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ABSTRACT
This paper addresses the identification of the parameters of

a nonlinear constitutive law from indentation tests. The case of
a standard generalized material without work hardening is ex-
tensively treated using the adjoint state method. This provides
a general framework to perform optimization involving contact
conditions and nonlinear material behaviour. A numerical iden-
tification is presented and demonstrates the accuracy and the ro-
bustness of the method.

INTRODUCTION
The indentation test consists in pressing a punch on a ma-

terial sample. It was initialy used to evaluate the hardness of
metals and is now being considered as an efficient non destruc-
tive method for determining material mechanical characteristics
(Taljat et al.,1998).
The constitutive law is to be identified from the knowledge of
the indentation curve, representing the load applied on the punch
versus the penetration depth. The mechanical interpretation of
the indentation curve is not as straightforward as for the classical
traction curve. This implies that the use of the indentation test for
material characterization depends on the reliability of the subse-
quent identification procedure. Most identification strategies are
based on semi-empirical formulas dedicated to a given consti-
tutive behaviour : elasticity, perfect plasticity (Johnson,1985),
power laws (Jayaraman et al., 1998), : : : Only a few studies

present this problem from a general point of view, i.e. defining
the identification as the minimization of a cost functional (Bui,
1994). The identification methods are generally based on sim-
ple trial & error techniques (Hasanov & Seyidmamedov , 1995).
This is partly due to the mathematical complexity of the con-
tact description, appearing independently of the constitutive be-
haviour of the material.
A first attempt to solve the problem from a general point of view
has been presented in the case of linear elasticity (Constanti-
nescu & Tardieu, 1995). The contact conditions having been
regularized by penalization, the problem was therefore described
by variational equalities, instead of variational inequalities. This
enables the application of classical optimal control (Lions,1968)
techniques, in particular the adjoint state method. The identifica-
tion problem has been solved afterwards by the minimization of
a cost functional using a gradient descent method.
The goal of this paper is to extend this method to the identifi-
cation of the parameters of a standard generalized constitutive
law without work hardening. The method presented in this pa-
per is not based on the regularization of the contact conditions
as in (Constantinescu & Tardieu, 1995), instead Lagrange multi-
pliers are used. The gradient of the cost functional is computed
from the solution of a direct and an adjoint problem. The accu-
racy and robustness of the method are illustrated through a nu-
merical example for a Maxwell viscoelastic constitutive law.
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THE DIRECT PROBLEM (P )

Let us consider an axisymmetric body, with its section occu-
pying in its reference configuration an open subset Ω� R2 with
smooth boundary Γ (see Figure 1). The boundary is partitioned
in three parts Γ=ΓD[ΓF[ΓC : the part ΓD where displacements
are imposed, the free surface ΓF , and the surface ΓC where con-
tact might occur. nnn and ttt denote the normal and tangent vector to
the boundary Γ.

The axisymmetric hypothesis is taken in order to simplify
the presentation and the computational burden and does not re-
strict the generality of the method.

The problem will be treated within the theory of small
strains and rotations. The validity of this hypothesis will be dis-
cussed later. Let us denote respectively by uuu, εεε and σσσ the vector
field of displacements and the tensor fields of small strains and
stresses.

The problem considered in the sequel is the indentation of
the body Ω by a rigid punch whose profile is characterized by
the gap g. The contact is considered without friction.

An indentation experiment is driven either by the vertical
displacement U or by the force F applied to the punch. The
force F can be expressed as integral of the contact pressure:

F =

Z
ΓC

nnn �σσσ �nnndΓ

An experiment provides an indentation curve (see Figure 3), rep-
resenting a displacement-force history (U exp

;Fexp) over a given
time interval [0;T ].
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Figure 1. THE DIRECT PROBLEM

In this work, we have always considered the problem as
driven by the punch displacement. The governing equations can
be written using:

� a time-continous formulation, where the intervening quanti-
ties are the field rates, or
� a time-dicretized formulation, where the intervening quan-

tities are small increments of the fields between two time
steps.

Describing contact conditions using the field rates is a compli-
cated task requiring care in the choice of the functional spaces of
the mathematical formulations (Kikuchi & Oden,1988). There-
fore the time dicretized expression, which permits to avoid some
of these difficulties, will be used in this paper.

