal system, the case in point
should be the stochastic approach to the solving of the control,
identification, or simulation problems.

The thermal system mathematical model formalized in the
form of matrix-vector equation relates the system state vector

X k
r

1+  to the vectors of state, control, and perturbation in the

previous moment of time describes, actually, the Markov
process and represents a non-linear stochastic equation
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At this, due to probabilistic character of the corresponding
parameters X k

r  (stochastic state vector), U k
r

 (stochastic

vector of controlling actions), and W k
r  (uncorrelated white

noise), it is advisable to carry out the identification of the
controlling signals from stochastic positions.

One of the specific features of the control problems and
their main difference from the identification (estimate) one is
the presence of constraints ( )α

r  on the phase coordinates

(state and control vector).  It can be the constraints: on the value
of the elements (or their norms) of the vectors in question; on
the gradients of state or control vectors ( )UX

rr
or  in time

or in space; on the parameters secondary with respect to
UX
rr

or ; etc.  The class problems under study includes both
the problems for controlling the thermal processes (for instance,
the systems that can function on ultimate loads) and the
problems of identification or optimization of thermal and/or
technological parameters (in this case, the measurements of
certain temperatures of object can act as constraints).

It should be noted, that in the problems of parametric
identification the desired parameters always depend on time and
space coordinates as well as on the state vector.  Reduction of
the parametric identification problems to the optimum control
ones leads to the search of the identified parameters acting as
control actions represented also in the form of functions of the
coordinates and state vector.

Such an approach is all the more natural, since these
problems (both identification and control ones) are interrelated.
Practically always the solution of one of them requires the
solution of the other.  Let us consider the control problem stated
as the problem of constructing the method (the algorithm)
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forming control signals shifting the system under control to the
required state.  The problem of optimum stochastic control will
include, as a necessary condition, the extremalization of the
selected quality criterion (control cost) by the found control
signal.  There, according to the theorem of division (Feldbaum,
1966), the problem can be divided into two: system behavior
estimate (parameters identification) and construction of the
control algorithm (changing this behavior) proper with the use
of the obtained estimates of parameters.  In a case of designing
the optimum control system, it is necessary to have reliable
information about the behavior and characteristics of the object,
i. e. the problem of identification of the system’s parameters
arises again.  Generally speaking, the statement and solution of
the problems of parameter identification are due to the necessity
of simulating the process under investigation at the stage
preceding the solution of the optimum control problem.

A combination of identification with control was called
Dual Control of Feldbaum (Feldbaum, 1966). The division of
these two problems (according to the theorem of division) is not
always necessary, and often, it is just a trick for simplifying the
solution of the problem stated.  In fact, one can control
efficiently, in the first place, only when sufficient information
about the control object is available, and, in second place, with
timely action on the object (real time control). As a result, the
system can either process the information about the object
properties failing to deliver timely the controlling signal, or the
controlling action is delivered in time but without sufficient
information about the system.  In both cases the control function
may be unfulfilled.  Therefore, it is advisable, (if it is possible)
to solve simultaneously both problems: identification of the
parameters and control of the object to bring it to the required
state.

Let us temporarily get back to the statement of controlling
problem.  Taking into consideration the stochastic character of
the initial models (1) and (2) and all cited arguments that lead to
the use of these equations, the definition of the controlling
actions will be considered as stochastic optimum control
problem.

In such a problem, it is required to construct an admissible,
physically realizable function (control) U k

r  (and

corresponding state vector X k
r ), that meets all constraints

α
r

k and extremalizes the selected quality criterion.  Necessary

condition for the construction of this controlling function is
connected with concept of Controllability of Dynamic system.
Concept of Controllability consists in possibility of transferring
dynamic system from one given state to another prearranged
one in a definite time by means of piecewise continuous control.
Concept of Stochastic Controllability (Kazakov, 1975, Kazakov
and Artem’ev, 1987) is based on features of the covariance
matrix of the estimate error.  Let covariance a posteriori matrix
of state error for continuous system appears as

where

)(
*

tX
r

 is exact, theoretical value of state vector.

Then the system will be stochastic controlled, if, at given
controlling function, trace of covariance matrix trP(t) is
bounded at any t→∞, and correspondingly, module of error  is

|)(ˆ)(ˆ| tXtX ∗−
rr

 bounded at any t→∞.  In other word, the
result of random perturbation in the stochastic controlled
system is bounded.  However, if the condition of controllability
is necessary one for the construction of this controlling
function, identification of this function requires the
extremalization of the selected quality criterion and the
availability of the target of the control.  The requirement of
satisfiability of the system controllability can be weaken or
sometimes, even, removed if it is given not the endpoint of final
system state but some region of this final state.  By the way, the
latter is more fits naturally into the stochastic control as it takes
into consideration the measurement errors and accuracy of
determination of imposed constraints.  Moreover, the solution
of the ill-posed problems, which include optimum control ones,
is supposed to be obtained as some region of feasible results
(Matsevity and Moultanovsky, 1984).

It is necessary to define the concept of property of being
ill-posed of optimum control or optimization problems.  Due to
inverse problems represent a particular case of optimization
problems, all considerations about property of being ill-posed
for inverse problems (Matsevity and Moultanovsky, 1982) are
also true for optimum control problems.  Generally speaking,
ill-posedness of optimization problem is linked to an inadequate
changing of optimal operator under arbitrarily small changes of
probabilistic characteristic of initial data.  At this case, the
small, or, even, arbitrarily small changes of functionals (in
terms of which the problem is stated) may leads to the rough
estimate of the desired solution of controlling function, whereas
above-mentioned functionals (or their extremums) appear very
precise with this estimate.

