
DETERMINATION OF MECHANICAL PROPERTIES OF THIN FILMS AND
FUNCTIONAL GRADIENT MATERIALS USING INVERSE TECHNIQUE

ABSTRACT
This paper describes a method for evaluating material properties

of multi-layered systems and functional gradient materials using data
obtained from indentation testing.  The measurement data collected
from the penetration force-depth curves in the test are employed for
identifying elastic moduli of thin films and functional gradient mate-
rials.  An indentation problem is first analyzed on the basis of the
three-dimensional axisymmetric theory of elasticity.  Analyses of elastic
contact problem, which an elastic axisymmetric indenter is penetrated
into multi-layered systems and into functional gradient materials, are
presented.  An inverse analysis for determining Young’s moduli,
Poisson’s ratios and radii of the contact area is performed under the
assumption that the elastic moduli of the substrate and the indenter,
and thicknesses for layers are known.  When complex method is used
for minimizing an objective function composed of errors, effective
sampling of data obtained by penetrating indenters with various radii
of curvature into the coated substrate and functional gradient materi-
als is presented.

INTRODUCTION
Modern electric devices and mass storage devices have frequently

multilayered structures to achieve a high performance and function-
ality.  Furthermore, such devices are coated often by metal thin films
to protect from the damage of external dusts and environment.  It is
important to estimate their mechanical properties for improving the
reliability of devices and machines.  Generally, mechanical proper-
ties of thin films deposited on a substrate are different from those of
bulk.  Hence, we need to know in-situ the mechanical properties of
deposited films.  However, it is very hard to carry out a test for evalu-
ating the mechanical properties of films in a sub-micrometer thick-
ness.  Ihara, et al. estimated the material properties of a thin film
using surface wave spectroscopy.  Matui, et al. examined the accu-
racy of identified elastic moduli in a multilayered system.  Kishimoto,
et al. idetified the elastic properties for a bar of functional gradient
materials.  Indentation test is one of methods for evaluating the me-
chanical properties of thin films, which is the one estimating elastic
moduli of thin films using experimental data of the force and the depth
of an  indenter penetrated into a multi-layered system.  In the present
paper, when data of the indentation force and depth are used, a method
for identifying the mechanical properties of thin films and the distri-
bution function of mechanical properties in functional gradient mate-
rials will be presented.

ANALYSIS OF INDENTATION PROBLEMS
In the present analysis, an axisymmetric elastic indenter with a

cross section of f(r) will be penetrated into an elastic half-region com-
posed of layers with various mechanical properties as shown in Fig-
ure 1.  This contact problem is analyzed using the theory of three-
dimensional axisymmetric elasticity.  Then, displacements and stresses
in the layers, the indenter and the elastic half-region can be deduced
by substituting Boussinesq’s potential functions, ψ and φ

3
, into the

following relationships (Miyamoto 1977, Gladwell 1980).
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Figure 1  Model for Analysis and Coordinate System
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where the upper suffix i  indicates the number of film, κ
i
=3-4 ν

i
, ν

i

represents Poisson’s ratio of the films and the indenter.
In this analysis, the thickness of film is constant and uniform,

and every film adheres perfectly to each other.  Then, the boundary
condition for analysis can be expressed as follows;
(I) At the i th interface (z=-h

i
 : i=1,…, n-1)
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1 1
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3 3
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(II) At the top surface of film (z=0)
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(III) At the surface of the indenter (z=0)
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(IV) At the contact area (0≤r≤a, z=0)
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where δ

0
 represents the penetrated depth of the indenter, and f(r) rep-

resents the cross section of the indenter.
(V) At an infinity (r→∞, z→±∞)
     All components of displacement and stress vanish.
Where a represents the radius of contact area, and p(r) represents the
distribution of contact pressure.
     Considering the boundary condition (V), the following Boussinesq’s
potential functions, φ

3
 and ψ are used.