Constitutive law
A standard generalized material without work harden-

ing (Halphen & Nguyen,1975) is considered here. This constitu-
tive behaviour is completely determined by the elasticity tensor
SSS(ccc) and by the pseudo-potential of dissipation Φ = Φ(σσσ;ccc). The
latter is supposed to be twice differentiable with respect to σσσ. ccc is
the vector of the material parameters characterizing the material
behaviour (Young’s modulus, elasticity limit, : : : ).

Time-continuous formulation

In a time continuous description, the constitutive law is expressed
by the classical set of equations:

εεε(u̇uu) = SSS(ccc) : σ̇σσ+ ε̇εεp (1)

ε̇εεp =
∂Φ(σσσ;ccc)

∂σσσ
(2)

where the dot (˙) denotes the time derivative and εεεp is the vis-
coplastic strain.

Time-discretized formulation

In a time discretization, the previous equations are expressed as :

εεε(∆uuui) = SSS(ccc) : ∆σσσi +∆εεεp
i (3)

∆εεεp
i =

∂Φ(σσσi;ccc)
∂σσσ

∆t (4)

Example

The following classical constitutive laws can be expressed under
this formalism :

� The Maxwell viscoelastic material : the pseudo-potential

Φ is given by Φ(σσσi;ccc) =
1
2

σσσi : MMM(ccc) : σσσi where MMM(ccc) is

a forth order tensor and ccc = fE;ηg. The inelastic strain
increment is determined by : ∆εεεp

i =MMM(ccc) : σσσi ∆t.
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� The Norton-Hoff viscoplastic material : the pseudo poten-

tial Φ is given by Φ(σσσi;ccc) =
1

m+1
h(σσσi)eq�σY

i
m+1
+

where

σY is the elasticity limit, h � i+ is the positive part operator,
( � )eq is the equivalent Mises stress and ccc = fE;σY

;mg. The

plastic strain increment is determined by : ∆εεεp
i =

3
2
h(σσσi)eq�

σY
i

m
+

σ̃σσi

(σiσiσi)eq
∆t ; σ̃σσi is the deviator of σσσi.

Equations of the direct problem (P )
The governing equations of the direct problem consist of the

equilibrium and constitutive equations, the boundary and con-
tact conditions and a set of initial values. The contact condi-
tions on ΓC will be expressed using the Lagrange multipliers
pi 2 N, where N = fq 2 (H1=2(ΓC))

0 j q� 0g is a closed con-
vex set and (H1=2(ΓC))

0 denotes the dual of H1=2(ΓC) (Kikuchi
& Oden,1988). The Lagrange multipliers pi will show up to be
the pressure distribution under the punch. gi denote the gap at
time ti i.e. gi = un

i �g�Ui.

Equilibrium and constitutive equation in Ω

div(∆σσσi) = 0 (5)

εεε(∆uuui) = SSS(ccc) : ∆σσσi +
∂Φ(σσσi;ccc)

∂σσσ
∆t (6)

Boundary conditions

∆σσσi �nnn = 0 on ΓF (7)

∆uuui = 0 on ΓD (8)

Contact conditions

(∆un
i �gi�∆Ui)(q� pi+1)� 0 8q 2 N (9)

∆σnn
i = ∆σσσi �nnn �nnn = ∆pi (10)

∆σnt
i = (∆σσσi �nnn�∆σnn

i �nnn) �ttt = 0 (11)

Initial conditions

σσσ0 = 0 in Ω (12)

uuu0 = 0 on Ω (13)

εεεp
0 �nnn = 0 on Ω (14)

(15)

THE INVERSE PROBLEM (P�1)

In the present inverse problem, one wants to identify the
parameters of the material behaviour ccc from the knowledge of
the indentation curve (U exp

;Fexp). ccc is supposed to belong to a
closed convex subset Q of Rn (n� 2).

This inverse problem can be expressed as a minimization
problem of a well-chosen cost functional. Since the direct
problem is driven by the imposed displacement of the punch U ,
it is natural to express the cost functional as a function of the
resultant force F . A possible formulation of the inverse problem
(P�1) is thus :

Find ccc 2 Q minimizing

J (ccc) =
1
2

I

∑
i=0

(Fcomp
i (ccc)�Fexp

i )2 (16)

=
1
2

I

∑
i=0

(
Z

ΓC

pi(ccc)dΓ�Fexp
i )2

where, Fcomp is the computed resultant force from the direct
problem driven by Uexp.

