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ABSTRACT

A new algorithm of determination of coe�cients of multi-

dimensional heat equations on the basis of temperature mea-

surements is proposed. A system of stochastic di�erential equa-

tions (SDE) can be assigned to a linear multidimensional heat

equation. The solution of the heat equation can be obtained

by solving the corresponding SDE by the method of statistical

modeling. The sensitivity analysis is used when solving the con-

sidered inverse problem. The method of statistical modeling for

evaluation of sensitivity functions is used as well. The appli-

cation of parallel computers allows a signi�cant increase of the

e�ciency of the proposed algorithm. The results of numerical

calculations are given.

INTRODUCTION

The considered inverse heat transfer problem consists

in the de�nition of unknown coe�cients of the heat equa-

tion by using the temperature measurements at the given

points of an investigated domain. The inverse heat transfer

problems arise in many areas of science and engineering, in

which there is a necessity for study and design of objects,

exposed to the in
uence of thermal loading. Nowdays the

resolution of one-dimensional inverse heat transfer problems

is well investigated, and there are many reliable algorithms

and programs for their solution. However, this is not the

case for higher dimensional problems.

Many problems connected with correctness of state-

ment and solution algorithms arise in connection with the

inverse problems solution. In calculations, it is also neces-

sary to take into account high computer costs of algorithms.

For example, one reason of the high computer costs is the

necessity of solution of a plenty (as a rule) of direct problems

when a one inverse problem is solved. Moreover, there are

inverse problems (such as multidimensional ones), in which

the solution of the direct problem demands high computer

costs.

In the present work we attempt to solve a direct prob-

lem by Monte Carlo method. First, this approach should

create insuperable di�culties, because Monte Carlo method

is highly labor-consuming. But it is necessary to take into

account the fact that when solving the inverse problem, the

solution of the direct problem is required only at those

points, where the measurements are made. The Monte

Carlo method, as opposed to grid methods, allows us to de-

�ne a solution of the heat equation only at di�erent given

points of the domain. In addition, algorithms of statistical

modeling can be easily parallelized, and consequently it is

possible to use modern high-e�ciency parallel computing

systems for the solution of such problems. Eventually we

consider a Monter Carlo method not as a one competing

with grid methods, but as a one of possible alternatives.

INVERSE HEAT TRANSFER PROBLEM

Let us consider the following boundary value problem

for the heat conduction equation

@u

@t
=

1

2

nX
i;j=1

bij(x; p)
@2u

@xi@xj
+

nX
i=1

fi(p; x)
@u

@xi
;
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t � 0; x 2 G (1)

u(0; x) = '0(x); x 2 G; t = 0

u(t; x) = '(t; x); x 2 @G;

where B(x; p) = (bij(x; p)) is a positive de�nite symmet-

ric matrix, G 2 Rn is a bounded domain with a regular

boundary, p = (p1; : : : ; pm) is a vector of parameters.
It is required to determine the unknown parameters p,

when the temperature measurements are given at some in-

ternal points of G .

The boundary value problem (1) can be posed in ac-

cordance with the SDE system in the Ito sense (see, for

example, (Ventzel, 1975))

y(t; p) = y0 +

tZ

0

f(y(s; p); p)ds+

tZ

0

�(y(s; p); p)dw(s); (2)

where w(�) is an n-dimensional standard Wiener process,

y0 2 Rn is the value of y(t) at t = 0, �(y; p) is the square
matrix, such that B(y; p) = �(y; p)�(y; p)T . Then, accord-
ing to (Ventzel, 1975) there exists a probabilistic represen-

tation of the solution of the boundary value problem (1)

u(t; y0; p) =

h'0(y(t; p))�(�0 > t) + '(t� �0; y(�0; p))�(�0 � t)i; (3)

where the angular brackets mean the mathematical expec-

tation, �0 is the �rst time moment when the SDE solution

(2) reached the boundary of the domain G, �(A) is an in-

dicator function of the set A.
Let u�

ij
be the temperature measurements at the given

points of the domain G xi (i = 1; : : : ; l) at the times

tj (j = 1; : : : ; k). Then the problem of an estimation of

parameters can be reduced to minimization of the following

functional

min
p

F (p) =
X
i;j

(u�
ij
� u(tj ; xi; p))

