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ABSTRACT

This paper deals with the problem of
identifying material parameters by measuring
mechanical and/or thermal quantities. We
propose different energy functions measuring
the gap which exists between Analysis and
Tests. They allow to compute indicators which
will determine if a given set of experimentally
obtained  data is able to identify the desired
thermal and/or mechanical material
characteristics. These indicators are based on
error measures on the constitutive relations. The
so-called constitutive relations relate the load
quantities (ie stress, heat flux vector) to the
strain and/or temperature. These indicators
measure the potentiel validity of the
identification method in evaluating material
parameters. The same functions in which the
correction variables are introduced are also used
to update the tensors associated with the
material properties.

INTRODUCTION

The identification of structural parameters
commonly uses a function describing the

difference between the predicted results given
by a parametric modelling and the
experimentally obtained data. For complex
structures the modelling is most often a finite
element model described with initial values of
structural parameters. These parameters should
be corrected, minimizing the difference existing
between Analysis and Tests. Several methods
have been developed for updating problems and
can be found in the literature, [see for example
Friswell and Motterheads review paper in [1],
Gladwell’s in [2]]. Most methods are dedicated
to mechanics and concern dynamic test data and
identification techniques in thermal engineering
are well developed  [3] [4]. Here we look for a
unified approach allowing to associate thermal
and -mechanical data in order to improve the
identification of material characteristics.
An error measure named error measure on the
constitutive relation has been proposed by the
LMT Cachan to update finite element models by
means of dynamic data. The difference between
modelling and experiment allows to build
indicators having the great advantage of
accurately locating the mismodeled areas. This
measure does not directly use the gap between
analytical and measured frequencies and mode
shapes. It builds the shape of the displacement
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field associated with the kinematic boundary
conditions and the shape of the displacement
field associated with the load. Experimental
information are introduced taking the precision
of measure into account. The principles of this
method have been described in [5]].
The tuning strategy uses an iterative process
with each iteration containing a location step
followed by an evaluation step. The notion of
error on the constitutive relation allows to define
local indicators which have permitted to
accurately locate modeling errors in updating
procedures.
Here, we extend the notion of error on the
constitutive relation to thermal and thermo-
mechanical engineering.

ERROR MEASURES ON THE CONSTITUTIVE
RELATION

The description of the gap between Analysis and
Test uses an error measure on the constitutive
relation. This measure has shown an efficient
location power of the modeling error for
updating problems.[7-9] where a given finite
element model is improved using modal test
results. An error measure on the constitutive
relation has also been proposed for
geometrically non-linear problems in [10-11].
Let us recall the principle as seen from the
mechanical point of view and propose a measure
in thermal and  thermo-mechanical cases.
We consider the perfectly elastic behaviour of
solids as undergoing infinitesimal strains. The
boundary is assumed to be decomposed into two
complementary subsurfaces ∂S1 and ∂S2. Let us
consider the following elastic linear reference
problem. In mechanics, it consists in finding the
couple (″, U) as a function of the space and of
the time ″(x,t) and  U(x,t) such that  it is an
admissible couple ? t  [0, ∇[].
Implying that :
- it verifies the prescribed data
   U= Ud  on ∂S1 and   ″n = ″d  on ∂S2 (1)

- it verifies the equilibrium equation
   div ″ + f =  ±±±±[Ű (2)
- and it verifies the initial time conditions.
Moreover it should  verify the constitutive
relation :
    ″[ξ H⁄(U) (3)

The problem can be rewritten a formulation
under the following:
To find the triplet T (U, ″γ[⁄ ) verifying :
- the prescribed data
- the constitutive relation ″[ξ Hℜ(U) (4)
- the complementary relation   ⁄ = ±±±±[Ű (5)

and  verifying the initial time conditions.
implying that  (U, ″γ[⁄ ) is admissible, and obeys
the local equilibrium equation
 div ″ + f = ⁄ χθδ

Let B be the space [{(U', ″', ⁄’δ[admissible,  the
initial time conditions χ″', ⁄’δ verifiying the
equilibrium}].