One can remark that the cost functional J depends implic-
itly on the material parameters ccc through the pressure distribution
p. The resolution of the direct problem (P ) permits the determi-
nation of the Lagrange multiplier pi and then the calculation of
Fcomp

i . In consequence, this minimization problem can be con-
sidered as a constrained one, the constraint being the resolution
of (P ).

To our knowledge, no existence or uniqueness results are
available for this problem. This might be a consequence of the
difficulties implied by the strong nonlinearity imposed by the
nonlinear constitutive law and the presence of contact. More-
over, no convexity properties are known about this functional.
After drawing some numerical examples for a series of problems,
some uniqueness and stability conjectures will be made.

Resolution
Finding the minimum of a constrained minimization prob-

lem is equivalent, under some regularity conditions, to finding
the saddle point of a Lagrangian functional L . Generally, the La-
grangian L is introduced as a sum of the cost functional and a
variational formulation of the direct problem (P ).

Let us introduce, for each variable of the direct problem, an
adjoint variable, denoted by a ? superscript. These adjoint vari-
ables are the Lagrange multipliers of the equations of the direct
problem, acting as constraints.

According to the optimal control theory, all direct and ad-
joint variables will be considered mutually independent. The re-
lationships between them will be recovered from the stationarity
conditions of the Lagrangian L , characterizing the saddle point.
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The Lagrangian functional has the following form :

L(uuu;σσσ; p;uuu?;σσσ?
; p?;ccc) =

I

∑
i=0

Li(uuui;σσσi; pi;uuu
?
i ;σσσ

?
i ; p?i ;ccc)

where each term Li is obtained as the sum of the cost functional
at time ti and the direct time-discretized equations, multiplied by
the corresponding adjoint variables.

Li(uuui; σσσi ; pi;uuu
?
i ;σσσ

?
i ; p?i ) =

1
2
(

Z
ΓC

pidΓ�Fexp
i )2

+

Z
Ω

div(∆σσσi) �uuu
?
i dΩ�

Z
ΓF

∆σσσi �nnn �uuu
?
i dΓ

+

Z
ΓD

∆uuui �σσσ?
i �nnndΓ+

Z
ΓC

(∆un
i �∆Ui�gi) � p

?
i dΓ

�

Z
Ω
(εεε(∆uuui)�SSS(ccc) : ∆σσσi�

∂Φ(σσσi;ccc)
∂σσσ

∆t) : σσσ?
i dΩ

�

Z
ΓC

(∆pi�∆σσσnn
i ) �un?

i dΓ�
Z

ΓC

∆σnt
i �u

t ?
i dΓ

and

� uuui;uuu?i 2 (H1(Ω))2

� σσσi;σσσ?
i 2 (L2(Ω))4

� pi; p?i 2 Ni = fq 2 (H1=2)0(ΓC) j q = 0 on ΓCig, where
ΓCi is the effective contact surface at time ti.

The complex form of this Lagrangian does not permit to draw
any conclusions with regard to the existence and uniqueness of
its saddle point. Nevertheless, necessary conditions of stationar-
ity can formally be written in order to characterize this possible
saddle point ; they read :.

I

∑
i=0

�
∂Li

∂uuu
;dwwwi

�
= 0 8dwwwi 2 (H1(Ω))2 (17)

I

∑
i=0

�
∂Li

∂σσσ
;dτττi

�
= 0 8dτττi 2 (L2(Ω))4 (18)

I

∑
i=0

�
∂Li

∂p
;dqi

�
= 0 8dqi 2 Ni (19)

I

∑
i=0

�
∂Li

∂uuu?
;dwwwi

�
= 0 8dwwwi 2 (H1(Ω))2 (20)

I

∑
i=0

�
∂Li

∂σσσ?
;dτττi

�
= 0 8dτττi 2 (L2(Ω))4 (21)

I

∑
i=0

�
∂Li

∂p?
;dqi

�
= 0 8dqi 2 Ni (22)

I

∑
i=0

�
∂Li

∂ccc
;ddd�ccc

�
� 0 8ddd 2 Q (23)

where h � ; � i represents in each equation the duality pairing for
the corresponding functional spaces.

