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ABSTRACT
We consider the problem of determining the diffusion coef-

ficient a(x) in a 2D elliptic equation from a distributed measure-
ment z in H1 of the solution u of the equation. For a problem
with a simple geometry, we give conditions under which the first
derivative of the b = 1=a 7�! u mapping is coercive. Then we
show that its non linearity in a direction d increases, and its sen-
sitivity decreases, when the ratio j∇(d=b)jL2=jd=bjL2 increases.
This corroborates observations on scale, sensitivity and non lin-
earity made in (Chavent and Liu, 89) (Grimstad and Mannseth,
99).

1 INTRODUCTION
The estimation of the distributed diffusion coefficient a in

the elliptic equation

�∇(a∇u) = F in Ω (1)

is a long studied problem. In equation (1), Ω � IR2 is the space
domain, and F is a supposedly known source function.
The a 7�! u mapping is very non-linear, and its inversion from
measurement data z on u by a least-squares fitting technique of-
ten unstable when data are noisy. Stabilization can be obtained
by regularization, or by using a multiscale approach, which also
enhances the performance of the optimizer (Chavent and Liu,
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89) (Liu, 93). It was shown in (Liu, 93) for a one-dimensional
problem with constant coefficcient that the non-linearity of the
a 7�! u mapping was increasing in the direction of finer de-
tails of the parameter space, when at the same time the sensi-
tivity was decreasing. This relation between nonlinearity, scale
and sensitivity was investigated further recently in (Grimstad
and Mannseth, 99), also for a 1D problem. We extend in this
paper the previous results to a two-dimensional case with a
simple geometry. Our main result is that, under technical as-
sumption which will be made clear below, the curvature of the
b = 1=a 7�! u 2 H1(Ω) mapping in a direction d of the param-
eter space is bounded from above by an increasing function of
j∇(d=b)jL2(Ω)=jd=bjL2(Ω), which vanishes at zero. Simultane-
ously, the sensitivity in the direction d is bounded from below by
a decreasing function of j∇(d=b)jL2(Ω)=jd=bjL2(Ω), which goes to
zero when the upper bound on the curvature blows up to infinity.
This implies immediately, when a multiscale parametrization of
b is used, that this curvature increases when the parametrization
of b is changed from coarse to fine.

2 SETTING OF THE PROBLEM

We want to recover a in (1) as a function of x2Ω from some
measurement z of the solution u. In most practical application,
the available measurement z are very lacunary (point or boundary
data), but one would already be content to handle the case where
z is a measurement of u in L2(Ω). We shall nevertheless consider
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in this paper the application wise unlikely case where

z is a measurement of u in the “state space” H 1(Ω)
of the elliptic equation:

�

The properties of the a 7�! u 2 H 1(Ω) mapping we obtain in
this paper will then allow to use the state-space regularization
approach of (Chavent and Kunisch, 93), (Chavent and Kunisch,
98) to handle the more realistic case of an L2 observation of u.
We shall consider the simple case where the source term F of (1)
is made of a distributed source f 2 L2(Ω) and single Dirac-like
sources with given flow rate. It will be convenient to implement
theses sources as boundary conditions over the boundaries γ of
small holes in Ω. We shall denote by G the collection of the
boundaries γ of each hole, and by Q γ 2 IR the given flow rate
assigned to the source γ 2 G. Hence we replace (1) by

�∇:(a∇u) = f 8x 2Ω; (2)

Z
γ
a

∂u
∂ν

= Qγ;ujΓ = uγ 2 IR (unknown constant); 8γ 2 G: (3)

which we complement by Dirichlet conditions on the outer
boundary Γ of ∂Ω :

u = 0 on Γ: (4)

Remark 2.1. All what follows can be easily adapted to handle
the case of Neumann conditions on Γ:

a
∂u
∂ν

= g on Γ (5)

provided the source terms Qγ; f and g satisfy:

∑
γ2G

Qγ +
Z

Ω
f +

Z
Γ

g = 0 (6)

and (2) (3) (5) is complemented by the additional equation

Z
Ω

u = 0: (7)

We consider now the set of admissible parameters. Rather than
searching for the diffusion coefficient a itself, we shall search for

its reciprocal b = 1=a. This reduces somewhat the non-linearity
of the parameter ! output mapping (think of the case a = con-
stant !). It allows to obtain stability estimates in the 1D case
(Chavent and Kunisch, 93), and proves necessary also in the
2D case we consider here. Another similarity with the 1D case,
where b had to be constant over a small interval surrounding the
sources, we shall require in 2D that b is constant on each source
boundary γ. This is a physically reasonable assumption as the
size of the boundary γ is small compared to the scale at which
we hope to recover b = 1=a. So our choice for the set D of ad-
missible parameters is:

D = fb 2 H1(Ω)j j
0 < bm � b(x)� bMa:e: on Ω;bjγ = bγ 2 IRg (8)

where bm;bM are given positive constants.
Then for any b 2 D, the variational formulation of (2) (3)(4) is :

u 2V s:t:
Z

Ω

1
b

∇u:∇v =

Z
Ω

f v+ ∑
γ2G

Qγvγ 8v 2V; (9)

where

V = fv 2 H1(Ω)jvjγ = vγ = unknown constant 8γ 2 Gg: (10)

Equation (9) defines the non-linear mapping b 2 D 7�! u(b) 2
H1(Ω) to be inverted. The corresponding least squares problem
is:

b̂ minimizes J(b) = j∇(u(b)� z)j2L2(Ω) on D (11)

where

z 2 H1(Ω) is a given measurement of u: (12)

In order to estimate the curvature of the b 7�! u(b) mapping in a
direction d = b1�b0 (b0;b;2 D), we shall require that the solu-
tion u of (9) satisfies the following inequality:

j∇u(x)j< M a:e: on Ω;8b 2 D (13)

where M is independant of b.
This will clearly be satisfied if for example f = 0. Finally, we
shall also suppose that

Ω connected; ∂Ω = Γ[ (Uγ2G) is regular (14)
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which implies, by a regularity theorem, that u is in H 2(Ω), and
hence in C (Ω̄) as n = 2. This implies that

ju(x)j � uM a:e: on Ω;8b 2 D (15)

where uM is independant of b.
Also, if we define

W = fv 2 H1(Ω)j
Z

Ω
v = 0g;

then for any g 2 L2(Ω) such that
Z

Ω
g = 0, the elliptic equation

Z
Ω

b∇w∇v =

Z
Ω

gv 8v 2W (16)

has a unique solution w 2 W . As ∂Ω is regular by (14) and
b 2 H1(Ω) by (8), we see that the solution w of (16) is in fact
in H2(Ω), and hence in L∞(Ω). We shall denote by c∞ the corre-
sponding continuity constant:

bmkwk∞ � c∞jgjL2(Ω); (17)

where c∞ is independant of b.

3 A VECTOR FIELD DECOMPOSITION OF L2(Ω) �
L2(Ω)

A basic ingredient to our proof will be a div-rot decomposi-
tion of IL2(Ω) = L2(Ω)�L2(Ω) which is adapted to the elliptic
equation (2) (3) (4) or (9).

We associate to V an equivalence relation ' on vector
fields ~q of IL2(Ω) by:

~q =~q 0()
Z

Ω
~q:∇v =

Z
Ω
~q 0∇v 8v 2V (18)

and we denote by

�
G = IL2(Ω=' the corresponding quotient space
G? its orthogonal complement in IL2(Ω)

(19)

Then one can prove, by techniques similar to (Girault and
Raviart, 86):

Proposition 3.1. The space G and G? are given by:

G = f∇ϕ ;ϕ 2Vg (20)

G? = f∇^Ψ ;Ψ 2Wg (21)

where W is defined by (16) and where

∇ϕ = gradient of ϕ;

∇^Ψ = rotational of Ψ:

Let now

b 2 D ; d 2 H1(Ω) (22)

be a nominal parameter and a perturbation direction in the ad-
missible set D, and

u = u(b) 2V (23)

be the corresponding solution of (9), which is supposed to satisfy
(13) and (15). By virtue of (20), we see of course that

∇u 2 G: (24)

If the function d is constant, then d∇u 2 G too !
But in general d∇u 62 G; it has a non-zero component ∇^Ψ on
G?, given by:

Ψ 2W;

Z
Ω

∇^Ψ:∇^ v =
Z

Ω
d∇u:∇^ v 8v 2W:

One can prove then the

Proposition 3.2. (Hypothesis and notation (22) (23)):

jd∇ujG?

jd∇ujL2
=
j∇^ΨjL2

jd∇ujL2
�CW (Ω)

j∇^d:∇ujL2

jd∇ujL2
(25)

where:

CW (Ω) = Poincaré constant for the space W: (26)

Proposition 3.2 shows that the relative amplitude of the compo-
nent of d∇u on G? tend to be small when d is “not too far from a
constant”, this “distance” being measured by the relative ampli-
tude of j∇^d:∇ujL2 to jd∇ujL2 .
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4 AN INVERSE STABILITY ESTIMATE
Let b0;b1 2 D be two admissible parameters, and u0;u1 2V

the corresponding solutions of (9). One obtains by substraction:

Z
Ω

b1�b0

b0b1
∇u0:∇v =

Z
Ω

1
b1

(∇u0�∇u1)∇v 8v 2V; (27)

for which the following inverse stability estimate holds:

Proposition 4.1. If

d =
b1�b0

b0b1
(28)

satisfies

CW (Ω)
j∇^d:∇u0jL2

jd∇u0jL2
< 1; (29)

where CW (Ω) is defined in (26), then:

 
1�CW (Ω)2 j∇^d:∇u0j2L2

jd∇u0j2L2

! 1
2

jd∇u0jL2 � j
1
b1

(∇u0�∇u1)jL2 :

(30)

Proof. Equation (27) rewrites, using the equivalence relation '
defined above:

d∇u0 '
1
b1

(∇u0�∇u1);

so that the two norms in the quotient space G are equal:

jd∇u0jG = j 1
b1

(∇u0�∇u1)jG: (31)

The orthogonal decomposition of d∇u 0 on G�G? is:

d∇u0 = ∇ϕ+∇^Ψ ;ϕ 2V;Ψ 2W;

so that

jd∇u0j2L2 = j∇ϕj2L2 + j∇^Ψj2L2 :

Hence:

jd∇u0j2G = j∇ϕj2L2 = jd∇u0j2L2 �j∇^Ψj2L2 :

But d defined by (28) satisfies d 2H 1(Ω), and we can apply
proposition 3.2. Hence

jd∇u0j2G � jd∇u0j2L2

 
1�CW (Ω)2 j∇^d:∇u0j2L2

jd∇u0j2L2

!
: (32)

By definition of the quotient space G one has also:

j 1
b1

(∇u0�∇u1)jG � j
1
b1

(∇u0�∇u1)jL2 : (33)

Combining (31) (32) (33) under hypothesis (29) gives the esti-
mation (30).

5 FINITE CURVATURE ESTIMATES
We analyse in this section the velocity η and the acceleration

ξ in the data space H1(Ω) along the path P image by the b 7�!
u(b) mapping of a given [b0;b1] segment of D.
Given b0;b1 2 D and t 2 [0;1] we set:

bt = (1� t)b0+ tb1 2 D; ut = u(bt) 2 H1(Ω): (34)

The path P is the collection of all ut ; t 2 [0;1]. The velocity η
and accelleration ξ along the path are

ηt =
dut

dt
; ξt =

d2ut

dt2 : (35)

By substituting b by bt in (9) and derivating one and two times
one finds easily that (we drop from now on the substript t) η and
ξ are given by:

η 2V;
Z

Ω

1
b

∇η:∇v =

Z
Ω

c
b2 ∇u:∇v 8v 2V; (36)

ξ 2V;
Z

Ω

1
b

∇ξ:∇v = 2
Z

Ω

�
c
b2 ∇η� c2

b3 ∇u

�
:∇v 8v 2V;

(37)

where

c = b1�b0 (38)
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We want to see wether we can find αm and R such that, for all
t 2 [0;1]:

j∇ηjL2 � αmjcjL2 with αm > 0; (39)

j∇ξjL2 �
1
R
j∇ηj2L2 with R > 0; (40)

where αm and R are as independant as possible of t and b0;b1 in
D.
The geometrical interpretation of (39) (40) is as follows (Chavent
and Kunisch, 96)

� the constant αm is a lower bound to the sensitivity of the
b 7�! u(b) mapping at b= bt in the direction c of the param-
eter space (a sort of “guaranteed sensitivity” at b in direction
c). In the finite dimensional case αm is nothing but a lower
bound to the singular values of linearized forward map.
As it will turn out in the following estimations that the “rel-
ative perturbation”

e = c=b (41)

rather than the perturbation c = b1� b0 appears in the for-
mula, it will be convenient to replace (39) by the equivalent
inequality:

j∇ηjL2 � α̃mjejL2 with α̃m > 0: (42)

� the constant R is a lower bound to the radii of curvature along
P. It becomes infinite when P is a segment. Notice that (40)
can hold even if (39) or (42) don’t.

We search first for a lower bound to j∇ηj.