Potential functions for films (i=1,…,n-1)
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Potential functions for an elastic half-space (i=n)
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where J
0
(x) represents the 0th order of the first kind Bessel function,

and several unknown functions,
  
C Cj j

1 4λ λ( ) ( ), ,L , included in the po-
tential functions should be determined from the boundary conditions.
Determination of The Unknown Functions

Here, dimensionless variables divided with the thickness of the
first film, h

1
, or transverse elastic modulus of the first film, µ

1
, are

introduced in the analysis.  Substituting the stresses and displacements
into the relationships of the boundary condition (I) and equating inte-
grands in each relationship yields the following matrix expression for
the unknown functions.
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Where R
i
 represents a coefficient matrix derived from the potential

function of the ith layer and is shown as
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Using the relationship of eq.(20), the ith unknown function in a vec-

tor form C i  can be expressed by the nth unknown function C n , which
represents the function for the elastic half-region.
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Relationships of C
n
1 , C

n

3 , C
n
2

1+
 and C

n

4

1+
are deduced using the bound-

ary conditions (II) and (III).
From the boundary condition (II)
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From the boundary condition (III)
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Using eqs.(25)-(27), the unknown functions, C
n
1 , C

n

3  and C
n

4

1+
are rep-

resented by C n
2

1+ .
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where ∆ = −f f f f2 3 1 4 .
Substituting eq.(29) into eq.(28) yields
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When the Hankel inverse transformation is applied to eq.(30), the un-

known function C n
2

1+  can be expressed by the function of contact pres-
sure.  Hence, all the unknown functions are expressed using the con-
tact pressure, which is the unknown function of r.

Integral Equation for The Contact Pressure
The contact pressure can be determined by solving an integral

equation deduced from the boundary condition (IV) as follows.
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The distribution of contact pressure is expressed using a series ex-
pansion of the 2kth order of the first kind Legendre function to solve
the integral equation (31).
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Substituting eq.(33) into eq.(31), integrating the equation from 0 to
a , then multiplying
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with the equation, and integrating the equation with respect to r yields
the following simultaneous equation.
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where j
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 represents the 2nth order of the first spherical Bessel func-
tion,

                                          δ mn

m n

m n
=

=( )
≠( )







   

  

1

0
,                               (36)

and the paraboloidal indenter with a tip of radius of curvature, R
L
, can

be expressed as

                                              f r r
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Functions, f
j
 (j=1,…, 5), involved in the kernel function of eq.(35) are

expressed as
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where Rlm
i( )  represents the component at the l th row and the mth col-

umn in the matrix * R i( ) defined by eq.(24).
The contact pressure is determined by solving the simultaneous

equation (35) with respect to pk .  Then, the force for penetrating the
indenter until the depth δ

0
 can be expressed as follows.

                                                 F ap= 2 0π                                         (43)

where p0 is the first coefficient in the series expansion of contact pres-
sure.

IDENTIFICATION OF ELASTIC MODULI OF FILMS
     A method for identifying elastic moduli of each layer in a multi-
layered system is described in this chapter.  Data on the curve of force-
depth and the complex method in nonlinear optimization methods
(Jacoby, et al. 1972) are used in the analysis.  There are several in-
vestigations of identifying elastic moduli of thin film coated to an
elastic half-region.  In the field of civil engineering, pavement is re-
garded as an elastic region with multi-layered structures, and Novotny
(1992) presented a method which determines elastic moduli for each
layer from the deflection of ground by applying a piecewise uniform
load to the pavement.  In their investigation, the displacements and
the stresses in the layers can be expressed analytically, so the sensi-

tivity matrix for the unknown parameters can be calculated analyti-
cally.  On the contrary, the sensitivity matrix is hardly derived ana-
lytically in this study, since a relationship between the penetration
force and the penetration depth of the indenter is deduced by only
solving the integral equation.  Hence, the complex method, which is
not required for the derivatives of an objective function, is used in
this investigation.
     The contact problem is analyzed under the assumption that the
penetration force is applied within an elastic limit of materials.  Fur-
thermore, the thickness of films, the elastic moduli of the indeter and
of the substrate are known, and the radii of contact area and the elas-
tic moduli of films are unknown.  The profile of indenter is parabo-
loidal, and the friction between the indenter and the film is neglected.

Objective Function
An example of the curve of the penetration force and the penetra-

tion depth used in an inverse analysis is shown in Figure 2.  This
figure represents the curve for the indenter with the radius of curva-
ture of 10h

1
, where h

1
 represents the thickness of the first layer.  In

this study, several pairs of curves for the indenters with various radii
of curvature are used for identifying the unknown parameters.  An
objective function is a normalized global error
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where the hatted values are additional data, such as experimental data,
collected from the curves of the force and the depth of the indenters.