Calculating the derivatives with respect to the adjoint vari-
ables (equations (20), (21) and (22)) leads to the set of equations :

div(∆σσσi) = 0 in Ω (24)

εεε(∆uuui)�SSS(ccc) : ∆σσσi�
∂Φ(σσσi;ccc)

∂σσσ
∆t = 0 in Ω (25)

∆σσσi �nnn = 0 on ΓF (26)

∆uuui = 0 on ΓD (27)

∆un
i �gi�∆Ui = 0

∆σσσi �nnn �nnn = ∆pi

∆σnt
i = 0

9>=
>; on ΓCi (28)

The previous calculation leads in classical Lagrangian theory to
the equations of the direct problem. In the present case, opposite
to the classical frame, the equations do not represent exactly the
direct problem. However, if (uuu;σσσ; p) are the solutions to (P ), they
obviously verify the above relations.

The differentiation of L with respect to the direct variables
(equations (17), (18) and (19)) and a series of calculations :
spatial integration by parts and use of the relation fi � ∆gi =
fi+1 �gi+1� fi �gi�∆ fi �gi, gives the following set of equations :

div(∆σσσi) = 0 in Ω (29)

εεε(∆uuu?i ) = SSS(ccc) : ∆σσσ?
i �

∂2Φ(σσσi;ccc)
∂σσσ2 ∆t : σσσ?

i in Ω (30)

∆σσσ?
i �nnn = 0 on ΓF (31)

∆uuu?i = 0 on ΓD (32)

∆un?
i = (Fcalc

i (ccc)�Fexp
i )

∆σnn?
i = ∆p?i

∆σnt ?
i = 0

9>=
>; on ΓCi (33)

and the following final conditions at time T :
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div(σσσ?
I ) = 0 in Ω (34)

εεε(∆uuu?I ) = SSS(ccc) : ∆σσσ?
I in Ω (35)

uuu?I = 0 on ΓD (36)

σσσ?
I �nnn = 0 on ΓF (37)

un?
i = 0

p?I = σnn?
I

)
on ΓC (38)

The equations (29)-(33) and the final conditions (34)-(38) define
a well-posed incremental problem with Dirichlet conditions on a
part of the boundary and will be called the adjoint problem (P ?).

As a consequence of the preceding calculations the follow-
ing result can be stated :

Stationarity Result:
If (uuu;σσσ; p) and (uuu?;σσσ?

; p?) are respectively the solutions to
the incremental direct and adjoint problem (P ) and (P ?), then
the conditions (17), (18), (19), (20), (21) and (22) of stationarity
of the Lagrangian L are verified.

Moreover, if (uuu;σσσ; p) are the solutions to (P ), one can no-
tice that the Lagrangian L is reduced to the cost functional J .
Together with the expression of stationarity conditions (23) this
implies that :

Gradient Computation:
If (uuu;σσσ; p) and (uuu?;σσσ?

; p?) are respectively the solutions to
the incremental direct problem (P ) and to the incremental adjoint
problem (P ?), then the gradient of the cost functional J is given
by :

∇cccJ =
I

∑
i=0

(
Z

Ω
∆σσσi :

∂SSS
∂ccc

: σσσ?
i +

∂2Φ
∂σσσ∂ccc

∆t : σσσ?
i dΩ) (39)

Some remarks about the preceding results are as follows :

� The adjoint problem is a time-dependent system of partial
differential equations on [0;T ]. We dispose of a final con-
dition instead of the more usual initial condition. We shall
therefore speak of a reversed-time problem. The final con-
dition is given by a well-posed elasticity problem.
� The adjoint problem is not a contact problem. Its loading
is a Dirichlet conditions (imposed displacement) on ΓCi , the
effective contact surface of the direct problem.
� The adjoint constitutive law is viscoelastic considered in
the reversed time i0 I� i :

εεε(∆uuu?i0) = SSS(ccc) : ∆σσσ?
i0 +RRR : σσσ?

i0 ∆t

where RRR is the fourth order tensor :

RRR =
∂2Φ(σσσi0 ;ccc)

∂σσσ2
i0

.

