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ABSTRACT
A model of high temperature gas corrosion of alloys for

gas turbine blades have been proposed. The model describes the
diffusion of alloying element and oxidant in surface of material
and kinetics of corrosion scale formation.

The main aim of this paper is inverse problem solution to
estimate four parameters of diffusion and oxidation in the
mathematical model using the data of short time laboratory
testing. To determine the unknown parameters the procedure of
iterative identification, based on Gauss-Newton's technique,
was applied.

The results of inverse test problems solution both for exact
and inexact input concentration measurement values of alloying
elements during short time laboratory experiments are given in
the paper.
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NOMENCLATURE
A -sensitivity matrix
AT -matrix transposed to matrix A
C -concentration
D -diffusion coefficient
E -unite matrix
F -root mean square criterion of solution quality
k -uptaking coefficient
P -vector of desired parameters
Δ P -increment of vector of desired parameters
W -mass source
x -coordinate
Z -sensitivity coefficient of concentration C to desired

 parameter P

α -regularization parameter
β -mass transfer coefficient
ε -coefficient of proportionality
ρ -random number
τ -time

Indexes
C -tied alloying element
T -total alloying element
m -total number of space-time points of concentration

 measurement
M -model
Me - alloying element
n -total number of desired parameters
Ox -oxidant
E -experimental
i -number of diffusant, number of desired parameter
j -number of space-time point of concentration

measurement
l -iteration number
1 -oxidant
2 -alloying element

INTRODUCTION
Problems of high-temperature diffusion and oxidation in

alloys are important for engineering and industry. Diffusion and
oxidation models are necessary for life time prediction and
optimization of the protective coatings for gas turbine blades
for long time operation.

The mathematical model for diffusion of scale forming
elements, the diffusion of oxidants from the gas medium and the
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kinetics of oxide scale formation are developed by Krukovsky
and Kartavova (1996) and described by systems diffusion
equations of alloying elements and oxidant with oxidation
processes taking into consideration by mass source term.

To make corrosion and diffusion predictions for a long
time by means of mathematical model seems to be possible only
if rather exact model's coefficients are on hand. It is possible  on
the base of effective modern methods of parameters estimation
in diffusion and oxidation models using experimental data.

The parametrical sensitivity analysis of the calculated
characteristics at the measurement points (concentration
distribution and oxidation depth of alloys treated at high
temperature) to variation in the desired parameters (coefficients
of mass transfer, diffusion, etc.) is very useful for investigation
of desired parameters sensitivity as the first step.

The physical and mathematical models under investigation
as well as estimate four parameters of diffusion and oxidation in
the model using the data of short time laboratory testing are
considered below.

PHYSICAL MODEL
The physical model of scale formation at the external

metal boundary was deduced in the following way.
The scale forming alloying elements diffuse to the

boundary metal from the alloy. The oxidant absorbed from the
gas medium diffuses in the reverse direction. The oxidant
combines with alloying elements to form an oxide scale

aMe Oxa b+ → bOx  Me                           (1)

The typical spatial concentration distribution of one scale
forming element in oxidation areas is shown in Fig.1.

In the oxidation areas the concentration of the alloying
element rises with a decreased in the concentration of the
alloying element dissolved in the solid solution of the alloy
adjacent to the oxide area . The redistribution of alloying
elements in the surface layer is determined by scale formation.
The diffusion mobility of the scale forming element cannot be
considered without knowledge of the element form: whether the
element is in a metal phase state or is combined with an oxidant

Proceeding from that the following assumption was made:
only elements not tied up in the oxide are diffusing. To quantify
experimental data by element distribution in the oxide and in
the solid solution in the surface layer of the oxidized alloy, the
concentration curve of the alloying element (curve 3) is
separated into two : curve 1 - uncombined (not tied up in oxide)
alloying element in a solid, curve 2 - combined (tied up in
oxide) alloying element. It is possible to separate the surface
layer into the following main areas (Fig. 1) : compact oxide area
x0<x<x1; inner area of oxidation x1<x<x2; depletion area

x2<x<x3. The compact oxide area x0<x<x1 contains a compact

oxide film. The concentration of the combined alloying element
is a maximum (C=Cmax) in this area. The area x2<x<x3

contains a mixture of oxides and denuded solid solution of the
alloy . x0 is the exterior  boundary  of scale . By convention, x2,

the boundary of inner oxidation, means the maximum depth
when oxides occur (are observed). According to it, inner
(unsteady in depth) oxidation in all layer volume takes place in
such area. The external boundary concentration (x x1) takes on
a maximum value, and the inner ones (x=x2) take on minimum

(for example, 5% of maximum) values. The oxidant
concentration takes on the minimum in such an area. Below this
there is diffusion area of dealloying by the base alloying
element without oxides x2<x<x3. By convention, the dealloying

area x2<x<x3 means a zone where the alloying element

concentration ranges from minimum to closely maximum values
(for example, 95% of maximum values) on the boundary x=x3.