U = ¬[U', U' ∂S1
= Ud, U' regular} (7)

The reference problem becomes :
To find   (U, ″, ⁄ δ 
[B such that it obeys the
«constitutive» relations :

″[ξ Hℜ(U)  and  ⁄ = ±±±±[Ű (8)
This reference problem can finally be rewritten
as:
To find (U, ″, ⁄ δ 
[B such that it
minimizies :
e2 (U’γ[″’,[⁄’) = II ″’[Τ H ℜ(U’)II2 +

II⁄’ - ±±±±[Ű’ II2 (9)
The norms used are energy norms:

II ″ II2   = ″Hϑ1
″

τtΖ 0

≥

dτdt (10)

 and

II ⁄ II2   = δ
1
±
δ

τtΖ 0

≥

dτdt (11)

The resulting e2(U, ″, ⁄) is named error measure
on the constitutive relation. If this measure is
equal to zero, the solution is the reference
solution.
To identify the characteristics by means of
experimentally obtained data, we commonly
introduce the measured quantities.
The mechanical problem denoted (I) becomes 
To find   (U, ″, ⁄ δ 
[B such that it minimizies :
e2

 exp (U’,[″’, ⁄’) = II ″’[Τ H ℜ(U’)II2 +
II⁄’ - ±±±±[Ű’ II2  + II U’ - UexpII2     +
II ″’ - ″expII2   + II ⁄’ - ⁄expII2 (12)
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with II U II2 = H⁄(U)⁄(U)
τtΖ 0

≥

dτdt (13)

 where the quantities Uexp, ″exp , ⁄exp are the
measured or experimentally obtained data. Most
often, only displacement measures Uexp are
available. Other measured quantities can a priori
be introduced. If the model material properties
are wrong. e(U, ″, ⁄) � 0 and H and ±±±± should be
corrected. The correction of these quantities
κH[and[κ±±±±  are computed minimizing :

E2
 exp:  (U’, ″, ⁄γ[κH , κ±±±± )=======>

E2
 exp (U’, ″, ⁄γ[κH ,κ±±±±) = II ″’Τ(H+[κH)

ℜ(U’)II2 +II ⁄’-(±Η±Η±Η±Ηκ±Φ±Φ±Φ±ΦŰ’II2+ II U’ - UexpII2   + II
″’ - ″expII2   + II ⁄’ - ⁄expII2

(14
)

In thermal procedure, the reference problem can
be written in a symmetrical form assuming
infinitesimal fluctuations in temperature :

To find the triplet T (q, T, ±) verifying :
* the prescribed data
T = Td  on  ∂ST1 and qn = qd on ∂ST2 (15)

* the equilibrium equation    div q Ρ r =
±[[[[[[χΞθδ

* the constitutive relation      q = - K T (17)
and
* the complementary equation Tc �Ζ♣ (18)

c and K should be corrected if E2
T( q, T,[± ) � 0

minimizing
E2

T exp: (q’, T’, ±’γ κK , κc ) ===>
E2

T exp( q’, T’,[±’, κK , κc )=IIq’ + (K+∆K )
T’II2  +  II±’[Τ[χc + ∆c) ÝT ’II2 + II q’ - qexpII2

+  II T’ - TexpII2    +   II ±’ - ±expII2 (19)

The quantities containing the material
characteristics  H and K , and[±±±±[and====c have a
symmetric behavior in the reference problem
equations. The minimization of the error
measures E2

 exp (U, ″, ⁄, κH , κ±±±±) and  E2
T exp:

(q, T,[±γ κK , κc ) enables us to identify these
material properties.