This is why the pseudo-potential Φ has to be twice differ-
entiable (For example, in the Norton-Hoff constitutive law,
m > 2 is needed). The parameters of this constitutive law
depend on the parameters of the direct constitutive law, and
also on the solution of the direct problem. From a numerical
point of view, this conducts to a linear problem at each time
step and therefore a rapid integration.
� The solution to the adjoint problem is implicitly dependent
on the solution of the direct problem.
� This method allows the computation of the gradient of the
cost functional J using the solutions to the direct and ad-
joint problems, independently of the number of parameters
involved. A rapid evaluation of the computational burden
shows that a gradient calculation takes � 1:2 the time for
solving the direct problem due to the simplicity of the ad-
joint behaviour and the elimination of the contact conditions.
This is extremely interesting for problems with a large num-
ber of parameters. However, the discrete convolution nature
of (39) and the time-reversed character of the adjoint prob-
lem require the storage of the complete histories of all direct
variables.

NUMERICAL EXAMPLE
In order to illustrate the presented method, let us consider the

identification of the parameters of a Maxwell viscoelastic mate-
rial :

εεε(∆uuui) = SSS : ∆σσσi +∆εεεp
i where ∆εεεp

i =MMM : σσσi∆t (40)

Si jkl =
1
E
((1+ν)δikδ jl�νδklδi j) (41)

Mi jkl =
1
η
(δikδ jl�

1
3

δklδi j) (42)

where E, ν, η denote respectively the Young modulus, the Pois-
son coefficient and the viscosity.

As explained before, this constitutive law enters the for-
malism of the standard generalized materials without work-
hardening.

The identification problem consists in determining E and η
from a indentation curve (U exp

;Fexp). In this work the indenta-
tion curve is obtained from numerical experiments as explained
in the sequel.

5 Copyright  1999 by ASME



Direct calculations
The experiment simulations have been realized through fi-

nite elements computations using the CASTEM2000 finite ele-
ment code. The body Ω is a cylinder with radius 10 mm and
height 10 mm and the punch is a rigid cone with a 68o half an-
gle at the apex. The mesh of the body was composed of 20�20
quadratic elements.

The indentation process is displacement-controlled and con-
sists of loading, maintain and unloading parts (Figure 2). A typ-
ical indentation curve is represented on Figure 3.

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

U
 (

m
m

)

Figure 2. LOADING HISTORY OF THE INDENTOR

The hypothesis of small strains and rotations has been the
key assumption in the development of the calculations of the ad-
joint state method. It was therefore important to validate this as-
sumption. A series of direct computations has been done in three
different cases : small strains and rotations, large strains and
large strains and rotations, with E = 2�104 MPa and η= 3�104

MPa/s. The results show a good agreement of the indentation
curves (see Figure 3). It is important to remark that the small
difference is due in part to the simple constitutive law assumed.
This hypothesis should be checked before applying this method
for other constitutive laws.

Identification procedure
The identification procedure presented next is based on min-

imization of the cost functional J given in (16) using a gradient
descent method. The “experimental” curve was simulated by fi-
nite element calculations as stated in the previous section with
E = 2�104 MPa , ν = 0:3 , η = 3�104 MPa/s.

The gradient has been computed using the adjoint state
method with the expression (39) after solving the direct problem
(P ) and the adjoint problem (P ?). In the case of the Maxwell
material behaviour, the adjoint behaviour is also a Maxwell law.
This is due to the quadratic viscoelastic potential Φ, which is
self-adjoint.

0.0 0.2 0.4 0.6 0.8 1.0
Penetration depth (mm)

0.0

10000.0

20000.0

30000.0

F
or

ce
 (

N
)

 

Small Strains

Large Strains

Large Strains and Rotations

Figure 3. INDENTATION CURVES FOR SMALL AND LARGE STRAINS

HYPOTHESIS

The numerical gradient computation by the adjoint method
has been compared with a computation by finite differences. The
results for several points and directions showed less than 10%
difference between the two methods.

The minimization algorithm was the quasi-Newton BFGS
algorithm with a line search obeying the Armijo selection rule
(Gill, Murray, Wright,1981).