N
s
 is the number of sampling data.   ˆ *F  and ˆδ 0

 represent the dimen-

sionless values for the force and the depth of the indenter, respec-

tively.  F *  and δ 0  represent those obtained in the inverse analysis,
respectively.
These dimensionless variables are defined as
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Convergence criteria in the inverse analysis are prescribed as follows:

Figure 2  An Example of Penetration Force and Depth
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Table 1  Elastic Moduli for Two-Layered Material and

Indenter

                                    M Ic≤ × ≤−1 0 10 30005.  ,                            (47)
Where M represents the value of the objective function, and I

c
 is the

count of iteration in the complex method.  When either criteria of
convergence is satisfied, we considered that the objective function
attained to the convergence.  Unknown parameters in the complex
method were varied within ±30% of true values.  The inverse analy-
ses were performed 10 times for various initial values of unknown
parameters.

RESULTS OF ANALYSIS
Results for Two-Layered Structures

A contact problem for a layered system which one layer with its
thickness of 1µm is coated to a half-region is first analyzed.  In this
problem, the case where either Young’s modulus or Poisson’s ratio
of film is known is analyzed.  Elastic moduli for a two-layered mate-
rial and for the indenter are shown in Table 1.  A curve of the penetra-
tion force and the depth of the indenter used in the inverse analysis is
shown in Figure 3.  Solid circle represents sampling data used in the
inverse analysis.  Error ratios of identified values to the true values
are shown in Figures 4(a) and (b) for the cases where Young’s modu-
lus is known and Poisson’s ratio is known, respectively.  Figure 4(b)
shows the errors of identified values for the radius of contact area.
The identified Young’s modulus is agreed within ±2% with the true
values, and the identified Poisson’s ratio is within ±4%.  This indi-
cates that Young’s modulus can be identified easily than Poisson’s
ratio.

The influence of the number of sampling data on the accuracy of
identified values is examined using the paramters employed in the

previous analysis.  In this analysis, Young’s modulus, Poisson’s ratio
and radii of contact area are all unknown, and the number of sam-
pling points is varied as 3, 6, 9 and 12.  Figure 5 shows an example of
12 sampling points.  The error ratios of identified elastic moduli to
the true values  are shown in Figure 6 for the number of data points.
It is found that Young’s modulus is identified within the error ratio of
±10% using the sampling data more than 5 points, and also the scat-
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Figure 3  Penetration Force and Depth Curve for R L/h1=10

(a)  Identified Young's Modulus and Poisson's Ratio

Figure 4  Identification Results for Material with One Layer
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Figure 6  Identification Error for Different Number
of Sampling Data

tering of identified Young’s modulus tends to decrease.  However,
even if the number of sampling points increases, the identified Poisson’s
ratio varies widely.  As previously mentioned, it is harder to identify
Poisson’s ratio than to identify Young’s modulus.  When the data of
sampling points on the force and depth curve for an indenter are used
in an identification, we may not be able to expect the increase of the
accuracy of identified values.  Thus, Young’s modulus and Poisson’s
ratio of a film are determined using simultaneously data on several
curves for indenters with various radii of curvature.  Material proper-
ties used for the inverse analysis are shown in Table 2.  Curves of the
penetration force and depth for the indenters with radius of curvature
of R

L
/h

1
=10, 20 and 40 are shown in Figure 7 with sampling points.

The number of sampling points is 6, and the error ratios of the identi-
fied moduli to the true values are shown in Figure 8.  The identified
values are distributed uniformly around the true values.  When this
result is compared to the result with data for a single curve, you can
see that the deviation and scattering of errors is reduced.

