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ABSTRACT

This paper is concerned with the noise source 

identification of a railway car model in a two-dimensional 

infinite half space by means of the boundary element method 

and a filter theory. It is assumed that the sound pressure is 

measured at a number of points in the field. The railway car is 

simplified into a two-dimensional model. The noise sources of 

the car model are located as a point source at the top of the car, 

as a distributed source on the surface of the car body and a point 

source at the bottom of the car. The noise source identification 

problem under consideration is stated such that a set of 

parameters representing the noise sources should be identified 

by minimizing the cost function of a square sum of 

sound-pressure magnitude difference between the measured and 

computed ones for all the measuring points. The values of 

parameters are iteratively modified by a step wise procedure 

based on the extended Kalman filter theory. Numerical 

simulation is carried out for a few models and the results 

obtained are discussed, whereby the advantages and 

disadvantages as well as the limitations of the proposed inverse 

analysis are revealed.

INTRODUCTION

Reduction of noise emanating from the vibrating 

structures is one of the most important subjects in engineering. 

For this purpose, modeling or identification of the noise 

sources should be done. This is a kind of inverse problems. 

Recently, computational approach has been frequently applied 

to such inverse problems, and successful results have been 

reported [1-3]. Most of these inverse analyses use numerical 
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methods of analysis for direct problems together with the 

standard optimization method. However, it seems to be difficult 

to include measurement errors in the inverse analysis.

This paper presents a method of inverse analysis using the 

boundary element method and the filter theory to some 

inverse problems in acoustics. Then, it is applied to the 

inverse problem of noise source identification in a railway car 

model.

In the acoustic problems governed by the Helmholtz 

differential equation, we frequently have to consider infinite 

domains. The boundary element method is suitable for such 

infinite-domain problems and can provide an accurate solution 

considering exactly the radiation condition at infinity[4, 5].

In the inverse analysis using filter theory, it is assumed 

that a probabilistic system is subject to known excitation and 

the time-series data of measurement with a known distribution 

and amount of errors are available for analysis of the system. 

In the steady-state vibrating system, we may consider a time 

step as an iteration step of inverse analysis. In this study, we 

treat inverse analysis of such a steady-state vibrating problem 

in acoustics.

INVERSE ANALYSIS VIA BEM

In this study, we shall apply the boundary element 

method and filter theories to the noise source identification of a 

railway car model. The noise sources are expressed in terms of 

several parameters which are considered as a state vector in the 

filter theory. The unknown parameters are identified by 

minimizing a cost function which can be defined as a sum of 

magnitude of difference between the measured and computed 

sound pressures. The sound pressure is computed by the 

boundary element method which is reported separately [6, 7].

Boundary Element Analysis of Acoustic Field

It is assumed that the acoustic field is in a steady-state 

vibration with an infinitesimal amplitude. The governing 

differential equation is the Helmholtz equation which is 

expressed as

∇ + + =2 2 0p k p f( ) ( ) ( )x x x (1)

where p is the sound pressure, f the forcing term and 

k C= ω 0 the wave number in which C0 is the sound velocity 

and ω the angular frequency. If a point source is located at xs

in the acoustic field, f ( )x can be expressed by

f A s( ) ( )x x x= −δ (2)

where A is the intensity of the point source in [Pa], and δ ( ) is 

the Dirac delta function.

Including such a point source we may transform the 

differential equation into the following boundary integral 

equation[6,7]:

q Q d p q p p d* * *( ) ( ) ( )−{ }[ ] + −{ }∫ ∫Γ ΓΓ Γy x y

= − +∫j p v d Ap sωρ * *( ) ( , )x x yΓΓ (3)

where j = −1 , ρ is mass density and v the particle velocity. 

The asterisked functions p* and q* are the fundamental 

solution of the Helmholtz equation and its flux, which are 

given for two-dimensional problems by
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The point x is the integration point and y the source point, 

whereas r = −x y and H0
2( ) is the zeroth Hankel function of 

second kind.

It is interesting to note that equation (3) is the so-called 

regularized boundary integral equation in which no singular 

integral appears and the asterisked function Q* is the flux of 

the well known fundamental solution pL
* of the Laplace 

differential operator ∇2 , which is given by
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The sound pressure at an internal point x can be 

calculated after boundary element analysis of equation (3), by 

using the following integral equation:

p q Q d p q p p d( ) ( ) ( ) ( )* * *y x x x= − −{ } ⋅ − −{ }∫ ∫Γ ΓΓ Γ0 0

− + +∫j p v d p Ap sωρ * *( ) ( ) ( , )x x x yΓΓ 0 (6)
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where p( )x0 is the sound pressure at the point x0 on the 

boundary which is the nearest point from the source point y .