The shape of the cost functional has been plotted in Figure 4
from a series of direct computations. We notice a smooth flat
valley which should not pose special difficulties to the identifica-
tion.

Identification using exact “measurements”
A first series of identifications have been performed with

exact simulated measurements. The results for different initial
points are presented in Table 1. The starting values of (E;η)for
the algorithm have been at maximum 5 times smaller or 3 times
larger than the real values. In all cases the final value was less
than 0:02% from the value to be identified, after about 15 it-
erations. Some typical evolution path of the algorithm on the
isovalues of the cost functional are plotted in Figure 5.

Figure 6 shows the real indentation curve in comparison to
the initial and converged indentation curve. In terms of cost func-
tional the algorithm brought its value from� 108 to � 101.

Identification using “measurements” with random er-
ror

In order to check the robustness of the identification proce-
dure the simulated measurements have been perturbed by a 10%
random noise. The results of several identifications using per-
turbed measurement data are presented in Table 2. The first pair
and the last pair of data are results coming from identification
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Figure 4. 3D PLOT OF THE COST FUNCTIONAL J

Table 1. IDENTIFICATION RESULTS WITH EXACT MEASUREMENTS

(Eini
;ηini) (E f inal

;η f inal)

(MPa, MPa/s) (MPa, MPa/s)

(4000., 70000.) (20002., 30004.)

(60000., 10000.) (20002., 30009.)

(10000., 5000.) (20002., 30006.)

(60000., 90000.) (19999., 29999.)

with different starting points but with the same measurement per-
turbation. The identified values lie at 2:5% from the real values
for both measurement perturbations.

The path of the algorithm on the isovalues of the perturbed
cost functional is shown on Figure 7.

Figure 8 shows the real indentation curve (E = 2�104 MPa,
η = 3� 104 MPa/s) in comparaison to the initial (E = 6� 104

MPa, η = 9�104 MPa/s) and converged (E = 1:95�104 MPa,
η = 2:91�104 MPa/s) indentation curve. In terms of cost func-
tional the algorithm brought its value from� 108 to � 104. This
is the minimal value of the cost functional where the algorithm
could descent. However, there is a good agreement between the
experimental and identified indentation curve.

Uniqueness and Stability
Even if no precise proof of uniqueness and stability has been

provided, one can notice that the cost functional is almost con-
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Figure 5. PATH OF THE ALGORITHM (exact measurements)
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Figure 6. EVOLUTION OF THE INDENTATION CURVE WITH EXACT

MEASUREMENTS

vex and presents a unique minimum in the domain of physical
interest (Figure 4). For other values of the material parameters
ccc= (E;η) we have obtained similar shapes of the cost functional.
It is important to state that identifications started with values out-
side the presented range did also converge to the same parameter
pair. All these remarks suggest that this inverse identification
problem has a unique solution.

The stability of the inverse problem is revealed by the sen-
sitivity of the identification with regards to measurement noise.
The results show that even 10% noise do not affect the identified
value by more than 2:5%.

In evaluating the results its is also important to notice that
no regularization procedure (Tikhonov or other) has been used
during the identification.
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Table 2. IDENTIFICATION RESULTS FROM MEASUREMENTS WITH

RANDOM ERROR

(Eini
;ηini) (E f inal

;η f inal)

(MPa, MPa/s) (MPa, MPa/s)

(4000., 70000.) (20580., 30490.)

(10000., 5000.) (20611., 30457.)

(60000., 10000.) (19509., 29130.)

(60000., 90000.) (19509., 29136.)
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Figure 7. PATH OF THE ALGORITHM (measurements with random er-

ror)

CONCLUSION
The identification of the parameters of a standard general-

ized non hardening constitutive law from indentation tests was
presented. It has been shown that the adjoint state method can be
extended to contact problems using Lagrange multipliers.

The efficiency of the method has been illustrated on a nu-
merical example for an indentation problem in the case of a
Maxwell viscoelatic problem. The numerical results suggest the
well-posedness (existence, uniqueness and stability of the solu-
tion) for this inverse problem. The precise proof of this result is
still an open question.

The method is extendable to other types of material be-
haviour or loading conditions.
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généralisés, Journal de Mécanique, 1975.
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