An Identification for Three-Layered Structures
In The Case of E1>E2>E3

Elastic moduli for a three-layered material are identified strate-
gically using several curves of the force and the depth.  A strategic
procedure used in this study is described as follows.  A parameter
with minimum scattering resulted from the first identification analy-
sis is fixed at its average value, and remaining unknown parameters
are fixed successively by performing the inverse analysis.  Then, the
constraint ranges of parameters used in the complex method are set in
the variation range of error ratio.  This procedure is iterated until the
average values of four parameters (E
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, ν
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, E
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2
) are determined.  In
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Figure 8    Identified Young's Modulus and Poisson's Ratio
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this analysis, elastic moduli shown in Table 3 are identified.  Here,
all the films are 1µm in thickness.  Sampling points on the curves for
three kinds of indenter with the radius of curvature of R

L
/h

1
=10, 50,

100 are shown in Figure 9.  Variation ranges of parameters are set
equally for all parameters as the lower limit is 30% of E

2
 and the

upper limit is 30% of E
1
.  The error ratios of identified values to the

true values are shown in Figures 10(a) and (b).  The variations of
error ratios at every each step for identifying four elastic moduli are

Table 3  Elastic Moduli for Three-Layered Material
 and Indenter

Region
Young's
modulus
Ei , GPa

Poisson's

ratio

νi

Ratio of shear
moduli

Γ i(=µi/µ3)

Thin film (i=1) 400.00 0.3 2.0

Thin film (i=2) 300.00 0.3 1.5

Substrate (i=3) 200.00 0.3 1.0

Indenter (i=4) 1000.0 0.3 5.0



shown in Figure 10(a).  Figure 10(b) represents the error ratios of the
identified radii of contact area to the true values.  An open circle rep-
resents the result of the first step.  Since the variation of error for E

1
 is

minimum within four parameters, E
1
 is fixed at 400.8GPa.  The iden-

tified radii of contact area are very agreed with the true values in a
comparison with the identified results of elastic moduli.  In this analysis,
the radii of contact area are not fixed at a value, and their variation
ranges used in the next step are taken as the variation ranges of pa-
rameters obtained in the present step.  The results of the second step
are represented in Figure 10(a) by a solid square symbol.  Elastic
modulus with the minimum scattering of error is Young’s modulus
for the second layer E

2
 and thus E

2
 is equated to 302.4GPa of the

average of identified values.  When the identified values in the first
step are compared with those in the second step, the variation of Poisson’s
ratio fairly reduces.  The same procedure is carried out, Poisson’s
ratio ν

1
 for the first layer is fixed at 0.2955 in the third step, and ν

2
 for

the second layer is fixed at 0.2953 in the forth step.  You can see from
Figure 10(b) that the scattering of identified radii of contact area in
the forth step decreases than that in the first step.  Final values deter-
mined through four steps are listed in Table 4.  The identified values,
using the same strategic procedure and nine sampling points on a curve
of the force and the depth for R

L
/h

1
=10, are also shown in Table 4.

The identified values, using several curves of the force and the depth
for the indenters with different radii of curvature, are within errors of
±2%, and those are more accurate than the identified values using
nine sampling points on a single curve.

In The Case of E1<E2<E3
Next, we try to identify elastic modulii for a three-layered mate-

rial with a soft layer at the first layer.  True values identified in the
inverse analysis are shown in Table 5.  The procedure for identifying
elastic modulii is the same as before.  Nine sampling points on three
curves for the indenters with three kinds of the radius of curvature
(R

L
/h

1
=10, 20, 40) are shown in Figure 11.  The upper and the lower

limit of Young’s moduli are set to 1.3E
2
 and 0.7E

1
, respectively, and

the same constraint ranges of Young’s moduli are applied to every
layer.  The identified results of elastic moduli from the first step to
the third step are shown in Figures 12(a) and (b).  It is found that the
scattering of error for E

1
 is small and E

1
 is ease to be identified.  However,

the average of E
1
 is 48.51GPa with the error of –2.98%, and the iden-

tified value deviates slightly to a smaller value than the true value.
The error ratios of the radii of contact area to the true values are within
1%, however, the scattering of their error ratios is slightly large in
comparison with the result shown in Figure 10(b).  This slight in-
crease of scattering might be cause to a small deviation of Young’s
modulus of the first layer.  The identified values at the second step
deviate to larger and smaller values than the true values.  This ten-
dency is a feature of identifying the elastic moduli in the three-lay-
ered materials with a soft layer at the first layer.  When the scattering
of the identified values at the second step is examined carefully,

Table 4  Parameters Identified Using Different Data

Parameters Given value
RL/h1=

10,50,100
RL/h1=10 (Ns=9)