It is necessary to note hat for alloys containing a number of
alloying elements, the areas of oxidation and dealloying may
differ and overlap one another.

Figure 1. Quantitative concentration distribution of alloying
element Me and oxidant Ox in the one layer. Curve 1 - uncombined
alloying element which is not tied up in the scale; 2 - combined
alloying element; 3 - total concentration of alloying element, 4 -
oxidant.

It should be noted that during oxidation the volume of the
alloy surface layer is not constant. Heat-resistant alloys form a
dense film such that the volume of the oxide should exceed that
the metal needed for oxide formation. The increase in the
surface volume must be taken into account. The considered
physical processes are unsteady: the surface boundary x0 moves

outwards with an increase in the volume, the boundaries x1, x2,

x3 and are move inwards the alloy.

MATHEMATICAL MODEL
The diffusion process of untied alloying elements (i=2 -

Me) or oxidant (i=1 - Ox)  towards the area of the formation of
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scale products within the calculation domain 0<x<∞ can be
described by the following set of equations:
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For an oxidant β1≠0, for alloying element β2=0.
The volume mass source of alloying element or oxidant is

described by the function:
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where coefficients k1 and k2 are in the ratio of mass sources of
alloying element and oxygen going for the formation of oxide
layer, C2

C is the concentration of the tied element for coordinate
x can be calculated by the equation:
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and total concentration of alloying element or oxidant:
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where Ci is untied element or oxidant concentration.
Outer boundary x0 moves according with oxide layer

formation and mismatch of oxide and metal substrate densities:
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The diffusion and oxidation mathematical model is
integrated by numerical finite differences methods using the
implicitly approximating formulation. It permits one to take into
consideration the most general peculiarities of the problem
formulation: - the multilayer, the relationships between
coefficients and coordinate, time and concentration. During
each time step it is multiple solved the system of equations for
oxidant, then the system of equations for alloying element. The
implicitly connection between these system solution was carried
by equation for mass sours (4) and was realized by means of
iteration algorithm.

To make oxidation and diffusion predictions for a long
time by means of mathematical model (1)-(7) seems to be
possible only if rather exact coefficients are on hand.

The aims of this paper are to carry out the parametrical
sensitivity analysis of the model and to determine parameters of
this model by means of inverse problem solution using the data
of computational experiment for both accurate and disturbed
concentration distributions as well as of laboratory testing.

METHOD OF PARAMETRICAL IDENTIFICATION
There are a number of model parameters that can be

defined only by means of an identification using experimental
concentration distribution of alloying element in sample’s
surface layer on holding in the oxidation atmosphere at high
temperatures.

The diffusion coefficients of alloying element DMe and
oxidant DOx, the mass transfer coefficient βOx of oxidant from
gas medium and mass uptaking coefficient kOx of oxidant in the
model (1)-(7) can be referred to a number of such parameters.

As experimental data for inverse problem solutions, the
data of concentration distribution of alloying element in alloy
surface layer at various time moments is used. The inverse
problem statement reduces to an identification of four above
mentioned parameters so that the following condition satisfies:
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where Cj,iM and Cj,iE are total alloying element concentration at
jth point of space and time computed and experimental data
(Fig.2); m is the number of space and time points at which the
alloying element concentration measurements were made; P is
vector of desired parameters including DMe, DOx, βOx, kOx; δ is
the root mean square error of concentration measurement
making up around 0.8% for real measurements.

The identification of model parameters had been run by the
technique described by Krukovsky (1996). In according with it
technique to find the vector of the desired P parameters an
iterative algorithm based on the Gauss-Newton is applied:
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Figure 2. Relationship between total alloying element (Cr)
concentration and coordinate at the 1000 h (Curve 1), T=900oC,  -
experiment (made by Dr. A. Rybnikov, Polzunov Central Boiler and
Turbine  Institute, St. Petersburg, Russia) and 20000 h (Curve 2).

ll1+l PPP ∆+=  ,                              (9)

where l is the number of iteration (l = 0,1,2,...), ΔPl is an
increment in the vector of the desired P parameters on the l+1th
iteration. The ΔPl increment is determined by solution of the
following system of liner algebraic equations (SLAE)
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where  Zl
j,i is the sensitivity (derivative) function of the

concentration at the jth space and time point of measurement
Cj,E. (j=1,2,...,m) to variation in the ith parameter Pl

i (i=1,2,...,n)
of P vector, Cl

j,M are values of the model concentrations at the
points corresponding to the experimental Cj,E. Values Cl

j,M are
computed by direct oxidation and diffusion problem solution
with known (given at the l=0) parameters at the previous
iteration l . Values Cj,M are computed at the every iteration at the
same space points the values Cj,E were measured or assigned.

