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ABSTRACT
The domain partition for the construction of a natural base

is presented in order to solve the inverse problem of absorption
coefficient estimation from the available measurements
(experimental noisy data) of transmitted radiation.

Within the framework of Lebesgue measure, a family of
reconstruction algorithms is constructed based on Bregman
distances using a q-discrepancy functional. The geometric
computational aspects are briefly discussed as well as the
assembly of the algebraic linear systems and the algorithms for
their solution.

NOMENCLATURE
a area
c cone
D Bregman distance
e element (polygon)
E Total number of elements (polygons)
F ratio of measured and calculated values
h nonlinear relation between outgoing radiation

intensity (measurement) and the intensity of
the radiation at the source

J total number of sources
m(V) measure of V
p polygon
q index of the q-discrepancy fuctional
x spatial coordinate
V domain of analysis

q♣ q-discrepancy functional

↔ Lagrange multiplier
″ absorption coefficient

0″ reference value for absorption coefficient

e″ absorption coefficient of element e
χ radiation intensity
′ characteristic function
τ angular coordinate
V⌡ boundary of V

INTRODUCTION
The estimation of material properties and internally

distributed sources in participating media, where emission,
absorption and scattering takes place, has been carried out with
the solution of inverse radiative transfer problems. A few
examples of the application of such inverse problems will now
be given. Dobkin and Son (1991) estimated the radiative
thermal conductivity of uranium hexafluoride. Li and Özisik
(1992), Siewert (1993), and Holl and McCormick (1995)
estimated inhomogeneous source terms. Mengüç et al. (1994)
estimated the effective scattering phase function of pulverized
coal particles. Silva Neto and Özisik (1995) estimated the phase
function, the single scattering albedo and the optical thickness
of an anisotropically scattering plane-parallel medium.
McCormick  (1984, 1986, 1992) has been working on very
useful reviews on this subject.

Avoiding the solution of the transport equation, a diffusion
approach, valid for highly scattering media, is used (Ladyzhets,
1995 , Erokhin et al., 1995).

A relatively simpler problem, but with relevant
technological application in non-destructive testing in industry
and diagnosis and treatment in medicine, is that in which
scattering can be neglected, being absorption the dominant
mode of interaction of the radiation with the medium.
Computerized Tomography  (CT) and Single Photon Emission
Computerized Tomography (SPECT) are within this context
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(Sakami and Lallemand, 1993, Lopes et al., 1997, Isakov,
1998).

Reis and Roberty  (1992) built a base for the solution of the
inverse problem of transmission tomography with parallel
beams. In this work we present the construction of a base for
divergent beams. As this represents a realistic physical situation
in which divergent beams originated from sources located
around the medium under investigation, are measured on the
other side of it after undergoing absorption interactions, the
base constructed is then called natural base. The base
constructed in this manner is consistent with the data generated,
becoming a convenient substrate for absorption coefficient
estimation in heterogeneous participating media, or image
recovery, when an incomplete set of data is available.

This reconstruction problem, in the context of Lebesgue
measure, allows the introduction of special cases of Csiszer’s
measure (Kapur and Kesavan, 1992), here called q-discrepancy,
that considers the distance from the quantity to be recovered
from a reference value. Several Lebesgue type norms are then
considered, from which the quadratic deviation (energy) and the
entropy functional are the most commonly used.

The use of the concept of Bregman distance (Bregman,
1967) between the reconstructed quantity and a reference value
yields the development of a family of algorithms that
interpolates or extrapolates the algebraic reconstruction
methods. As we have to deal with noisy data, the family of
Bregman functions obtained using the q-discrepancy functional
may be used  as the norms for Tikhonov regularization.

Here we present the methodology from the computational
geometry concepts up to the construction of the linear algebraic
system of equations to be solved for the medium property
estimation.

MATHEMATICAL FORMULATION OF THE DIRECT
PROBLEM

Consider a purely absorbing heterogeneous two-
dimensional medium, with no internal radiation sources
subjected to externally generated divergent radiation beams.