The uniqueness of the obtained solution is not so important
for the control problems because any of the obtained results
appear as controlling function.  However, the problem of
optimization (search for optimum control) supposes the
uniqueness of the constructed optimum control strategy.
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STOCHASTIC PROBLEM OF OPTIMUM CONTROL
AND STOCHASTIC PROBLEM OF PARAMETERS
ESTIMATION

The behavior of the system described by stochastic
equations (1) and (2) is fully controlled by means of time-
discrete controlling signals U k

r .  A search for this control

action can be pursued either by solution of stochastic optimum
control problem, or stochastic problem of parameter estimation.
By virtue of duality theorem (Fedorenko, 1978, Fomin, et al,
1988), if it is utilizing the mean square quality criterion, it is
always possible to switch from parameter estimate problem to
equivalent optimum control problem.  By the way, the
optimality of the control is frequently resulted from the
consistency of estimates.  The definition of consistency of
estimates here is the same as it has been used in reference
(Matsevity and Moultanovsky, 1982): the estimate is consistent
if its dispersion tends to zero when number of measurements
approaches infinity.

In sufficiently general case of the control problem

regulating the state X
r

of the technical system, the quality

criterion, minimized by the sequence of controls }{ U
r

,

may have the form (A & B denote as two real symmetric
matrices):
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representing mathematical expectation of square form of the
state and control vectors (i. e. accounting for the system and
control behavior).  Such a criterion makes it possible to take
advantage of the theorem of division for synthesis of optimum
control, if necessary.  This theorem for the stochastic system
supposes that for Gaussian random processes and generalized
square quality criterion, the optimum law of control comprises
an optimum filter for estimating state vector and an optimum
linear regulator connected in series.  Since the final target of
control consists in the variation of the system state, it is
preferable that the control by means of feedback takes into
account all the history of the system (previous states) and the
information on the current state of the system (including the
results of current measurements).  Here, one can see a direct
connection with the stochastic problem for evaluation
parameters (parametric identification of boundary conditions,
thermophysical characteristics, etc.) at parallel determination of
the state vector (temperature field).  This connection in question
is well seen from the example of writing functional minimized
by the desired, in parametric identification, estimates obtained
with the help of iterative filter (Matsevity and Moultanovsky,
1979, Matsevity and Moultanovsky, 1982, Matsevity and
Moultanovsky, 1984):
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where

i
X
r

is augmented state vector, that includes state vector proper

and vector of unknown parameters, in particular, control vector;
 Hi is the matrix of measurements, that consists of the zeros and
units because augment state vector always includes the
temperatures from the measurement vector;
 Pi/i-1  is a covariance matrix of the prediction estimate’s errors;
  j(i) is the number of iterations at i-th time step.

The functional (4) is comprised of two square forms has the
form similar (in a sense) to the criterion (3).  Therefore, it is
possible to seek for the control strategy using the methods of
identification theory, i. e. to carry out identification of the
controlling action.  Such an identification approach to the
solution of optimum control problems is considered in all our
research.

Instead of the fulfillment of the concept of controllability,
this approach centers on the concept of parametric
identifiability.  Concept of Parametric Identifiability consists in
possibility to determine unbiased and consistent estimate of
parameters of mathematical model with the results of
measurements of some coordinates or parameters during
specific period of time.  In other words, a concept of
identifiability is closely associated with observability of the
system.  Concept observability was first coined by Kalman,
(1960).  In our research and papers we follow the most
comprehensive definition of observability from reference
(Meditch, 1969): System is referred to as Fully Observable if

knowing its output vector ( ))(
~

τY
r

, it is possible directly or

indirectly to determine the system state )(τX
r

 at any interval of

time τ0≤τ≤τ1.  By this means, non-observable system cannot be
identified, or put it in another way, it is impossible to identify
parameters associated with non-observable states (Graupe,
1976).  The concept of Stochastic Observability is similar to the
notion of stochastic controllability and it assures the
convergence of error of estimate of state vector to zero (or some
finite value defined by the errors of measurements) with
increasing number of discrete measurements (Feldbaum, 1966).

Turning back to theory of stochastic optimum control, point
out that this theory supposes the construction of optimum
control strategy by any method with attain of the control target
and fulfilling all constraints α

r
k imposed on the controls or

variable of state (Leondes, 1976).  At this takes place, the best
from all admissible control strategies will be controlling
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sequence { }
r

U , that extremize pre-constructed quality
criterion (functional), such as criterion (3).  It is necessary to
note here, that all sufficiently complex constraints in the
problems of optimum determinate control must be represented
in explicit way.  In contrast to it, the problem of optimum
stochastic control is formed only in such a way that all the
constraints should implicitly enter the quality criterion.  The
algorithm of the controlling function search is constructed so
that the prescribed quality function could be extremized.  It
should be added, that, since the function involving a set of
random values will also be a random one, for solving the
problem of optimization, one considers its mathematical
expectation being a determinate value (e. g. functional (3) or
(4)).

Above-mentioned control strategy as a function of

measurements and previous controls ),( 1
~

UYU kkk

rrr r
−=ν ,

is suited to the control strategy for the closed-loop control
system (Leondes, 1976), that is we have to deal with an
optimum strategy of the closed-loop stochastic control
minimizing the criterion of (3) type.

Stochastic control, as well as determinate one, is required
to take into account the degree of indeterminacy of state
vector’s knowledge.  Applied here principle of stochastic dual
control supposes adaptation (“training”) of system of stochastic
regulator.  This adaptation allows reducing the indeterminacy of
state vector.