Redefined set of line algebraic equations is solved by the
least-square technique. If express the matrix of the sensitivity
coefficients Zi,j in term A, and right-hand side in term B, the
SLAE solution with m×n dimensionality is achieved by
following SLAE solution with n×n dimensionality:

B = PА TАTА ∆⋅  ,                          (11)

where AT is the matrix transposed to the matrix A.
The iteration processes (9)-(10) results in the minimization

of the quadratic criterion of solution quality (8).
The exit out of iteration process is made after the fulfilled

condition:

5,0100PPmax ii
i

≤⋅∆ ll  .                     (12)

For stable inverse problem solutions the following
complex of regularization procedures is proposed:

1. Account of lower and upper bounds on desired inverse
problem solution (desired parameters).

2. Iterative regularization, stop of iteration procedure if the
condition (12) satisfies.

3. Tikhonov’s (1987) classical regularization using in the
SLAE solving stage. According with it method instead of SLAE
(10)  the following SLAE is solved:

B = PEА TАTА ∆⋅


 ⋅α+  ,               (13)

where E is unity matrix, α is regularization parameter selecting
by various ways described by Tikhonov (1987). SLAE (13) is
similar with Levenberg-Marquardt method. In our case α was
not varied during the iterative procedure and was chosen by
means of so called test inverse problem solution with known
values of measurement errors.

INVERSE PROBLEM SOLUTION TESTING
In practical point of view the parametrical  analysis of

concentration Cj,iM distribution sensitivity to desired parameters
of mathematical model (diffusion, mass transfer and uptaking
coefficients) is in great interest. As coefficient of sensitivity of
concentration to ith desired model parameter the value Zk is
assumed:
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where P0
i is initial values of desired parameters’ vector, δPi is

the disturbance of ith parameter.
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For mathematical model sensitivity evaluation, the
parametrical sensitivity analysis has been carried concerning
four model parameters which will be sought by oxidation and
diffusion inverse problem solution for one oxide-forming
element  redistribution in Ni-based alloy EI607A (Ni-16.9Cr-
1.0Al-2.3Ti). Diffusion redistribution and oxidation
computations were run with magnitudes of accurate coefficients
given in Table I for time moments 500 and 1000 h.

As accurate model concentrations the computed chromium
distribution (Table II) of total alloying element is assumed.
Modifying one of four parameters in accordance with
expression (9) the total element distribution Cj,iM is computed.
Sensitivity coefficient for DMe calculated by (14) is formed 1.5.
The sensitivity coefficients for another parameters are given in
Table III.

As sensitivity analysis results show the most affectable on
inverse problem solution parameters are chromium and oxygen
diffusion coefficients, that is mean at the identification namely
these two parameters will be searched best of all. Nevertheless
the coefficients of mass uptaking and mass transfer affect on
solution too, but its influences are visibly less, the βOx in 3 times
smaller then DMe and kOx in 2 times smaller then DMe

corresponding.

Let us proceed to consider the next stage of the proposed
systematic formulation referred to as the estimation of model
parameters. To well estimate the model parameters the test
inverse problem solution is previously needed. For inverse
problem solution testing the familiar scheme was used:

1. Direct oxidation and diffusion problem solution with
given input parameters , that is a computational experiment to
calculate the chromium distribution is refereed to as “precision”
data at two time points 500 h (j=1) and 1000 h (j=2) and at the
space points given in Table II.

2. Inverse oxidation and diffusion problem solution with
accurate data (Table II) and comparison estimated model
parameters with given one for direct problem (stage 1).

3. Inverse oxidation and diffusion problem solution with
disturbed data modeling real errors of concentrate
measurements. Comparison results with given parameters.

Inverse problem solution test has been carried with initial
coefficients given in Table I, DMe and DOx, greater then accurate
ones on an order, and, βOx and kOx lower then accurate ones on
an order.

Table II. Accurate and disturbed concentration of chromium on coordinate.