Inverse Analysis Using Filter Theory

In the filter theory, it is assumed that measured data 

includes an error with a Gaussian distribution. There is the 

following relationship between the observation vector y of 

measured data for sound pressure and the state vector z of the 

parameters corresponding to the noise sources, that is,

y h z vk k k= +( ) (7)

The nonlinear function is expanded into a Taylor series with 

respect to the state vector, and higher-order terms are neglected. 

Thus, we can obtain a linearized relation of equation (7) as 

follows:

ηk k k k k= − +− −y h z H z(ˆ ) ˆ1 1 (8)

where k denotes iteration counter, and 

H
z

z z

k
i k

j

h

z
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 = −
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∂

( )

ˆ 1

(9)

This implies that the assumed values of the parameters can be 

revised using the following relation:

ˆ ˆ (ˆ )z z K y h zk k k k k= + −[ ]−1 (10)

where ẑk is an estimated set of the parameters z at the kth 

iteration, and Kk is the filter gain which is given for the 

extended Kalman filter [9] by

K P H H P H Rk k k k k k k k k= +[ ]− −
−

1 1

1T T (11)

and for the projection filter [9] by

K H R H H Rk k k k k k= [ ]− − −T T1 1 1 (12)

In the above expressions, Pk k −1 is the covariance of the 

estimation errors of parameters at iteration k − 1, and Rk the 

covariance of measurement errors at iteration k .

In the inverse analysis using the filter theory mentioned 

above, the sensitivity matrix Hk is computed by means of the 

finite difference scheme, and the boundary element method is 

twice applied to evaluate the sound pressure at each iteration.

In our previous paper [8] treating boundary shape 

identification of blast furnace hearth, the extended Kalman filter 

was rather tough than the projection filter. Therefore, we shall 

also use the extended Kalman filter for the present inverse 

problem.

The main flow of the proposed inverse analysis is 

illustrated in Fig.1.
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Fig. 1 Main flow of inverse analysis

NUMERICAL SIMULATION

The railway car model considered in this study is shown 

in Fig.2. The inside domain of the car model is not taken into 
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account as the acoustic field under consideration, that is, we 

consider the exterior acoustic field surrounding the car model 

surface. In the analysis, we also take into account the 

symmetric conditions with respect to the center plane of the 

railway and also the rigid condition of the ground surface. 

Therefore, only the half the boundary of car model surface 

should be discretized into boundary elements.

Furthermore, it is assumed that point sources are located 

at points F and G and the boundary portion BCD is a 

distributed source, while the other boundary of car model is 

rigid. The noise sources are assumed to vibrate with different 

frequencies.

Table 1 summarizes the input data to be used for 

computation of the "measured data" of sound pressure by the 

boundary element method for the present numerical simulation 

of inverse analysis for noise source identification. The 

boundary is discretized into a series of boundary elements with 

quadratic interpolation. The boundary portion BCD is 

discretized into a boundary element in which B, C and D denote 

nodal points of the boundary element. Real and imaginary parts 

of sound pressure in [Pa] are shown in Table 1. The measured 

data of numerical simulation for the present inverse analysis are 

produced by boundary element analysis using the target values 

shown in Table 1.
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Fig.2 Two-dimensional car model

In this numerical simulation, it is assumed that the 

covariances of measurement and estimation errors are, 

respectively, as follows:

R I P Ik = × =−
−1 0 10 1 06

0 1. , . (13)

where I is the unit matrix. It is noted that the assumed value 

of covariance Rk above corresponds to about 3% measurement 

error in sound pressure.

Table 1 Target values of parameters

It is noted that convergence of the present inverse 

analysis may depend on the initial values of the parameters to 

start iterative computation. In the numerical simulation, the 

initial values are assigned in an appropriate manner so that they 

change from -20 to 20 [Pa]. It can be seen that any case of the 

initial values provides a converged solution of inverse analysis, 

although a different iteration number is required.

It is assumed that the measuring points of sound 

pressure are located in the two-dimensional acoustic field with 

7 columns with equal space between 4.0[m] and 10.0[m] from 

the center line of the model, and vertically 11 points with equal 

space of 0.5[m]; Totally, 77 points are assumed. The real and 

imaginary parts of sound pressure at these measuring points are 

given by boundary element analysis under the target values of 

parameters shown in Table 1.