For the steady- state situation, and no spectral dependency,
the following mathematical formulation is obtained from the
Boltzmann equation,

≡ …
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where ),( τχ x  is the radiation intensity, )(x″  is the

absorption coefficient, x  represents the spatial coordinates and

τ  the angular coordinates, and n  is the outward normal. As

can be seen in Eq. (1b), the incoming radiation is given
somewhere at the boundary of the medium, 1V⌡ .  If the
geometry, the intensity of the radiation coming from the
external sources, inχ , and the absorption coefficients, )(x″ ,
are known, the outgoing radiation intensity can be calculated at
the same or different locations at the boundary, i.e. 2V⌡   ,
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In such a case  problem (1) is called direct problem. If any
of these quantities are unknown we have an inverse problem.

As described in the following section, we consider in this
work the estimation of the absorption coefficient )(x″ .

MATHEMATICAL FORMULATION OF THE INVERSE
PROBLEM

Consider now the situation shown in Fig.1. Radiation
emanated by source j  is attenuated by the medium, and the
transmitted radiation is measured. From physical reasoning
(detectors are of finite size), and for computational purposes,
the   radiation   beams   are    grouped     in   cones   

jjn
c    with

....,2,1 jj Nn Ζ

From Eqs. (1-2), we  write
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Where J is the total number of sources and 
jjn

h relates

nonlinearly the outgoing radiation intensity measured at 2V⌡ ,

measχ , to the incoming radiation intensity at 1V⌡ , inχ , with

(4)                       ),(),( noisexx outmeas ΗτχΖτχ

Considering the domain partition from the intersection of
all cones 

jj Nn ,...,2,1Ζ , for all sources, Jj ,...,2,1Ζ , the

original domain V  is divided in a set of polygons, ep , here

called natural elements, whose characteristic functions are e′ ,
such that 

�
E

e
epV

1Ζ

Ζ

, where E is the total number of elements.

Using the natural base ≡ …E 2,..., 1,e , Ζe′  related  to the

polygons ep , the unknown function )( x″  can be represented
as a Lebesgue simple function
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Figure 1 – Basic geometry and coordinate system.

Our inverse problem is then reduced to the estimation of
the coefficients Eee ,...,2,1    , Ζ″ .

Eq.(5) implies on the assumption that an average value

e″ can be used instead of taking into account the variation with

the spatial coordinate )(x″  within the element e.
In many applications of interest, a heterogeneous media is

actually composed of a number of regions with different
properties, but within each region the material properties may
be considered fairly uniform. Therefore, the  use of a constant
value e″  for each element e may be as a matter of fact a
reasonably good approximation.

As in the solution of the inverse problem the interfaces of
the regions that compose the domain V under analysis may not
be known a priori, the natural base (or even any other base) may
not perfectly represent these interfaces.

As an element e located near one of such interfaces may
cover parts of two or more regions, in addition to the noise
inherent to the experimental data acquisition there will be an
error due to the imperfect interface representation by the
computational mesh (natural base) generated.

Introducing Eq.(5) into Eq.(3) we get a discretized version
of the latter
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where ea  is the area of the polygon (element) e .

The characteristic function, e′ , related to a particular

polygon, ep , constructed from the intersection of specific

cones, *
jn , originated one at each source Jj  ,...,2 ,1Ζ ,is

obtained by
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where 
*
jjn

c′ is the characteristic function of the cone *
jjn

c .

NATURAL BASE CONSTRUCTION
A computer code for the automatic mesh generation was

written in the MATLAB environment. Besides the intersection
of the cones, the boundary of the circular domain V  as well as
a regular square mesh, here called pixel mesh, are taken into
account for the domain partition in the polygons

. ,...,2 ,1 , Eepe Ζ  In Fig. 2 we present such domain partition
considering 8 sources with 16 cones for each source, and a
10x10 regular pixel mesh.

First the intersections of all lines within the circular domain
V  are calculated (observe that each cone has two limiting
lines). The points where the intersections take place, are the
vertices of the polygons ep .