APPROACH TO THE CONTROL ON THE
CONSTRAINTS PROBLEM BRINGING TO THE
PROBLEM OF PARAMETER IDENTIFICATION

The statement of optimal stochastic control problem was
proposed such that all constraints α

r
k imposed on the system

are included into the vector of observation (measurements)

kY
r~ .  Such an approach is appropriate for the types of systems

that can operate on the constraints, i. e. the control target will be
attained proceeding along the trajectory of limiting values of
restricted parameters.  These are the problems of maximum (or
optimum) speed of respond, when the system transfers from its
known initial state to its final one with maximum speed and
without exceeding any of imposed constraints.  Another type of
these problems is the control problems with non-terminal (local)
criterion.  These problems suppose a given initial system state,
the vector of final state is not restricted, and it is required to
provide the extremum of given criterion at each current moment
of time, minimizing therewith the deviations of the system from
the given trajectory of measured parameters.  In the latter
problem the optimal control is provided at the cost of choosing
of local-optimal control strategy.

The inserting of constraints into the vector of
measurements allows simultaneously satisfying the above-
mentioned necessary condition of optimal stochastic control: all

constraints should be included into the quality criterion.  In such
a way the problem of stochastic optimal control reduces to the
search for control strategy by means of methods of statistical
parameter estimation.  In such a statement, it is possible to
construct common method and computational algorithm for
parameter identification, optimization or diagnosis problems
solving, and determination of the controlling sequence.  By the
way, usually in the problem of determination of the controlling
sequence the constraints imposed on the phase coordinates are
given from physical considerations and conditions of operation
of the system.  These constraints (or, in proposed statement, the
vector of “measurements”) are responding appropriately on the
control signal.  In that case, a priori checking of condition of
observability and identifiability is not needed.

RECCURENT METHODS OF SOLVING OF OPTIMAL
CONTROL PROBLEMS

It results from Bellman principle of optimality and theory
of dynamic programming (Angel, et al., 1972), that, in the
problems with discrete time, the process of determining the
control strategy (controlling sequence) may be reduced to
recurrent computation of separate members of this sequence

},....,,{}{ 21 KK UUUU
rrrr

= .  As this take place, principle of

optimality itself is a means for solving k-step problem of
minimization of functional (3)
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by recasting this k-step problem to one-step problem.
One possibility of the solution of this problem is the

recurrent method of iterative filter (Matsevity and
Moultanovsky, 1979, Matsevity and Moultanovsky, 1982),
which has been created for the solution of parametric and non-
parametric identification problems.  The sequence of estimates

{ }X
j

kk
ˆ )(

/
r are obtained with the help of iterative filter, minimizes

the quality functional (4).  This filter rests on the linearized
mathematical model (2) written in the finite difference matrix
form

    WU kk kkkkkkkk
GFXX

rrrr
1,1,1,11 +++++

++Φ= ,       (5)

where Φk+1,k, Fk+1,k Gk+1,k  are the transition matrices.
However, there is little point in the use of the iterative filter

for the construction of the comprehensive method for the
solution of both identification and control problems.  The
matter is that the good points of iterative filter, such as high
accuracy of the solutions, the availability to use number of
iterations as a regularizing parameter, or the possibility to adopt

the expression 0=Z&
r

 as an equation for unknown parameters
(Matsevity and Moultanovsky, 1979, Matsevity and
Moultanovsky, 1982), are accompanied by significant



6 Copyright © 1999 by ASME

disadvantages.  Firstly, the linearization of the initial
mathematical model and  corresponding substitute of this model
by the equation (5) is always required.  Secondly, the transition
matrices of this system should be known with certainty,
whereas, during the iterative filter calculations only their
estimates, even if refined by iterative process, obtained.
Thirdly, due to enormous dimension of algorithm’s vectors and
matrices, a huge computer’s memory volume and speed is
required.  The  iterative-filter-based method of Adaptive
Iterative Filter (AIF), first discussed in the references
(Matsevity and Moultanovsky, 1988, Matsevity and
Moultanovsky, 1991, Moultanovsky, 1996) allows to avoid
these disadvantages and to solve the stated problem.  Since this
method does not require the linearization of initial equation (2),
and sometimes even the equation (1), it makes possible to
eliminate extra errors of solution that associated with system
linearization.

The quality functional that taking into consideration both
the model fit and control vector behavior and allowing at each
time step to search for conditionally-optimum control, can be
written in the form close to expression (4)
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The required optimum control strategy }{ZZ k i

r
=

searches as the best estimate in the sense of the estimate mean
square error minimum.  Minimization over all controls limited

by the domain α )( α kk
Z ≤r

 being carried

automatically since all the constraints αi imposed on the system

are included into the vector of “measurements” Y k
~r .  Thus, at

each k-th time step one identifies the estimates of conditionally-

optimum controls Z
k

r
, the complex of which will make up the

general strategy of control Z
k

 transferring the system under

study into its final state.
One more significant source of extra errors of identification

is a preliminary approximation of desired unknown function.
Either polynomial, or spline, or other very accurate
approximation is still approximation, which is why it
contributes the extra estimate errors.  That is why our approach
of pointwise identification of unknown parameters (Matsevity
and Moultanovsky, 1982, Matsevity and Moultanovsky, 1986)
along with stochastic way of problem solving and with method
of iterative calculations at each time step, makes it possible to
avoid such kind of extra errors of estimates.