We now select 5 measuring p0ints among the 77 

measuring points mentioned above in the following three 
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Sound source ( Re, Im ) Frequency [Hz]

B ( 0.5, 0.0 )

500C ( 1.0, 0.0 )

D ( 0.5, 0.0 )

F ( 2.0, 0.0 ) 1000

G ( 2.0, 0.0 ) 2000



ways.

Type A : 5 points uniformly located

Type B : 5 points with lowest sensitivities

Type C : 5 points with highest sensitivities

The seisitivity above denotes an absolute value of the 

component of the sensitivity matrixis defined by equation (9), 

which is computed as sound pressuure's first derivative with 

respect to the values of parameters at each iteration step by the 

finite difference method. Fortunately, the same points are 

chosen at each iteration step for Types A to C. The locations 

of the selected measuring points for the above three types are 

shown in Fig.3.

To evaluate convergence of the present iterative inverse 

analysis, we use the cost function defined by

W
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h h

hk
i k i k

i ki

M
= −

=
∑1
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1

(ˆ ) ( )

( )

z z
z (14)

where M is the number of measuring points.
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Fig.3 Measuring points

The numerical results obtained are shown in Fig.4. The 

initial values of parameters to be identified are assumed as 

shown in Table 2.

Table 2 Target values and initial values of parameters

Sound source Target values Initial values

G ( 2.0 , 0.0 ) ( 20 , 16 )

F ( 2.0 , 0.0 ) ( 12 , 8 )

B ( 0.5 , 0.0 ) ( 4 , -4 )

C ( 1.0 , 0.0 ) ( -8 , -12 )

D ( 0.5 , 0.0 ) (-16 , -20 )

It can be seen that Type C provides the best convergence 

and Type A shows a moderate rate of convergence, whereas 

Type B shows the worst rate of convergence. If we set the 

tolerance limit of convergence as log10Wk < − 4 , we can 

conclude that in Type C a converged solution is obtained after 

5 iterations and in Type A after 27 iterations, whereas in Type 

B no convergence is realized even after 30 iterations.
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Fig.4 Convergence properties
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Table 3 Parameter values after 5 iterations

Type A Type B Type C

G ( 2.1439 , 

0.1768 )

( 2.2855 , 

0.3754 )

( 1.9943 , 

-0.0063 )

F ( 2.0474 , 

0.0555 )

( 1.9293 , 

0.2637 )

( 2.0346 , 

0.0181 )

B ( 0.5206 , 

0.0675 )

( 0.7829 , 

0.1398 )

( 0.5156 , 

0.0178 )

C ( 0.8510 , 

-0.1124 )

( 0.9602 , 

0.2035 )

( 0.9699 , 

-0.0209 )

D ( 0.4633 , 

-0.0079 )

( 0.0883 , 

-0.2138 )

( 0.5046 , 

-0.0044 )

Table 4 Parameter values after 30 iterations

Type A Type B Type C

G ( 2.0241 , 

0.0297 )

( 2.0487 , 

0.0643 )

( 1.9990 , 

-0.0010 )

F ( 2.0079 , 

0.0093 )

( 1.9878 , 

0.0449 )

( 2.0058 , 

0.0030 )

B ( 0.5034 , 

0.0113 )

( 0.5485 , 

0.0239 )

( 0.5026 , 

0.0029 )

C ( 0.9749 , 

-0.0189 )

( 0.9932 , 

0.0349 )

( 0.9949 , 

-0.0035 )

D ( 0.4938 , 

-0.0013 )

( 0.4294 , 

-0.0364 )

( 0.5007 , 

-0.0007 )

CONCLUSION

The present paper has presented a new inverse analysis 

method for some inverse problems in acoustics, which uses the 

boundary element method and the filter theory. The method of 

inverse analysis was successfully applied to noise source 

identification of the two-dimensional railway car model. It is 

demonstrated through numerical simulation for inverse analysis 

of the model that convergence of iterative computations can be 

accelerated if the measuring points of sound pressure are 

selected in consideration of higher sensitivity. Inverse analysis 

could be successful even if a very limited number of measuring 

points are employed. Furthermore, it is interesting to note that 

the measuring points uniformly located in the filed can provide 

a good convergence of inverse analysis.
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