Now a major task has to be performed, that is, from a set of
vertices ),,( ),...,,( ),,( 2111 LL yxyxyx  where L  is the total
number of intersection points, we have to identify those that
form a polygon. An   algorithm has been developed, in which
for each pixel, we sequentially investigate for all intersection
points contained in the interior or at the boundary of the pixel,
all possible elements that can be created around each
intersection point. Obviously each intersection point has to be a
vertice of all polygons created around it. The polygons
constructed in this way are characterized by the indices that
relate the intersection points with the indices of all lines (cones,
circular domain and pixel mesh) that gave origin to them.
Afterwards, in the polygons numbering step, if a polygon is
created  identical to the polygon created by another of its
vertices, the element counter is not increased by one. In this
way multiplicity is avoided in the process  of  polygons
numbering, and at the same time the vertices that belong to each
polygon are determined.

In Fig. 3 we present a sketch of  the algorithm. In Fig. 4 are
shown the results obtained with the algorithm for the pixel

)6,6( of Fig. 2, and the vertices numbers are  given within
parenthesis. In Table 1 are given the number of the vertices and
the areas of the polygons shown in Fig. 4. In Table 2 are given
the coordinates of the vertices. In  Fig. 4 a symmetry line here
called sector line is also shown. The base has  to  be constructed
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Figure 2 – Domain partition with divergent beams and a regular  pixel mesh. 8 sources, 16 cones per source and a 10x10   regular pixel mesh.

only within one sector. If a full base for the whole domain is
needed , it is obtained by replication.

The output of the computer code written for the
construction of the natural base of simple Lebesgue functions
consists on the ordered listing of all polygons, their areas and
optionally their vertices.

SOLUTION OF THE INVERSE PROBLEM
Due to the large number of degrees of freedom generated

by the many intersections of all 
jN  cones originated at the J

sources, the problem at hand usually becomes underdetermined
with less experimental data available, 

jjn
h , than the number of

unknowns to recover , e″ . As this problem has more than one
solution, it is solved as an  optimization problem in which an
objective   function   is  satisfied  according  to  a  criterion
established  a priori. To construct   the   objective function  we
start with special cases of Csiszer’s measure (Kapur and
Kesavan, 1992) defined by the q-discrepancy
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which represents the deviation of the expected value for
″ from a prior )(1 Vm , with )(Vm  being a measure such as

eEaVm Ζ)( , and index q  can be varied yielding different
discrepancy functionals.

Using the Bregman distance (Bregman, 1967) between the
quantity to be reconstructed, ″ , and  a reference value, 

0″ ,
produced by the q-discrepancy functional
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a family of objective functions can be constructed.
From Eqs.(8) and (9) we get
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Initial Data:
Number of sources, pixels,  divergent straight lines (cones

limiting lines), Inner radius, Outer radius

Start

Calculate  the  straight lines parameters

Determine if the intersection point (vertice) is at a cone
limiting line or inside a cone

Determine the intersection points within each pixel

Construct  the elements that are around a vertice

Order the elements within the pixel and their vertices

Calculate the  area of the elements
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For 0q  we obtain a negative entropy (cross entropy)
functional
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 and for 1Ζq  the usual energy functional is obtained
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      To recover ″  we want to find a minimum of the Bregman
distance, qD , given by Eq. (10), produced by the q-
discrepancy, given by Eq.(8), with the original problem given
by Eq.(3), as a constraint.

Using the Lagrangian based on the Bregman distance,
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where 
jjn

↔ is the Lagrange multiplier, a family of action  by

line or action by blocks algorithms is constructed.

                                         Stop

Figure 3 –Sketch of the algorithm for automatic natural base
mesh generator for divergent beams.

Figure 4 – Polygons and vertices in pixel (6,6 ).

Table 1 – Polygons and vertices numbering in pixel (6,6 ).

ELEMT
.

NORMAL AREA TNV1  ELEMENT VERTICES

1 5.37E-02 3 (1) (4) (10)

2 4.72E-04 3 (2) (6) (5)

3 1.40E-03 3 (3) (5) (12)

4 9.59E-03 4 (3) (12) (11) (9)

5 1.65E-02 3 (3) (9) (4)

6 2.83E-03 3 (4) (9) (10)

7 1.53E-03 4 (5) (6) (7) (12)

8 4.39E-02 4 7 8 11 12

9 3.40E-04 3 9 11 10
1TNV= Total number of vertices

Table 2- Coordinates of the vertices shown in Fig.4 and
listed in Table 1.

vertice 1 2 3 4 5 6 7 8 9 10 11 12
x 0 0.8 0.7 0.5 0.78 0.8 0.8 0.8 0.53 0.5 0.52 0.7
y 0 0 0 0 0 0.03 0.1 0.33 0.18 0.18 0.2 0.4

Looking for the stationary point, we make

0
),,( 0
Ζ

⌡

⌡

″

↔″″qL . Using the discretized version of Eq.(3),

given by Eq.(6), we get
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Lets look at the two particular cases for 0q  (entropy)
and 1Ζq  (energy).