Proposition 5.1. for any b0;b1 2 D and t 2 [0;1] one has

j1
b

∇ηj � (1�µ2)1=2jd∇uj (43)

where

8>>><
>>>:

b = bt = (1� t)bo+ tb1

d =
c
b2 =

b1�b0

b2

µ =CW (Ω)
j∇^d:∇uj
jd∇uj :

(44)

Proof. inequality (43) is obtained immediately by passing to the
limit after dividing by dt in inequality (30) for b 0 = bt ;b1 = bt+dt

when dt goes to zero.
In general, there are stagnation points inside Ω, where j∇uj =
0, in which case there is no hope to obtain a strictly positive
guaranteed sensitivity α̃m for e = c=b in L2 of the whole Ω:

Corollary 5.1. Let Ω̃�Ω be such that

j∇u(x)j � m > 0 8x 2 Ω̃ (45)

Then

j∇ηjL2(Ω) �
1
m

bm

bM
(1�µ2)

1
2 jejL2(Ω̃) (46)

Notice that one can have Ω̃ = Ω in certain circumstances, for
example when f = 0 with a single well γ.

Using the equations (36) and (37) defining the velocity η and ac-
celleration ξ, together with the grad / rot decomposition of propo-
sition 3.1, one can obtain the following upper bound to j∇ξj:

Proposition 5.2. For any c = b1� b0 with b0;b1 2 D and t 2
[0;1] one has,

j∇ξj � 2c∞
bM

bm
j∇^ ejj∇^ e:∇uj (47)

where c∞ is the continuity constant of the g 2 L2(Ω) 7�! w 2
L∞(Ω) mapping defined in (17).

We see from (47) that the second derivative ξ, and hence the cur-

vature, is zero as soon as ∇e = ∇
n c

b

�
is colinear to ∇u every

where in Ω. It is hence the (relative) variation of the diffusion
coefficient perpendicular to the flow lines which is responsible
for the non-linearity in our case.
Combining proposition 5.1 and 5.2 gives immediately an estima-
tion of the curvature 1=R of the path at b = bt :

Corollary 5.2. For any b0;b1 2 D and t 2 [0;1], the curvature
1=R of P in H1(Ω) at b = bt satisfies:

1=R� 2c∞

�
bM

bm

�3 ν2

1�µ2 (48)

where:

µ =Cw(Ω)
j∇^d:∇uj
jd∇uj (d = c=b2) (49)
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ν2 =
j∇^ e:∇ujj∇^ ej

je∇uj2 (e = c=b) (50)

In order to see how the sensitivity α̃m and the curvature 1=R are
related to

χ = j∇ej=jej (51)

we consider the simple case where f = 0 and Ω contains only
one well, so that

9m > 0 : j∇u(x)j � m > 0 8x 2Ω; (52)

and replace D by the smaller set

D∞ = fb 2 Dj j∇b(m)j � b∞ 8x 2Ωg (53)

with b∞ still to be chosen.

We search now for the constant α̃m in the inverse stability
estimate (42) and for the upper bound 1=R to the curvature in
the inequality (40).

We notice that (43) is written in term of ∇d = ∇(c=b2),
whereas it is ∇^ e, which has the same norm as ∇e = ∇(c=b),
which appears in (47). Using the fact that b is in the set D∞
defined by (53), one checks easily that:

∇d
jdj �

bM

bm

j∇ej
jej +

b∞

bm
: (54)

Hence if the upperbound b∞ to j∇b(x)j in D∞ is chosen such that

CW (Ω)
M
m

b∞

bm
� 1

2
; (55)

then

1�CW (Ω)2 j∇^d:∇uj2
jd∇uj2 � 1

2

 
1�4CW(Ω)2 M2

m2

�
bM

bm

�2

χ2

!
:

(56)

Combining (43) and (47) with (56) gives the expected result:

Proposition 5.3. Suppose that the admissible set D∞ satisfies
(55). Let b0;b1 2 D∞ and t 2 [01] be given, and define

K = 2CW (Ω)
M
m

bM

bm
(57)

where e = c=b = (b1� b0)=b with b = bt . Then, under the con-
dition

Kχ < 1 (58)

inequalities (42), and (40) hold with:

α̃m =

p
2

2
m

bm

bM
(1�K2χ2)1=2 (59)

1=R = 2
p

2c∞
M
m2

�
bM

bm

�3 χ2

(1�K2χ2)
(60)

This proposition shows that the curvature 1=R of P in H 1(Ω)
will remain finite if e = c=b is “not too far from a constant”

in the sense that χ =
j∇ej
jej is small. The curvature is exactely

zero when χ = 0, ie when c=b is a constant (which is not very
surprising...). It increases when χ departs from zero, and the
upper bound 1=R blows up to infinity when χ approaches 1=K.
At the same time, the “minimum guaranted sensitivity” α̃m tends
to zero.

These estimates confirm the numerical observations made
in (Liu, 93) (Grimstad and Mannseth, 99) that directions of
high non linearity seem to coincide with directions with low
sensitivity.
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