2 (4)

Application of the gradient type methods for minimiza-

tion of (4) requires calculation of derivatives @u=@p, which
can be obtained by di�erentiation of (3) with respect to p.
Here the derivatives of the kind @yi=@pj appear, which ex-

press the sensitivity of the solution of (2) to the variation of

the parameters p. It is shown (Gikhman, 1968), that with

ful�lment of the existence and uniqueness conditions of the

SDE solution, and with allowance for the fact that there

exist su�ciently smooth and limited derivatives of f(t; p),
�(t; p), the solution of the SDE system (2) is di�erentiable

with respect to the parameters p. The parametric deriva-

tives satisfy the system, that can be obtained from (2) as a

result of its di�erentiation with respect to parameters, i.e.,

from the system

yp(t; p) = yp(0) +

tZ

0

(
@f

@y
yp(s; p) +

@f

@p
)ds+

tZ

0

(
@�

@y
yp(s; p) +

@�

@p
)dw(s); (5)

where yp = (@yi=@pj) is a parametric derivatives matrix.

Thus, the problem of determination of coe�cients of equa-

tion (1) is reduced to minimization of functional (4). In this

case the calculation of values of functional (4) is done on the

basis of statistical modeling of trajectories of the stochastic

process determined by the SDE system (2). And the calcu-

lation of values of the derivatives of (4) is carried out on the

basis of statistical modeling of trajectories of the stochastic

process determined by system (2), (5).

The simulation of trajectories of solutions of the SDE

systems (2) and (2), (5) was done by the generalized Euler

method with a constant integration step

yn+1 = yn + hf(tn; yn) +
p
h�(tn; yn)�n; (6)

where yn is a value of a trajectory of the stochastic process

at the time tn, h is an integration step, �n is a sequence

of independent among themselves normal random vectors

with independent components, having zero mathematical

expectation and unit dispersion. In numerical calculations

the vectors �n are obtained by a random number generator.

Solution of the equation (1) by the method of statisti-

cal modeling is a computationally labor intensive process.

However, this approach can be justi�ed by the following:

when the given inverse problem is solved, it is su�cient to

know the solution of the direct problem only at those points

of the domain G, at which the measurement of temperature
is made. The Monte Carlo permits to calculate the value of

temperature at anyone point of the domain G without grid.

In this paper, we show the capacity of this method by

solving a model three-dimensional problem which has exact

solution.
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SOLUTION OF A MODEL PROBLEM

As a model problem we shall consider the determination

of the factors p1, p2, p3 in a thermophysical experiment of a
three-dimensional ball cooling , when the temperature at its

center is higher than at any other point. The corresponding

heat equation boundary value problem is the following

@u

@t
=

1

2
(p1

@2u

@x21
+ p2

@2u

@x22
+ p3

@2u

@x23
);

t 2 (0; T ); kxk2 < 1; (7)

u(0; x) = u0(1� r); r = (x21 + x22 + x23)
1

2 ;

u(t; x) = 0; kxk2 = 1;

where u0 is the initial temperature at the center of the ball,
pi > 0, i = 1; 2; 3. The inverse problem of determination

of p1; p2; p3 satis�es the uniqueness conditions if the tem-

perature measurements at the center of the ball are known

(Volkov, 1984). In addition, for the purpose of stability

of calculations we took the temperature measurements at

other internal points of the ball.

In the case when p1, p2, p3 ful�l the condition p1 = p2 =
p3 = 2p, the exact solution of the boundary value problem

(7) can be written down as the following expansion

u(t; x) =

1X
n=1

�n exp
�n

2
�
2
pt
sin(�nr)

r
; (8)

where

�n = 2

1Z

0

u0x(1� x) sin(�nx)dx

In the model problem the "measurements" of tempera-

ture were calculated using formula (8) with p1 = p2 = p3 =
1.