ADAPTIVE ITERATIVE FILTER AND ITS FEATURES
The form of the functional (6), with consideration for

identification of vector Z
k

r
explained above, supposes that the

search of the estimates of the desired parameters is carried out
with the aid of the Adaptive Iterative Filter.  The fundamental
algorithm of AIF can be written as following
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Here, the vector
r)

Z k k
j
+ +1 1/

( )  is the unbiased, with minimum

dispersion, estimate obtained for the vector of the parameters
being defined at the j-th iteration of the k+1-st time step on the

basis of the vector measurements 1

~
+kY

r
; Pk/k is the

covariance matrix of the estimate errors;  Rk+1 is the covariance
matrix of the measurement errors and admissible deviations
from the constraints imposed on the system in the control

problem; Kk+1 is the weight matrix; $ ( )H
k

j
+1

 is the non-

stationary artificial matrix of measurements, which is
calculated, and respectively changed, “corrected” (is refined) at
each current iteration j.  This matrix incorporates all internal
coupling of the thermal system and takes into account the

estimates obtained.  The $ ( )H
k

j
+1

matrix terms represent the

partial derivatives of the measured parameters with respect to
the estimated (identified) ones.  The calculation of the artificial
measurement matrix by the numerical method requires the
solution of the equations of the process under study several
times at each iteration, that is solving the number of the direct
heat transfer problems at each iteration.

The mathematical model of the thermal system formalized
in the form of a matrix-vector equation relates the estimation

r$ ( )X k
j
+1   of the system state vector 

r
X k

j
+1

( )  at j-th iteration

to the estimates of vectors of state and control, and vector of
perturbation all at the previous j-1-st iteration,  describes the
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Markov process, and represents a non-linear stochastic equation
similar to the equation (2):
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For the solution of the equation (11), estimates )1(
1/1

−
++

j
kkZ

)r

substitute control vector U
j

k
ˆ )1(

1

r −

+
in the right-hand side of this

equation.  The results of solving of equation (11) represent the

estimate of the state vector, starting from 1X̂
r

.

The limitation of the iterations' number “i” (equation (9))
or the stop-criterion is used as the regularizing (tolerant) factor
of the iteration process at each time step (Matsevity and
Moultanovsky, 1992, Alifanov, et al, 1995, Moultanovsky and
Khawaja, 1997, Moultanovsky, 1997, Moultanovsky, 1998a).
This number “i” is selected from the condition of the
agreement of mean square errors (σ) of the measurements with
the value of general discrepancy, both over k moments of time.

Returning to the unbiasedness of the estimate 
r)

Z k k
j
+ +1 1/

( ) ,

it notes that its unbiasedness depends upon the accuracy of
statistical linearization of initial mathematical model (1) and (2)
or (11).  However, the huge advantage of AIF is that the
linearization of mathematical model is required only for the
calculation of the measurement matrix (10), and, in general, it is
not needed for the computation of estimates (7) or (11).  That is

why, first, the obtained estimates 
r)

Z k k
j
+ +1 1/

( ) can be counted as

unbiased, and, second, extra inadequacy between process under
study and its mathematical model, introducing by the model’s
linearization, is excluded.  One more great advantage of AIF is
that the method is highly tolerant to the possible measurement’s
anomalies.

Because of ill-posedness, incorrectness of problems under
study, the solution obtained by means of algorithm (7) -- (10)
with regularizing stop-criterion represents the optimization with
restriction.  The optimization is herein taken to mean that the

quality functional, such as functional I
k

ˆ
)3(
from expression (6),

reaches its extremum by means of estimate (7).  However, it is
appropriate at this point to recall that the case at hand is an
identification of the estimates from the admissible, regular,
stable domain, rather than the limitations in the control
problem.  Indeed, second member of functional (6), which
depends upon the number of iterations, is responsible for the
regularization of the solution of ill-posed problem by means of
stop-criterion of iterative process.  Our investigation of
convergence of filter’s iterative process indicates that the
following inequality is fulfilled in any ”k”

               [ ] [ ]YZYZ k

j

kkkk

j

kkk II ~ˆ~ˆ ,ˆ,ˆ )(

/

)3()1(

/

)3( rrrr <+

and the sequence [ ]jI
k

ˆ
)3(

converges to the true minimum of the

goal functional at this time step.  That is why Adaptive Iterative
Filter falls in the category of admissible.

Going back to the principle of dual control by Feldbaum,
involving simultaneous carrying out of two functions
(identification of the object’s characteristics and control of the
object with the purpose of bringing it to the required state), it
should be noted that our approach to the solution of the control
problem makes it possible to take advantage of the principle of
dual control in pure form, without resorting to the assumptions
of the theorem of division.  The disadvantage of the methods
using the theorem of division was discussed earlier.  In fact, at
constructing the optimum regulator, the method of AIF allows
to give up a separate algorithm (the optimum filter) for the
identification of the state vector.  Estimates of the state vector
found with the help of equation (11) are used for computation
of the matrix of measurements, i. e. first function of the
principle of dual control is implemented automatically.

Summing up everything said above, one could make a
conclusion that an adaptive iterative algorithm of control, which
allows for the principle of dual control by Feldbaum, has been
constructed.

With the help of proposed method of AIF and suggested
calculation procedure, the number of problems has been solved.
These problems include: the construction of a optimum law for
starting a turbomachine, the optimization of procedure of
vehicle evaporator or heater selection, the identification of
optimum thermal mode of post-implantation activation
annealing of semiconductor materials, the optimization of slag-
granulation process.

TURBOMACHINE CONTROLLING PARAMETERS
IDENTIFICATION

One of the major problem of controlling heat power
engineering system is the problem of identification of an
optimum law of starting turbine followed by driving machine to
its operating conditions.  Maximum values of the temperature
stresses and temperature differences in the turbine casing as
well as steam maximum temperature in its flow passage act in
this problem as imposed constraints that allow the constructing
an optimum graph in question.  A graph making it possible to
put the set in operation on the border of admissible values of the
parameter will be an optimum solution or, at least, quasi-
optimum solution if one considers a piecewise constant graph
(step function) as an optimum function (Feldbaum, 1966).