Entropy. Taking the limit of Eq.(14) as q  goes to zero,
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       Plugging Eq. (15) into Eq. (6), where we consider each
cone separately,
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c , Eq. (16) can be written as

ξ ζ (17)                      )(exp

jjn

0
ce

ΖΖ

ee

jn
jnjn a

h
eF j

jj
″

↔

We are now in a position to write an iterative procedure for
the reconstruction of e″ , one cone at a time :

for  k=1, 2,... until convergence is achieved
for source 1Ζj  up to J

for cone 1Ζjn  up to jN
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Here becomes evident that the reconstruction problem at
hand relies on the measured data, on an initial guess for the
unknowns and on an adequate bookkeeping of the sources,
cones, elements and their areas. Therefore, the partition of the
domain on a natural base as presented before becomes very
convenient for computational purposes.

The algorithm above described consists on the
Multiplicative Algebraic Reconstruction Technique (MART).

Energy. Imposing 1Ζq  in Eq. (14) yields
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Plugging Eq. (18) into Eq. (6), and considering each cone
separately,

ξ ζ (19)                             )(
0 j

jjn

j jn
ce

ejne hae ΖΗ ↔″

      Considering )(e
jjn

↔  constant for every element in cone

jjn
c , Eq. (19) can be written as

(20)                                       
0

ϑ

Ζ

jjn

jjn

j

j

ce
e

ce
eejn

jn a

ah ″

↔

Another iterative procedure, known as Algebraic
Reconstruction Technique (ART), is then written for the
reconstruction of e″ , one cone at a time:

for ,...2 ,1Ζk  until convergence is achieved
for source 1Ζj  up to J

 for cone 1Ζjn  up to jN   
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The importance of the natural base use that yields the
straightforward computation of the polygons and their areas
becomes evident once more.

TIKHONOV FUNCTIONAL
The Radon-Nikodyn theorem ensures the existence of the

reconstruction solution as presented in the previous sections
(Munroe, 1953).

As noise is present in all real applications, instead of
minimizing the Lagrangian based on the Bregman distance,
Eq.(13), we may use the Tikhonov functional with the
regularization terms given by the Bregman distances obtained
using the q -discrepancy functional,
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where ∼  is the regularization parameter.  The second term on
the right hand side of Eq. (21) gives more stability to the
reconstruction problem at the expense of less accuracy, as the
functional that is actually minimized is different from the
original one. To find the adequate value for the regularization
parameter becomes, then, an important part of the problem.

The determination of an optimal value for this parameter is
possible, and has already been done for the squared residues
norm (Kress, 1989), but is computationally involved. Therefore,
this is usually done through comprehensive numerical
experimentation.

For the solution of the inverse problem with the
minimization of Tikhonov’s functional minor changes on the
algorithm presented in the previous section are necessary, and
we refer to the algorithms proposed by Elfving  (1989).

CONCLUSIONS AND FUTURE WORK
With a base that is not constructed in a natural way, the

reconstruction algorithm has to deal with two kind of
imperfections, one that is physical ( unavoidable ) due to the
existence of measurement errors, and a mathematical one that
comes from the partition of the domain.

The procedure here proposed for the natural base
construction is straightforward and adequate in regard to
computational performance (memory allocation and CPU time).
Results have already been presented for the reconstruction
problem using parallel beams (Reis and Roberty, 1992).

Next step of our research is the implementation of the
algorithms for the solution of the inverse problem of absorption
coefficient  estimation using divergent beams and considering
the Lagrangian based on the Bregman distance with the q-
discrepancy functional.
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