A stochastic process corresponding to the boundary

value problem (7) is determined only by the di�usion term.

This process is described by the following system of three

stochastic di�erential equations

yi(t; p) = yi(0) + p
1=2

i

tZ

0

dwi(s); i = 1; 2; 3 (9)

The sensitivities of solution of the SDE system (9) to

parameters variations are determined by the SDE system

@yi
@pi

(t; p) =
@yi
@pi

(0) +
1

2p
1=2

i

tZ

0

dwi(s); i = 1; 2; 3 (10)

The measurements of temperature were simulated with

the use of formula (8) at the following seven points: �x1 =
(0; 0; 0), �x2 = (0:3; 0; 0), �x3 = (0; 0:3; 0), �x4 = (0; 0; 0:3),
�x5 = (�0:3; 0; 0), �x6 = (0;�0:3; 0), �x7 = (0; 0;�0:3).

At each of these seven points 40 values of temperature

were calculated using formula (8) with the time interval

�t = 0:2 starting with t0 = 0:2. As the initial values of

parameters the vector p0 = (1:4; 0:6; 1:4) was taken.
The following estimates of parame-

ters ~p = (0:95; 1:03; 1:08) were computated as a result of

the minimization of functional (4) with the sample volume

of 20,000 .

The modeling of trajectories of stochastic processes, de-

�ned by the SDE's (9) and (10) was carried out using for-

mula (6) with the step h = 0:001.
For minimization of (4) one version of r-algorithm was

used. This method is based on stretching the space in the

direction of a di�erence of two consecutive gradients (Shor,

1979) and is intended for minimization of rough functions.

As is seen from the description of the soluble problem,

the main problem in calculations is the modeling of trajec-

tories of stochastic processes, determined by equations (9),

(10).

In our calculations, the number of trajectories should

be of order 104 | 105 for the reduction of in
uence of a

statistical error on estimations of the parameters.

The statistical modeling of each trajectory in calcula-

tion of the value of functional (4) and its derivatives is made

independently of any other trajectory. Therefore this part

of the program can be easily parallelized by splitting the

common number of simulated trajectories on the parallel

working processors.

Application of parallel computing machinery

In order to realize the given program, the parallel com-

puting system MVS-100 of eight parallel processors Intel860

was used.

The general structure of the parallel program consists in

the following. The processor with the number 0 plays a key

role in the solution of the problem. It inputs the initial data,

makes minimization of the objective function and outputs

results of calculations. The other processors are connected

with calculation of the objective function and its gradient.

Processors with numbers 1; 2; : : : ; 7 input the initial

data for modeling of the number of trajectories, and each
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Figure 1. The speed-up of computation of the objective function and its

gradient; �f - the speed-up with calculation of the objective function; �g -

the speed-up with calculation of the gradient; Np - the number of processors.

of them outputs the calculated contributions into the ob-

jective function and its gradient. As the common number

of simulated trajectories is very high, the greater part of

computer time is spent on modeling of trajectories, while

expenses for data transfer are rather insigni�cant. There-

fore, it is possible to expect that the speed-up will be close

to a linear function of the number of processors with a large

number of trajectories.

Fig. 1 demonstrates the obtained values of the speed-

up for the calculation of the objective function and its gra-

dient. The speed-up here is the ratio between the compu-

tational time for one processor and computational time for

i (i = 2; : : : ; 8) processors.
It is required more CPU-time for the calculation of the

gradient, while the expenses needed for data transfer are less

than those for the evaluation of the function. Therefore, the

speed-up for the computation of the gradient is greater than

that for the computation of the objective function.

CONCLUSION

The method of estimation of coe�cients of a multidi-

mensional equation by statistical modeling was proposed.

The evaluation of both the solution of the direct problem

and the sensitivity functions is made by solving special SDE

systems, connected with the initial boundary value prob-

lem. The numerical experiment has shown a good agree-

ment with the exact data. The considered algorithm can

be easily parallelized, and the multiprocessor computer sys-

tems allow a considerable increase of its e�ciency.
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