Adaptive Iterative Filter approach makes it possible to
construct an optimum law for starting turbomachine.  This
problem was illustrated by investigation of steam turbine high-
pressure cylinder internal casing.  A part of this casing cross-
section being shown in Fig. 1.
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The initial mathematical model of element being
investigated (the equations of thermal conductivity and
boundary conditions) has the form

( ) ( )
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Turbomachine load schedule was considered to be known
making it possible to calculate the heat transfer coefficients h1

and h2 on both internal, radius Rint, and external, radius Rext,
casing surfaces (Fig. 2).  The optimum laws of steam
temperature Tm1 and Tm2 changes were defined.  As a constraints
vector ( )α

r
 appeared temperature stresses, actually,

constraints on temperature gradient 1
21

C
r

T
TT

≤
=∂

∂
 and

temperature differences ∆T=T15-T18 2C≤ in the casing as well
as constraints on maximum value of steam temperature(s)
Tm1 3C≤ , Tm2 4C≤ .  A case was investigated when

dependence between steam temperature at the external and
internal circuit of heat transfer is known Tm2=0.88Tm1.  In that
case the “measurement” vector and matrix of “measurements”
can be written as following
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The problem under study in such an event is the problem of
maximum speed of response.  The solution of this problem with
desired control parameter Tm1 is shown in Fig. 3.  The lower
plot corresponds to the desired control law (temperature Tm1,
C3=500) and the upper one coincide to “measured” parameters
(C1=40, C2=60).

However, our experience shows that the most reliable
results are obtained on prescribing some random domain around
the exact values of the constraints (C1, C2, C3), that is, the sizes
of these domains change in random way by the normal law with
the value of mean square deviation sI=0.03Ci (Fig. 4).  In
other words, these constraints were prescribed with an accepted
interval of deviation (accuracy of determination), i. e. white
Gaussian noise with σ equal to 3% of appropriate value was

applied.  By the way, such a pattern of Ci prescribing, as it was
noted, corresponds better to the real processes.

OPTIMUM THERMAL MODES IDENTIFICATION OF
POST-IMPLANTATION ACTIVATION ANNEALING OF
SEMICONDUCTOR MATERIAL

Optimum thermal modes of post-implantation activation
annealing of semiconductor materials were identified.  In other
words, it was constructed an optimum strategy for controlling
the modes of activation annealing, which is related to the
satisfaction of the following conditions: 1) by the end of
annealing plate surface layer must be heated to the required
temperature Tsur ; 2) final profile of the concentration C(x)
should be close to the prescribed one; 3) total time of the
process should be minimum accounting for the satisfaction of
the constraints imposed on temperature gradients and
temperature differences across the plate thickness.  Clearly, the
problem in question belongs to the class of control problems
with maximum speed of response.

The density of heat flux, governing the conditions of
heating, was considered as a parameter under identification.  In
the control problem this parameter is defined as conditionally
optimum control.  In that event the “measurement” vector
appears as

         

T

surk x
T

TTY
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;max;
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where
 Tsur  is the required temperature of the surface layer (1065 K);
∆Tmax  is the maximum temperature difference across thickness
(limit is 320 K);
 (∂T/∂x)max  is the maximum gradient (limit is 3∗106, K/m).
These constraints were prescribed with an accepted interval of
deviation (accuracy of determination), i. e. white Gaussian
noise with σ  equal to 3% of appropriate value was applied.

In the process of identification the following occurs: if any
one of three calculated components of “measurement” vector
(the last term of the right-hand member of the main AIF

equation (7)) ]}[ˆˆ{]}[ˆ{ )1(

1/1

)(
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iqHiY j
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rr
 reaches or

exceeds its maximum value (allowing for the accepted interval
of deviations), the iterative process stops and the estimate

)(

1/1
ˆ j

kk
q

++

r
at the next step is artificially set as equal to zero and

remains so until the above component enters within the limit of
the constraints.  In other words, the expression (7) is substituted
by the following equation:
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The least deviation from the required final profile of
admixture concentration C(x) is determined by the following
conditions.  First criterion (“quality” criterion of the obtained
admixture ions profile) assumes that the admixture mass content
beyond the layer δ  must not exceed 10% from the admixture
mass content in the activated layer.  Second criterion (calculated
in terms of the difference between the maximum and minimum
values of concentration in the layer) determines the uniformity
of admixture distribution across the activated layer.
Numerically, first criterion can be written by the expression

∫<
∫

∫ δ

δ

δ

δ

0

0

3

)(1.0
)(

)(
dxxC

dxxC

dxxC
 and second one by the term

,0,)(34.0)()( maxminmax δ≤≤≤− xxCxCxC
where the values of the multipliers 0.1 and 0.34 are taken from
the results of numerical experiment on simulation of plate
activation annealing.

These criteria in question are taken into account in the
computational algorithm of Adaptive Iterative Filter in the form
of the conditions for shutting-down the technological process.
This process stops on the first satisfaction of both inequalities.

 Figure 5 shows the results of numerical experiment on
construction of an optimum strategy to control the activation
annealing of an arsenide-gallium plate, implanted by boron
ions, with oxide silicon coating.  From the bottom to top are
located: optimum law of change of surface heat flux density and
correspondingly (top graph) laws of change of surface
temperature Tsur, maximum temperature difference across the
plate thickness ∆Tmax, and maximum gradient  (∂T/∂x)max.  It is
seen that the local peaks of the identified function
q(τ)correspond to one of the value

T

x
T

TTY surk 
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max
max
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reaching its limit.  The

process shut-down occurred at τ =2.92 sec.  In other words, by
this moment the required concentration profile was reached.

