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ABSTRACT

This paper is concerned with the noise source
identification of a railwaycar model in a two-dimensional
infinite half space bymeans of théoundaryelement method
and afilter theory. It is assumedhat thesound pressure is
measured at aumber of points in théeld. The railwaycar is
simplified into atwo-dimensional model. The noise sources of
the carmodelare located as oint source athe top of thecar,
as a distributed source tme surface othe carbodyand apoint
source athe bottom of thear. The noissource identification
problem under consideration is stateduch that a set of
parameters representitige noise sources should Eentified
by minimizing the cost function of asquare sum of
sound-pressure magnitudéferencebetweenthe measured and
computedones for all the measurimgpints. The values of

ndary element method, Filter theory, Compuaterulation.

parameters aréeratively modified by astep wiseprocedure
based onthe extended Kalman filter theory. Numerical
simulation is carried out for a few modelsand the results
obtained are discussed, wherebythe advantages and
disadvantages agell as the limitations of thproposed inverse
analysisare revealed.

INTRODUCTION

Reduction of noise emanating from the vibrating
structures is one of theost important subjects in engineering.
For this purpose, modeling ddentification of the noise
sources should be donghis is akind of inverseproblems.
Recently, computationapproachhas beerrequently applied
to such inverse problemsnd successful resulthave been
reported[1-3]. Most of thesenverse analyses use numerical
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methods of analysis fodirect problems together with the
standardbptimization methodHowever, it seems to be difficult
to include measurement errorstire inverse analysis.

This papemresents a method of inverse analysigg the
boundaryelement methodand the filter theory to some
inverse problems in acoustics. Then, itajgplied to the
inverse problem of noissource identification in a railwagar
model.

In the acoustic problemgoverned bythe Helmholtz
differential equation, wefrequently have to considénfinite

domains. Theboundaryelement method is suitable for such

infinite-domain problemsndcan provide an accuragmlution
considering exactlthe radiation condition ainfinity[4, 5].

In the inverse analysigsing filter theory, it isassumed
that a probabilistic system is subject to known excitaint
the time-serieslata ofmeasuremenwith a known distribution
andamount oferrors areavailable for analysis of thgystem.
In the steady-statevibrating system, we magonsider atime
step as an iteration step of inverse analysisthig study, we
treat inverse analysis of suchseady-stat@ibrating problem
in acoustics.

INVERSE ANALYSIS VIA BEM

In this study, we shall apply thboundary element
methodandfilter theories to the noissource identification of a
railway carmodel. The noise sourcase expressed iterms of
several parametexghich are considered asstate vector in the
filter theory. The unknownparameters are identified by
minimizing a cost function whiclkban bedefined as aum of
magnitude ofdifference betweenthe measured anadtomputed
sound pressures. The sound pressureomputed bythe
boundaryelement method which igportedseparately6, 7].

Boundary Element Analysis of Acoustic Field

It is assumedhat the acoustifield is in a steady-state
vibration with an infinitesimal amplitude.
differential equation isthe Helmholtz equation which is
expressed as

O2p(x) +k*p(x) + f(x) =0 @)

where P is the sound pressuref, the forcing termand

The governing

k = w/C, thewave number in whichC, is the sound velocity
and w the angulafrequency. If gointsource is located atg
in the acoustic field,f (x) can be expressed by

f(x) = Ad(x = x,) )

whereA is the intensity of the poirgource in[Pa],andd() is
the Dirac deltafunction.

Including such apoint source wemay transform the
differential equationinto the following boundary integral
equation[6,7]:

[5-{a" ~Q}ar]een + f, ' {pe0 - p(y}ar
= —jwpf, pV(X)dl + Ap' (Xs,Y) (3)

where j = /-1, p is mass densitgnd v the particle velocity.
The asteriskedfunctions p° and g  are the fundamental
solution of the Helmholtzquationandits flux, which are
given for two-dimensional problems by

Ty . _9p (x.y)
4 Hoo (k). a (x.y) () @)

P (xy)=-
The pointx is the integration poinand y the sourcepoint,
whereasr =|x —y| and H{® is thezerdh Hankel function of
secondind.