Remark 1:
In [13], the authors use a similar approach
without introducing the complementary
constitutive behavior that generalizes the
thermal formulation. Another point is that our
approach is based on reformulating the
mechanical, thermal or thermo-mechanical
problem as a problem in variation computation.
For coupled equations,
Biot’s variational principle can be used.
The norms used to express the rewritten thermal
problem are those coming from this variational
principle :  ↑′+ ↑D - ↑W = 0 (20)
Biot’s thermoelastic potential is given by :

′= 1/2  c(T ϑ T0 )
1
T0τ

(T ϑ T0 )dτ  (21)

The dissipation function is the

D = 1/2 qi
τ

1
kT0

qidτ (22)

The variation in the generalized virtual work is
↑W = - (T ϑ

⌡τ

T0 )ni≤sidS (23)

Remark 2 :
The approach we have proposed here can be
understood as a variant of the strategy proposed
by Chavent et al. in [12 ] where the partial
differential equation is considered a constraint in
a least square approach. But here the most
important terms are the first terms, and the
experimental information marked by the
underscript « exp » are introduced as additional
terms to avoid the trivial solution 0 and to drive
the solving.

THE COUPLED THERMO-MECHANICAL
POINT OF VIEW

With the assumption of small perturbations,
where the displacement gradient is small, the
temperature field only differs from a reference
temperature T0 and the time rate of change of
the temperature, the resulting thermoelastics
problem is written using :
Τ[″M[[ξ Hℜ(U) (24)
Τ[″T    = (T-T0)A    and    TM[=  ″M[Ρ[″T (25)
- the local equilibrium equations :

div ″TM + f =  ±±±±[Ű (26)
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div q Ρ r =  c  - T0A .ℜ χΨ⊥δ

- the constitutive equations
″TM[ξ Hℜ(U) + (T-T0)A (28)
q = - K T (29)

where H is the elasticity tensor, A the stress
temperature tensor, K the conductivity tensor
and ±±±±[ the density characterizing the material
properties. The parameters of these tensors are
the characteristics we look for in an
identification problem.
The infinitesimal strain tensor is defined by the
equation :
ℜ(U) = 1/2 ( U + t U) (30)

In the isotropic case, H is characterized by
Lame’s coefficients and A and K are spherical
tensors such that A = aId and
K = kId where k is the conductivity scalar
and a = - (3↔↔↔↔ + 2←←←←)=∼=∼=∼=∼
The basic equations cant hen be written as
follows:
* Local equilibrium equations :

div (″M[Ρ[″T ) + f =  ±±±±Ű (31)
⁄�� atrT-Tcrq div 0ΖΗ (32)

* Constitutive equations :
″TM[ξ H ℜ(U) + (T-T0)aId (33)

or
″TM[ΖΖΖΖ 2←←←←ℜ(U)+↔↔↔↔[χtrℜ(U))Id  -

(T-T0) (3↔↔↔↔ + 2←←←←)=∼=∼=∼=∼ Id (34)
and

q = - K T (35)

* equilibrium equations :
div ″TM + f = ⁄
- div q + r = ±TM

″TM[[=  ″M[Ρ[″T        and (36)
±TM   = ±M[Ρ[±T

The constitutive relations become :
″T    = (T-T0) (3↔↔↔↔ + 2←←←←)=∼=∼=∼=∼ Id (37)
″M[[ξ Hℜ(U)   and    q = K T (38)

[[[±M[ξ[- T0 a trT’  ±T [= c, ⁄[=  ±±±±[Ű

Biot’s  variational principle is written as :
↑′+ ↑D - ↑W = 0 (39)

and Biot’s thermoelastic potential as: 

(40)      )(1)(21/2 0
0

0 τϑϑΗΗΖϖ

τ

dTT
T

TTcijijiiii ⁄←⁄⁄⁄↔

The dissipation function  is

D = 1/2 qi
τ

1
kT0

qidτ (41)

The variation in the generalized virtual work is :
Ε Φ (42)                   )(W 0 τϑϑϑΖ