E1 [GPa] 400.0 400.8 409.5

ν1 0.3 0.2955 0.2570

E2 [GPa] 300.0 302.4 315.6

ν2 0.3 0.2953 0.2936
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Figure 11  Data Sampling on Penetration Force vs Depth
Curve for Three Different Indenters

Table 5  Elastic Moduli for Three-Layered Material
and Indenter

Poisson’s ratio for the first layer is fixed at 0.3373 with the error ratio
of 12.4%.  At the third step, all the identified values are not varied
with ten trials for different initial values used in the inverse analysis.
Thus, we considered that the objective function attain to a global mini-
mum or a local minimum, and so we stopped to continue the inverse
analysis.  Final identified values are shown in Table 6.  When the
identified values for the three-layered material with a hard layer at
the first layer are compared to those with a soft layer at the first layer,
a new idea is needed for identifying accurately the unknown param-
eters in the three-layered materials with the soft first layer.  We con-
sider that the difficulty for identifying elastic moduli for the three-
layered materials is due to the difference of response of the materials
in penetrating an indenter.  Specifically, comparing the curves of the
force and the depth shown in Figure 9 to those shown in Figure 11,
the former is more sensitive to the penetration depth than the latter.
In the present analysis, additional data are collected from only curves
of the force and the depth, so the materials with a high sensitivity for
the depth of the indenter have an advantage to approximate the curves
using a few data.  Thus, when the elastic moduli for the three-layered
materials with a soft first layer is identified, we consider that the in-
denter with a larger radius of curvature should be used for obtaining
the curve of the force and the depth.

Identification of The Distribution Function of Elastic Moduli
for A Functional Gradient Material

Finally, we suppose that an identification of the distribution function
of elastic moduli in a functional gradient material (FGM) is carried

out using the indentation data.  In this analysis, we consider that Young's
modulus and Poisson's ratio are functions of the z-coordinate as fol-
lows:

                        E z E z E zn( ) = −( ) + − −( ){ }1 1exp expα α                  (48)

                        ν ν β ν βz z zn( ) = −( ) + − −( ){ }1 1exp exp                    (49)

The values of unknown parameters, which should be identified, are
shown in Table 7.  Where E

n
 
and ν

n 
are 200GPa and 0.33, which are

the values for the substrate, respectively.  The variations of elastic
moduli are shown in Figure 15.  The FGM is 3mm in thickness and is
supposed as a four-layered material in the inverse analysis.  Assum-
ing one layer to be 1mm in thickness, the same procedure as the pre-

Region

Young's
modulus
Ei , GPa

Poisson's
ratio

νi

Ratio of shear
moduli

Γ i(=µi/µ3)

Thin film (i=1) 50.00 0.3 0.25

Thin film (i=2) 100.00 0.3 0.5

Substrate (i=3) 200.00 0.3 1.0

Indenter (i=4) 1000.0 0.3 5.0
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Table 6   Parameters Identified by Different Data

Parameters Given value
RL/h1=

10,50,100
error , %

E1 [GPa] 50.0 48.51 -2.98

ν1 0.3 0.3373 12.4

E2 [GPa] 100.0 93.04 -6.96

ν2 0.3 0.2733 -8.91
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Figure 12  Identification Error of All Unknown Parameters
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vious  inverse analysis is applied to identify the unknown parameters,
E

1
, ν

1
, α and β.  Sampling data (nine points) used for the identifica-

tion are shown in Figure 13.  The identified values of parameters are
listed in Table 7.  Variations of identification errors at every each
step are shown in Figure 14.  Parameters related with Poisson’s ratio
is hard to identify accurately, and vary widely.  A relationship be-
tween the penetration force and depth calculated using the identified
values is shown in Figure 13 by dotted lines.  It is found that the
penetration force and depth using the true values are almost the same
as those using the identified values.  This means that another infor-
mation is needed to identify more accurately the distribution func-
tions for elastic moduli.  Finally, the variations of elastic moduli esti-
mated using the identified parameters are shown in Figure 15 by thin
solid and dotted lines.  We consider that the identified parameters can
be expressed fairly the variation of elastic moduli.

CONCLUDING REMARKS
In the present paper, a method for identifying elastic moduli for

multi-layered materials and for FGM is presented.  The method using
simulteneously data on several curves of force and depth of the in-
denters with different radii of curvature is very usefull for identifying
the elastic moduli under a limited small number of available data.
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