It is interesting to note thaguation (3) isthe so-called
regularized boundaryntegral equation inwhich no singular
integral appearsandthe asteriskedunction Q" is the flux of
the well known fundamentalsolution p,  of the Laplace
differential operaton;2, which is given by

cooaZOpGy) 1 ar
QN == = "2 an ©®)

The sound pressure at an interr@dint x can be
calculated after boundarglement analysis oéquation(3), by
using the following integraéquation:

p(y) =~ {a" = Q"}dr t(xo) - - a'{ p(X) ~ pxo)} dr
—jawpf, p'V(X)dI" + p(Xo) + AP (Xs, ) 6)
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where p(X,) is the soundpressure athe point x, on the
boundarywhich is thenearespoint from thesourcepoint y.

Inverse Analysis Using Filter Theory

In the filter theory, it isassumedthat measured data
includes an errowith a Gaussian distribution.There isthe
following relationshipbetweenthe observation vectoy of
measured datfor sound pressurandthe state vectoz of the
parameters correspondingttee noise sources, that is,

Yk = h(z) + v )

The nonlinear function iexpandednto a Taylorseries with
respect tahe state vectognd higher-ordefermsareneglected.
Thus, wecan obtain alinearizedrelation of equation (7) as
follows:

M = Ye ~N(Z-1) + Hi zey (8)

wherek denotesteration counterand

. [l
Hk - wl} hl(zk)D (9)
E (92]' gk =2

This implies that thassumedralues of theparameters can be
revisedusing the following relation:

=%+ Kk[yk - h(ik)] (10)

where z, is an estimatedet of theparametersz at thekth
iteration, and K, is the filter gain which is given for the
extendedalman filter [9] by

_ T T -1
Kk = Bok-1Hy [Hk Rok-1Hk + Re (11)
andfor the projection filter [9] by
fuTpty 'y Tpt
Kk —[Hk Ry Hk] Hy R 12)

In the above expressions)-1 is the covariance ofthe
estimationerrors of parameters éeration k-1, and R, the

covariance ofmeasurement errors iéération k .

In the inverse analysigsing the filter theorynentioned
above, the sensitivity matri¥d, is computed byneans of the
finite difference schemeand the boundaryelement method is
twice applied to evaluatbe soungressure at eadteration.

In our previous paper [8] treating boundary shape
identification of blasfurnacehearth, theextendedalman filter
wasrathertough than the projection filterTherefore, weshall
also use theextendedKalman filter for the present inverse
problem.

The main flow of theproposed inverseanalysis is
illustrated inFig.1.

Start

Read initial value 2, , P,_;
[
Read obsevation vector Yy
and covariance of errors R

k+1- k

»l
>

Compute obsevation matrix using BEM

h(z) . Hy =

Computefilter gain

Case of Kalman filter Case of projection filter
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[
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4 =, + Kk[yk - h(ik)]
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End

4 =1 g
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Fig. 1 Mainflow of inverse analysis

NUMERICAL SIMULATION
The railwaycar model considered irthis study is shown
in Fig.2. The inside domain of thear model isnot taken into
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account asghe acoustidield under consideration, thais, we
considerthe exterior acoustifield surroundingthe car model
surface. Inthe analysis, we also takmto accountthe
symmetric conditions witliespect to the centerplane of the
railway and also therigid condition of theground surface.
Therefore,only the half theboundary of carmodel surface
should beliscretizednto boundaryelements.

Furthermore, it isasssumedhat pointsourcesare located
at points Fand G andthe boundary portion BCD is a
distributed source, while the othdsoundary of camodel is
rigid. The noise sourcemeassumed to vibrateith different
frequencies.

Table 1 summarizes thénput data to be usedor
computation of thé'measured data" cfound pressure bthe
boundaryelement method for the present numergiadulation
of inverse analysis for noissource identification.
boundary is discretizedto aseries oboundaryelements with
quadratic interpolation. The boundary portion BCD is
discretizednto aboundanelement in which B, Gnd Ddenote
nodalpoints of theboundaryelement. Readndimaginary parts
of sound pressure in [Pafeshown in Table 1. Theneasured
data ofnumericalsimulationfor the present inverse analysig

The

produced byboundaryelement analysis using the target values

shown in Table 1.
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Fig.2 Two-dimensionatar model

In this numerical simulation, it is assumedhat the
covariances of measuremerdnd estimation errors are,
respectively, as follows:

R =10x10°1, Ry, =101l (13)
wherel is the unit matrix. It isnotedthat theassumed value
of covarianceR, above corresponds about 3% measurement
error in sound pressure.