OPTIMIZATION OF SLAG-GRANULATING PROCESS
The problem is being considered at this example was

appeared from the technological metallurgical processes
wherein the materials change their phases.  Quality of the

resulting product as well as the capacity of the technological
process is predominantly determined by the time taken to
product gets its ultimate state.  That is why the problem was set
up as control problem of optimum speed of response.  As it was
already said, the solution of the similar problems implemented
in terms of the optimum control theory involves preliminary
construction of a quality criterion (3) that should reach its
extremum with appropriately identified controlling signals.

Technological process of cooper fusion’s slag-granulating
was being investigated.  The special drum-crystallizers were
used and they served as well for the slag’s heat recovery.  The
slag-granulating unit is shown in Fig. 6.  This unit is built-up
from two heat removing drums 1.  These drums are positioned
under the slag’s outlet 2.  Molten slag 3 crystallizes on the
surfaces of the rotational drums and later on the solid layer of
slag is cropped by knives 4.  The fundamental parameters that
affect technological process are: the size of drum’s surface in
contact with slag, the intensity of cooling, and the speed of
drums’ rotation.  Because the size of unit was specified and
intensity of cooling was determined by the type of coolant, the
decisive parameter might be in such a case only the speed of
drums’ rotation.  By this means, this speed or, that is the same,
time of contact of working surface with slag is the sought-for
parameter in the problem being considered.  Because the width
of solid layer is uniquely determined by the value of speed of
drum’s rotation, one can talk about the control of the slag’s
congelation process.  This process is depicted in Fig. 7.  Here
the boundary Bp (dash line) substitutes for the liquid/solid
transition region because its width is two orders of magnitude
less than its length.  The possibility of the setting up 2-
dimension problem is determined by the uniform of the level
and temperature of the molten slag and intensity of cooling
along the whole length of the drums, that is any perpendicular
to the drum’s axis section has the same temperature distribution.
The substitution of the liquid/solid transition region by the
boundary Bp  and possibility to solve 2-dimension problem
brought the process under study to the Stefan’s problem.
However, because of using the stochastic approach to the
identification of the controlling action, the phase transformation

temperature pT~  accounts liquidus Tl and solidus Ts

temperatures at each time step

                  ( ),~
ppp TTfT ∆±=                                (17)

where pT the average phase transformation temperature,

∆Tp = ( ) .2/SL TT −

Second stage takes place without change of slag’s phase
and mathematical model of the process at this stage is
expressible in terms of mathematical model for the heat transfer
phenomenon for the solid body.  That is why heat transfer
processes at the first and second stages can be considered
separately.

Because the surface’s curvature affects the results of the
heat transfer inside the drum just for the drum’s diameter less
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than 0.2m and the process under study has such a minimal
diameter more than 0.5m, the mathematical model of the
granulating process can be represented in Cartesian coordinate
system (Fig. 8) (for both stages of the process):
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Here, λsl.S and CVsl.S   are the solid  slag  thermal  conductivity

and  specific  heat when ;~
pTT <  λsl.L and CV sl.L are the

liquid slag thermal conductivity and specific heat, respectively,

for ;~
pTT ≥ λd and CVd are the thermophysical

characteristics of the drum’s material; hc is the heat transfer
coefficient between the drum’s surface and the coolant; V(τ) is

the growth velocity (rate) of the solid layer of slag; N is the
intensification coefficient of the crystallization (Guyko, 1986);
L is the latent crystallization heat; ε is the range of the
blackness; ha is the heat transfer coefficient from the slag to air;
Tc, Ta, and TL are temperatures of coolant, ambient air, and
liquid (molten) slag, accordingly; C0 is the Stefan-Boltzmann
constant; δ is the width of the solid slag layer; ∆ is the width of
the drum’s wall.  The intensification coefficient N takes into
account the speed of drum’s rotation and it ranges from 1 to 2 in
order of increasing drum’s speed from zero to the value that are
matched by the maximum productivity of the unit.

In order of obtain maximum productivity of the unit, it is
necessary to optimize the relationship between the width of the
slag’s layer and speed of the drum’s rotation.  From first sight,
the productivity can be raised to its maximum by increasing the
width of the slag layer.  However, this increasing, in its turn,
requires the decreasing of speed resulting in a diminution of
productivity.  The greatest productivity can therefore be
achieved by optimizing the width of the layer and the speed.
This speed will determine time of all process from the liquid
phase of slag to its solid phase with specific temperature that
allows to crop solid slag by knives.  To put this another way,
two optimization problems occurred: optimization of the slag
crystallization’s thermal process (first stage) and optimization
of solid slag’s extra cooling process (second stage).

Investigation of heat transfer within the slag’s layer has
shown that the heat flux to the coolant along the Y-axis is
greater by 2 - 3 orders of magnitude than the flux along the X-
axis.  Taking into account this statement, as well as relationship
between system’s linear dimensions (the characteristic
dimensions of the drums and the liquid slag’s pool are greater
by 2 – 3 order of magnitude than the width of the slag’s layer),
it makes sense to consider 1-dimension model of thermal
system (Fig. 8, section AB) moving along the X-axis.  In this
model, temperature changes along the Y-axis, whereas the
boundary conditions at the top and bottom of the section (Fig.
8, section A’B’) change as system moves along the X-axis.
Time that required for the section to travel pathway l1 is equal
to time of crystallization boundary travel from the drum surface
(layer width δ = 0) to the needed width δ.  By this means, the
desired at our problem time is uniquely defined by the velocity
of the motion of solid-liquid boundary.  Because there is the
necessity of the simultaneous solution of the slag-drums
systems, we are forced to set up 1-dimension problem for the
whole drum’s thermal system.  However, there is sufficiently
large heat removal along the X-axis that will be taken into
account by the way of substitution of the real drum’s material
thermal conductivity λd by the efficient thermal conductivity λe.