ττ

duudSsnTTun iiiijij ≤±≤≤″≤
⌡

��

In the most general case: a function evaluating
the difference between analysis and test can be
defined by :
F(″T , ″Mγ[U, T,  ⁄γ[q,[±M , ±T) = II ″T - (T-T0)
(3↔↔↔↔ + 2←←←←)[∼∼∼∼ Id II2 + II ″M[[Τ Hℜ(U) II2 + II q +
K T II2 + II⁄[-  ±±±±[ŰII2  Ρ[II±M[[+ T0 a trℜ’ II2 +
II ±T [- c T’ II2                                       (43)

For stationary cases and taking the equation
constraints into account, we obtain :
F(″T, ″Mγ[U, T)= II ″T - (T-T0) (3∝ + 2∂)[♠ Id II
+ II ″M[[Τ Hℜ(U) II+ II q + K T II2
(44)
obeying :

div (″M[Ρ[″T )+ f = ⁄,    (45)
div q + r = Ω [[χ[ θδ.

The experimental information are introduced as
in the previous section.

VISIBILITY OF THE PERTUBATIONS USING
MECHANICAL TEST RESULTS OR THERMAL
TEST RESULTS

This section is developed from a mechanical
point view for simplicity’s sake.
To measure the efficiency of a set of
experimentally obtained available data and
identify the material characteristics, we will
introduce simulated perturbations in the model,
and then measure the capability of the indicators
associated with the energy functions to detect
these perturbations.
Let p0i denote the value of the structural or
material parameter found after an updating
technique, and pi the value obtained after
introducing a possible bug in defect of the
model. If we assume that the maximum defect is
a given value ξ p, a range of variation is
described with coefficients ♠i such that:
 pi = p0i + ♠i κp  ♠ i 
 [-1, 1] & i[
[ [1, m] (47)
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that can be rewritten p  = p0  + κp ♠[,  p , p0  and
∼∼∼∼ being vectors with the dimension m.

Let T(0) denote the triplet (the  mechanical
triplet is (″χ♠=0), U(♠=0), ⁄χ♠=0)), the thermal
triplet is (q(0), T(0), ±(0))), computed by
solving the problem presented in the previous
section.
In a mechanical problem, the material
characteristics become

H(♠) = H(0) + ∆H (48)

and
============ ±±±±(♠)=±±±±(0)+  κ±±±± (49)
To evaluate how the chosen energy function E is
affected by a perturbation ♠ of the model, the
following problem (II) is solved:
To find the triplet (″(♠), U(♠), ⁄(♠)) minimizing
:
E2

0 : (″’, U’, ⁄’ ) =>
E2

0 (″’, U’, ⁄’)=II ″’Τ(H+[κH) ℜ(U’)II2

+II⁄’-(±Η±Η±Η±Ηκ±Φ±Φ±Φ±Φ Ű’II2+ II U’ - U(0)II2 +
  II ″’Τ ″(0)II2 +  II⁄’-⁄(0)II2 (50)

The experimental information are here replaced
by  U(0), ⁄(0), ″(0). If the measure E2

0 (″, U, ⁄)
is sensitive to the perturbation introduced by ♠
in
the model, the new triplet (″(♠), U(♠), ⁄(♠))
obtained by solving the problem (II) will contai
a significant modification.

The model is now considered in the initial form
∼∼∼∼=0 and the experimental data we introduce
now are the modified triplet (″(♠), U(♠), ⁄(♠)).
To measure the detectability of the ♠-defect the
following problem (III) is solved:
To find the triplet (″, U, ⁄) minimizing :
E2

∼ : (″’, U’, ⁄’ ) =>
 E2

=∼ (″’, U’, ⁄’)  = II ″’ΤH ℜ(U’)II2+
    II⁄’-±±±± Ű’II2+ II U’ - U(♠)II2 + II ″’Τ ″(♠)II2+
    II⁄’-⁄(♠)II2 (51)

If the indicators associated with the E2
∼ measure

have a significant value, the defect is visible.
The visibility of a defect  associated with E2

∼

global indicator is given by :