Table 1 Target values parameters

Soundsource (Re, Im) FrequencyHz]
B (0.5,0.0)
c (1.0, 0.0) 500
D (0.5,0.0)
F (2.0, 0.0) 1000
G (2.0,0.0) 2000

It is noted that convergence ofthe present inverse
analysis maydepend orthe initial values of thgparameters to
start iterative computation. In the numeris@hulation, the
initial valuesareassigned in an appropriate mannetsat they
changdrom -20 to 20 [Pa]. Itan be seethat anycase ofthe
initial valuesprovides aconvergedsolution ofinverse analysis,
although aifferentiteration number isequired.

It is assumedthat the measuring points afound
pressurare located irthe two-dimensional acoustfield with
7 columns withequal spacketween4.0[m] and 10.0[m] from
the centerline of the modelandvertically 11 points withrequal
space of0.5[m]; Totally, 77 pointsareassumed. Theeal and
imaginary parts of sound pressure at these meaquoints are
given by boundaryelement analysisnderthe target values of
parametershown in Table 1.

We now select 5 measuringOints among the 77
measuring pointsmentioned above in thdollowing three
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ways.

Type A : 5 points uniformlyocated
Type B : 5 points with lowest sensitivities
Type C : 5 points with highest sensitivities

The seisitivity above denotes arabsolute value of the
component of the sensitivity matrixgefined byequation(9),
which is computed as sound pressuuri@’st derivative with
respect tahe values oparameters at eaderation step by the
finite difference method. Fortunately, the same poirdaee
chosen atachiteration step for Types A to C. The locations
of the selectedmeasuring pointdor the abovehreetypes are
shown inFig.3.

To evaluate convergence thfe present iterative inverse
analysis, we use the cost functidefined by

A 2
1 Mh(z)-h(z)
=y |— "= 14
MM h@ a4
whereM is the number of measurippints.
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Fig.3 Measuringpoints

The numerical resultebtainedareshown in Fig.4. The
initial values ofparameters to be identified asssumed as
shown in Table 2.

Table 2 Target valueandinitial values ofparameters

Soundsource| Target values Initial values
G (2.0, 0.0) (20, 16)
F (2.0, 0.0) (12, 8)
B (05, 0.0) (4, -4)
C (1.0, 0.0) (-8,-12)
D (0.5, 0.0) (-16, -20)

It can be seethat Type Cprovidesthe bestonvergence
and Type A shows amoderate rate of convergence, whereas
Type B shows the worgtate of convergence. If weet the
tolerancelimit of convergence aslog,,\\\, <-4, we can
concludethat in Type C aonvergedsolution isobtained after
5 iterationsand inType Aafter 27iterations,whereas inType
B no convergence is realizeden after 30terations.

Iterations

Fig.4 Convergence properties
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Table 3 Parametemaluesafter 5iterations

Type A Type B Type C
(2.1439, (2.2855, (1.9943,
0.1768) 0.3754) -0.0063)
(2.0474 , (1.9293, (2.0346 ,
0.0555) 0.2637) 0.0181)
(0.5206 , (0.7829, (0.5156 ,
0.0675) 0.1398) 0.0178)
(0.8510, (0.9602 , (0.9699 ,
-0.1124) 0.2035) -0.0209)
(0.4633, (0.0883, (0.5046 ,
-0.0079) -0.2138) -0.0044)

Table 4 Parametemaluesafter 30iterations

Type A Type B Type C
(2.0241, (2.0487 (11.9990,
0.0297) 0.0643) -0.0010)
(2.0079, (1.9878, (2.0058,
0.0093) 0.0449) 0.0030)
(0.5034 , (0.5485, (0.5026 ,
0.0113) 0.0239) 0.0029)
(0.9749 , (0.9932, (0.9949 ,
-0.0189) 0.0349) -0.0035)
(0.4938, (0.4294 , (0.5007,
-0.0013) -0.0364 ) -0.0007)

CONCLUSION

The presenpaperhas presented aew inverse analysis
method forsome inverse problems in acoustics, which uses the
boundaryelement metho@ndthe filter theory. Thenethod of

inverse analysis was successfubypplied to noise source

identification of the two-dimensional railwayar model. It is

demonstratethrough numericasimulationfor inverse analysis
of themodelthatconvergence aterative computationsan be

accelerated ifthe measuring points ofound pressureare

selected in consideration bigher sensitivity. Inverseanalysis

could be successful even if a vdirpited number of measuring
pointsareemployed. Furthermore, it is interesting to note that
the measuring points uniformlgcated inthefiled can provide
a good convergence wofverse analysis.
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