The most complicated problem is the problem of choosing
of supporting, “measured” parameters (constraints).  It is only
the temperature of phase separation (the solid-liquid boundary)
can be used in system under study as a supporting
(constraining) factor.  In such an event, according to the
terminology of the control theory, we can speak of a transition
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from the problem of optimum/maximum speed of response to
the problem of follow-up (non-terminal) control, when at any
moment of time it is necessary to optimize parameters of system

that moving along a known trajectory ( )[ ] ~ τxfTp = of

transition between the initial ( )[ ]0
~ τxT  and final

( )[ ]kxT τ~
 states.  Moreover, in such a case, we actually

have arrived to the parametric identification problem when one
has to identify the velocity (V(τ) ) of solid-liquid boundary
motion (in fact, this is the velocity of crystallization) based on

the “measurements” of pT~ .  According to the definition of

reference Matsevity and Moultanovsky, (1982), the stated
problem is the geometric inverse heat transfer problem, where
the measurement equation can be presented as a following
expression:

                        ( ) [ ] ( ) .~
kkkp pTVAhT ∂+=                     (27)

Here, pT~   is the crystallization temperature, that is moving

with desired (subject to identification) velocity Vk at each k-th
moment of time; Ah[*] is the operator of relation between
estimated and “measured” parameters; ( )

kpT∂  is the stochastic

(white Gaussian sequence) error, that takes into account  ?Tp
and the discreteness of the model under study, that is the jump
of temperature between nodes in series.

The search of the parameters (controls) is carried out with
the aid of AIF method.  In connection with identification of
only parameter Vk and taking into consideration the
measurement equation (27), the main adaptive iterative filter
equation (7) and expression (10) for the “measurement” matrix
can be significantly simplified and take the following form:
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In that event all parameters in formulas (7) through (10) are

the scalars pT~ , IRPH ,,,ˆ as well as the desired velocity V

of motion of solid-liquid boundary. pT~ is defined as normal

Gaussian sequence with expectation [ ] pp TTE =~
.

The slag-granulation process under study is shown in Fig.
6.  The radius of the drums and its length were 0.3m and 1.6m,
respectively.  The walls of drums were made from bimetal
copper-steel, where width of copper was 0.03m and width of
steel was 0.01m.  Copper surface has contacted with the slag.
The following characteristics have been used for the
calculation: latent heat of crystallization was L = 273.103, J/Kg;
crystallization temperature was pT =11000C,

pp TT ⋅≅ 05.0∂ ; specific heat was Cp = {(155+0.05(T-

200)/T}103, J/(Kg*K); liquid and solid slag density were ρL =
3000, Kg/m3, ρS = 3600, Kg/m3, respectively; initial liquid slag
temperature was TL = 12500C; the temperature of cutting of slag
(after extra cooling) was 7000C.  The slag’s thermal
conductivity is λ(T = 2000C) = 1.2, W/(m*K); λ(T = 4000C) =
1.7, W/(m*K); λ(T = 8000C) = 2.7, W/(m*K); λ(T = 12000C) =
4.4, W/(m*K).

For the implementation of the identification algorithm the
finite difference approximation of the initial mathematical
model of the process under study has been made
(approximation error was 0(h2+∆τ)).  The estimates of  V(τ)
defines at the first stage of solution.  This velocity provides a
decisive for the determination of the drum’s rotation speed W
since the crystallization process should be completed by the
moment of time of the outcome of the slag layer from the liquid
pool (Stage I, Fig. 7).

The identification results are shown at the Table 1, where δ
is the width of the slag layer at its outcome from the liquid pool
and it equals the width of this layer at the Stage II (Fig. 7, 8), δ1

is the variable width of this solid layer inside the pool during
the crystallization process at the Stage I.

Research of the obtained results lends support to the
validity of the common tendency that the velocity Vk decreases
as the width δ1 increases and it does not depend on the value δ.
Once Vk has been identified, it is easily to determine time τ1 of
the completion of the crystallization process for every possible
width δ and thereafter to define the drum’s rotation speed W.
This speed can result from the expressions:  W = l1/τ1, m/sec; n
= W×60/(2πR), rpm.

Because the value l1 is variable from 1/4 to 1/8 of the circle
length for the different types of slag-granulating drums, the
dependence n = f(δ) are represented as region with boundaries
corresponding to the speeds W for the extreme values of l1, that
are 1/4 and 1/8 of the circle length (Fig. 9).

                                      Table 1.Velocity identification.
Velocity of solid-liquid boundary motion    V.104, m/sec.

δ,m 0.001 0.0015 0.002 0.003
δ1=δ/10 4.3 3.4 2.5 0.8

δ1=2δ/10 3.2 2.4 1.6 0.3
δ1=3δ/10 3.0 1.9 1.2 0.24
δ1=4δ/10 2.75 1.7 1.1 0.25
δ1=5δ/10 2.6 1.65 1.1 0.25
δ1=6δ/10 2.2 1.3 1.1 0.24
δ1=7δ/10 2.0 1.25 1.1 0.23
δ1=8δ/10 1.9 1.2 1.1 0.22
δ1=9δ/10 1.8 1.15 1.0 0.2

According to our estimates, the length l (completion of
both stages I and II) is always less than 3/4 of the circle length
resulting in determination of the disposition of knives at the unit
as represented in Fig. 7.  Circle length from the start of the stage
I to the end of stage II, where the knives are disposed, is equal
to 3πR/2.  Because the dependence n = f(δ) are represented as
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region, the productivity function P = f1(δ) has the similar view
(Fig. 10).