Coordi
nate

Accurate Disturbed Coordi
nate

Accurate Disturbed

x, μm τ1=500 h τ 2=1000h τ 1=500h τ 2=1000h x, μm τ 1=500 h τ 2=1000h τ 1=500h τ 2=1000 h
5.42007 17.5951 20.9496 18.2652 21.7474 83.839 17.0733 16.2167 16.7881 15.9457
9.93464 14.0771 16.8658 13.6272 16.3267 101.133 16.6207 16.2697 16.8752 16.5189
14.8238 10.9868 11.9755 11.1788 12.1848 120.666 16.6932 16.5772 16.8957 16.7785
20.3727 10.2973 9.3822 10.7287 9.7754 142.568 16.8866 16.8564 16.8994 16.8693
26.9201 11.7739 9.312 11.6775 9.2357 166.972 17.3002 17.294 16.8999 16.8938
34.795 13.5017 10.3629 13.2398 10.162 194.012 16.6673 16.6665 16.8995 16.8991

44.2626 14.6597 11.7092 14.7621 11.7910 223.824 16.5667 16.5668 16.9006 16.9001
55.5098 15.9574 13.569 15.8796 13.5029 256.542 17.1596 17.1589 16.8995 16.8993
68.6668 16.1412 14.6035 16.5143 14.9411

Table I. Initial, accurate, and estimated parameters.

Para- Estimated

me- Accurate Initial at the accurate concentration at the disturbed concentration
ter τ1=500h. τ2=1000h τ1+τ2 τ1=500h. τ2=1000h τ+τ2

Dme 3.0⋅10-16 3.0⋅10-15 3.44⋅10-16 3.53⋅10-16 3.27⋅10-16 3.13⋅10-16 3.21⋅10-16 3.03⋅10-16

Dox 1.0⋅10-16 1.0⋅10-15 7.81⋅10-17 7.82⋅10-17 8.57⋅10-17 8.60⋅10-17 8.67⋅10-17 8.99⋅10-17

kOx 3.0⋅10-7 3.0⋅10-8 2.34⋅10-7 2.22⋅10-7 2.55⋅10-7 2.44⋅10-7 2.27⋅10-7 2.21⋅10-7

βOx 1.0⋅10-10 1.0⋅10-11 1.18⋅10-10 1.16⋅10-10 1.21⋅10-10 1.29⋅10-10 1.15⋅10-10 1.28⋅10-10
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Table III. Sensitivity Zi coefficients’ magnitudes for model parameters
being subject of identification.

DMe kOx βOx DOx

1.5 0.74 0.54 1.68

Simultaneous searching of four parameters is carried with
accurate concentration distribution (Table II) using information
from one (t=500 h) and two calculation time points (t=500 h
and 1000 h). The computational estimation of desired
parameters is run with initial parameters (Table II) by
identification technique (1)-(7) described above and using the
accurate concentration data about obtained at the 500 h as
experimental information CjE. To obtain the stable solution the
regularization parameter α in (13) was taken as 1⋅10-5 . Root
mean square criterion F variation with number of iteration is
shown in Fig. 3.
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Figure 3. Relationship between root mean square quality
solution criterion of inverse problem and number of iteration for
various experimental time moments:  1 - one experimental time
moment at the 500 h; 2 - one experimental time moment at the
1000 h; 3 - two experimental time moments at the 500 h and
1000 h.

In much the same line the computational estimations of
desired parameters were run using the data about concentration
at 1000 h (curves 2) and at 500 h and 1000 h simultaneously as
experimental information. The use of experimental information
about chromium distribution at the two exposures is quite
evidently efficient since the solution runs more stable and in
addition the iteration regularization comes into action
(calculation stop at the 34 iteration on fulfilling the condition
(12)).

For real error modeling the random measurement errors
have been put on the concentration distribution by according to
the following expression:

( )j
T
jМjЭ 1CC ρ⋅ε+=  ,                               (16)

where ρj is random number given by the normal low within the
range ±3 with mathematical expectation 0 and variance 1. The
disturbance range of C equal to ε =5%. Disturbed concentration
of chromium given in Table II.

The searching at the same four initial parameters with
disturbed concentration was run using two time moments
information with the same initial desired parameters (Table I).

Thus it was shown the possibility of simultaneous
estimation of four parameters of mathematical model using the
information about element distribution with error at one and
two time moments.

Results of practical mass transfer inverse problem solution
are given in Fig. 2. Coefficients DMe=3.05·10-16 m2/s,
DOx=1.12·10-16 m2/s, βOx=1.03·10-10 m/s, kOx=3.04·10-7 1/s were
determined using experimental concentration distribution
obtained after experimental exposure of samples made of EI893
alloy during 1000 h at 900oC. Curve 1 is model distribution at
the same time, curve 2 is computed prediction.

So, proposed technique can be  applied for identification
of mass transfer parameters as function of concentration at
various temperature with final purpose of model use for long
time prediction of concentration distribution and oxidation of
alloying element.

CONCLUSIONS
1. The inverse problem solution technique and parameters’

identification results are considered in the paper.
2. The possibility of identification of four model

coefficients DMe, DOx, βOx, kOx using experimental information
of one time experimental exposure as well as of two time
moments.

3. The computational stability of proposed inverse
problem solution were investigated. The use of experimental
information about chromium distribution at two exposure the
solution runs more stable and accurate.
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