(52)             
²)²(2/1²)(U)H²(2/1

²U²(U)H
V²

U��

��

���

���

�

〈〈〈

〈

⌠

and to obtain the local indicators the energy
norms are computed restricted to the sub-
structures

DETAILED EXAMPLE OF THE COMPUTATION
OF VISIBILITY INDICATORS IN THE
MECHANICAL FRAMEWORK

As an example, using modal tests results, the
constitutive relations are written as follows :
 ″ = He(U) ⁄ = - ±±±±[ℵexp2 U        (53)
Let  B[ℵ[exp be the space {(U', ″″″″', δδδδ ΦΦΦΦ,  U' U,
χ″χ″χ″χ″', δΦδΦδΦδΦ verifies the equilibrium}.
The reference problem becomes :
To find (U, ″, ⁄ δ 
[B[ℵ[exp obeying the
«constitutive» relations.
E2

∼ = II ″ΤH ℜ(U)II2 + II⁄-±±±±[ℵexp2 UII2  +
II U’ - U(♠)II2 (54)

and
ξ ζ

(56)            d)Uρω(
ρω

1)Uρω(²Uρω

(55)                     d))U(H()HU(H-(tr²)U(.H

2
exp2

exp

2
exp

2
exp

-1

τδΗδΗΖδΗ

τϑΖ

τ

⁄″⁄″⁄″

The global visibility of the defect is then
computed by :

2/

22
exp

2)(
V²

D

UUH ±∂⁄″ ΗδΗϑ

Ζ (56)

The visibility per sub-structure is then given by
the computation of the energy norms only on the
considered sub-structure:

2/
Sb

22expSb
2)(

V² D

UUH ±∂⁄″ ΗδΗϑ

Ζ (57)

and

 D =  ||″||
2 

+ ||Kℜ(U)||
²
+ 

 
||[⁄||

² 
+ ||[≈ℵ2U||² (58)

If the defect is visible, the sub-structure
containing the default will be well localized by
the visibility indicators. The same approach
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allows to write visibility indicators associated
with thermical quantities and/or thermo-
mechanical quantities.

In the following section we illustrate the
behaviour of the visibility indicators.

VALIDATION

Example1 :
The first example  is a damped free beam free
disctized into 15 finite elements The mechanical
characteristics are :

Young’s modulus : E=0.75 1011 pa
Area                    : S=10-4 m²
Total length         :L=0.8 m
Density               : D=0.78 kg/m3

The defects close to embedding are generally
more visible when the information are complete
(fig2). The defects in zones having a strong
deformation energy or a strong  kinetic energy
are visible.

Figure 3  shows that the defects are visible when
all experimental information are available : they
have positive or negative values

In figure 4, the experimental information are
reduced to 2 modes, but the sensor location is
optimal. The visibility is preserved[12].

In figure 5, by choosing the number and the
position of  degrees of freedom in an optimal
way,  the visibility is preserved.

Example2  Truss structure
The experimental information are  complete on
the degrees of freedom which are all measured.
The indicators show that 30 modes are enough
to detect the defects (fig 6 et 7). The visibility is
very good, measuring all degrees of freedom.

1



Copyright ©1999 by ASME7

In figure 8 below, the experimental information

are very limited. Only  30 dof sensors  are
measured. On the other hand the indicators of
visibility show that the preliminary optimization
of sensor sites ensures the visibility.

For the same defect size of the defect, the

visibility on substructure 13 is less significant
with  only  5 measured modes. (fig9).

Figure 10 shows that the visibility is not

preserved if the sensors location are not
optimized

CONCLUDING REMARKS

In the previous tested cases we have shown the
efficiency of the proposed indicators to measure
the possibility of  identifying a given default or a
given material characteristics variation  These
indicators are particularly interesting when it is
impossible to measure the entire displacement
field, which is often the case.
Future works will consist in applying these
indicators on thermo-mechanical loads in order
to detect thermo-mechanical variation properties
in a more accurate way.
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