Analysis of the last statement discloses that an increase of
the slag layer’s width in excess of 3 – 4 mm will cause the
productivity sharply to decline.  This one testifies about
impracticability to get layer more than 3 – 4 mm, while the
reduction of δ will lead to significant rise of P that is the result
of similar increase of n (Fig. 9).  However, the lowering δ ≤
0.0005m = 0.5 mm in an attempt to increase the number of
revolution makes no sense because it can lead to the appearance
of the liquid slag on the solid slag’s surface outside the stage I
(Fig. 7).

This investigation has been done for the most complicated
two-drum slag-granulater.  Because the thermal processes are
invariant and δ << l for all types of units, the obtained results
are also true for any kind of granulaters.  That is why the
distinctions between dependencies P = f1(δ) derived for the
different types of units bear just the quantitative nature.  Using
the obtained results (Fig. 10), it is easy to calculate the
geometric parameters of the designing unit of the dry
granulation process with a given productivity.

OPTIMIZATION OF SIZE OF HEAT EXCHANGERS OF
VEHICLE HVAC SYSTEM (CONCEPT)

The idea of using inverse methods (and, specifically, AIF
method) for identification of heat transfer between the air and
vehicle heat exchanger has been discussed in the references
Moultanovsky and Khawaja, (1997), Moultanovsky, (1997),
Moultanovsky, (1998a), and Moultanovsky, (1998b).  By means
of the same stochastic approach to the identification problem
solution, the precise results of heat fluxes (heat transfer
coefficients) were obtained.  These heat fluxes or heat transfer
coefficients were utilized for the design of heat exchanger core
material on the basis of nomogram created as an
interconnections between core thermal conductivity (material),
air-device heat transfer, and airflow rate (evaporator) or heater
inlet temperature (heater).

With the same approach, the problem of design
optimization of HVAC heat exchanger can be solved.  The
following is the example of mathematical simulation of the
stated problem.  Mathematical model of the evaporation process
for the vehicle bunk unit evaporator (Moultanovsky, 1998a) are
the concern of the present paper.  Omitting all reasoning and
discussion presented at the reference (Moultanovsky, 1998a),
we will immediately skip to the heat flux identification results.
The heat flux between the air and outer evaporator surface
depending on evaporator surface temperature was identified in
the reference (Moultanovsky, 1998a) by means of AIF method
(Fig. 11).  The identified heat flux is a function of specific heat
exchanger core.  The total heat transfer of heat exchanger
depends upon the air mass flow coming through the device and
device’s frontal area.  So, at the same air flow rate the heat
transfer is defined by surface area of the evaporator.

Actually, the frontal area should be separated from the
whole apparatus because, on the one hand, the surface area is a
most significant factor in influencing the evaporator heat
transfer and capacity.  That is, the greater this area, the better
the evaporator performance.  On the other hand, the frontal area
of the evaporator is usually limited by the space available for
the device.  However, it is very often that during the design
procedure the envelope given for the evaporator to be filled up
is too large for the required heat transfer.  Hand in hand with
this the money issue is one of the most decisive factors of the
HVAC system design.  It is reasonable that the smaller
evaporator of the same type is the cheaper one.  To put it
differently, the heat transfer requirements can be satisfied by the
apparatus with the smaller frontal area.  This is an excellent
example of the design optimization by means of inverse
methods.

Turning back to the heat flux of the bunk evaporator (Fig.
11) and taking into consideration that its frontal area is equal to
Se=0.2×0.188=0.0376 m2, one can obtain the similar curve for
the total evaporator heat transfer G.  With the help of enthalpy
analysis the analogue graph can be created for the evaporator
capacity.  Utilizing the same approach and statistically treating
the obtained data, we can bring into being the nomogram, which
is serving as an interconnection between the size (frontal area)
of the evaporator, air-device total heat transfer, and evaporator
outer surface temperature (Fig. 12).  This nomogram enables us
to choose the preliminary inverse selection (design) of
evaporator size, which satisfy the heat transfer or evaporator
capacity requirements.  For example, for a given total heat
transfer value, we can draw a horizontal line so that to meet
heat transfer requirements for all range of surface temperatures.
Evidently, at the required evaporator total heat transfer of 1,800
Watts (Fig. 12), the frontal area of the device should be chosen
no more than 60% of the surface (0.0376 m2) of tested
evaporator.

CONCLUSIONS
1. The proposed approach and methodology of Adaptive

Iterative Filter can be used for the solution of various thermal
control and optimization problems.

2. Approach of Adaptive Iterative Filter method leads to
very effective and valuable solution of the control problems by
means of parameter identification methods.

3. Number of various control problems solved shows the
comprehensive character of proposed methodology.
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Fig. 1. Cross-section of Turbine High Pressure Cylinder
               Internal Casing

Fig. 2. Turbomachine Load Schedule   
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Fig. 6. Slag Granulation Unit.
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Fig. 9. Number of Drum Revolution as a Function 
of Layer Width
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Fig. 10. Granulation Productivity as a 
Function of Layer Width
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Fig. 11. Boundary Conditions between Vehicle 
Rear Evaporator & Ambient Air 
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