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ABSTRACT
This paper deals with parameterization of hydraulic trans-

missivity during its estimation. Estimating transmissivity is
based on the minimization of an misfit function defined as a least-
squares misfit between measured data and the model output. The
transmissivity is assumed to be a piecewise constant space de-
pendent function. Refinement indicators, indicating the effect on
the optimal data misfit of adding degrees of freedom to a current
set of parameters, are calculated. Theses indicators lead to know
where the hydraulic transmissivity needs to be made discontin-
uous and thus allows for the introduction of degrees of freedom
one at a time, preventing from overparameterization.

INTRODUCTION
When estimating hydraulic transmissivities, which are space

dependent coefficients in a parabolic partial differential equa-
tions, we minimize a misfit function defined as a least-squares
misfit between measurements and the corresponding quantities
computed with a chosen parameterization of the transmissivities.

One of the difficulties in solving this problem is that, be-
cause of the high cost of experimental measurements, the data
is usually insufficient to estimate the value of the hydraulic

�Address all correspondence to this author.

transmissivity in each cell of the computational grid. There-
fore we have to find a parameterization of the transmissivity
which reduces the number of unknowns. We refer to (Sun, 1994;
Eppstein-Dougherty, 1996) for a presentation of the parameteri-
zations which are the most commonly used in hydrogeology.

Lately multiscale parameterizations (Liu, 1993; Chavent-
Liu, 1989) have provided a first answer to the problem of choos-
ing the discretization of distributed parameters. With such an ap-
proach the parameter estimation problem is solved through suc-
cessive approximations by refining the scale and the process is
stopped when the refinement of the scale does not induce a sig-
nificant decrease of the misfit function. This method has already
brought interesting results in various problems of parameter es-
timation (Chardaire-Rivière et al., 1990; Chardighy et al., 1996).
However, when going from the current scale to a finer one, de-
grees of freedom are added uniformly in the domain of calcula-
tion, and so this approach can lead to overparameterization in the
case where only local refinements are needed.

The method using refinement and coarsening indicators, that
we present in this paper, will avoid such a drawback. At a given
refinement level the parameters are estimated by minimizing the
least-squares misfit to the data. Then we compute refinement and
coarsening indicators which indicate the effect on the optimal
data misfit of adding or removing some degrees of freedom. A
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variant of this method has already been presented in (Chavent-
Bissel, 1998).

We apply this technique to the estimation of the distributed
transmissivity parameter T in the partial differential equation

S
∂Φ
∂t

+div (�T grad Φ) = Q in Ω; (1)

where Ω is a domain in R
2 . This equation governs a two-

dimensional groundwater flow in an isotropic and confined
aquifer, subject to initial and boundary conditions

Φ = Φd on ΓD; (�T grad Φ) �n = qd on ΓN ;

Φ(0) = Φ0 in Ω;

(2)

where ΓD and ΓN is a partition of the boundary of Ω supporting
respectively Dirichlet and Neumann conditions and where

Φ = piezometric head,
S(x;y) = storage coefficient,
T (x;y) = hydraulic transmissivity;
Q(x;y; t) = distributed source term,
Φd ;qd given boundary piezometric head and source terms,
Φ0 = given nitial piezometric head,
n is the unit normal vector to Ω:

The domain Ω is discretized with a mesh T and equations (1),(2)
are approximated by a mixed-hybrid finite element method,
which is suitable to the case where the parameter T have dis-
continuities (Chavent-Roberts, 1997).

Our problem is to search for a piecewise constant hydraulic
transmissivity T . Both the zonation (the partition of Ω into zones
where T is constant) and the value of T on each zone are to be
determined and our aim is to be able to explain the data with a
number of zones as small as possible.

We define our misfit function by:

J(T ) =
1
2 ∑

i; j

jΦ(x j; ti)�Φm
i; jj

2
: (3)

where Φm
i; j is the piezometric head measured in the point x j at the

time ti and Φ(x j ; ti) is the model output for current transmissivity
values.

In order to have a computational cost independant of the
number of transmissivity values to estimate, we use a Gauss-
newton algorithm which is known to be an efficient optimiza-
tion method in the case of large number of unknown parameters
(Bonnans et al., 1997). The gradient of J is computed by the
adjoint state method (Sun, 1994).

Actual implementation of the calculation of the the piezo-
metric head, the misfit function and its gradient has been
achieved through automatic program generation (Jegou, 1997).

1 REFINEMENT AND COARSENING INDICATORS
Usually the data are in insufficient quantity to estimate the

unknown parameter in each cell of the computing mesh T . To
every partition (zonation) Z of Ω, we associate the space of hy-
draulic transmissivities T which are constant on each zone of Z.
In practice we suppose that the boundary of a zone in Z is made
of edges or diagonals of cells of T . The degrees of freedom of
the transmissivity to be estimated are the values of the transmis-
sivity in each zone of Z. We want this number to be significantly
lower than the number of elements in T .

Our goal is that the refinement and coarsening indicators
technique will allow us to construct Z with the lowest possi-
ble number of zones. Given a current parameterization partition,
these indicators will tell us where to insert new discontinuities of
the transmissivity and which ones can be removed.

1.1 Refinement indicators
We shall describe refinement indicators on an example. Let

(P1) be an initial problem where the hydraulic transmissivity is
constant in all the domain (figure 1(b)). So we have only one
value of the transmissivity to estimate, which is done by mini-
mizing the one variable misfit function J. We note (P2) the pa-
rameter estimation problem where we consider that the domain
is made of two zones Z1 and Z2 having different transmissivities
(figure 1(c)). We note T � = (T �

1 ;T
�

2 ) the solution of (P2) ob-
tained by minimizing the corresponding two variable misfit func-
tion. If B=T �

1 �T �

2 were known, then the solution of minimizing
J under the constraints T1 �T2 = B is necessarily T � = (T �

1 ;T
�

2 ),
the solution of (P2) and, if B = 0 then T = T �

1 = T �

2 is the solu-
tion of (P1).

In general if we introduce n new transmissivity values to es-

(c)(a) (b)
Computing

mesh T
Partition Z1 associated

to problem (P1)

Z

Partition Z2 associated
to problem (P2)

Z1

Z2

Figure 1. An example of parameterization refinement

timate, the constraint condition T1 � T2 = B is generalized to
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AT = B where B is the discontinuity vector (σ i;i+1)1�i�n and A
is an n� (n+1)matrix with rank n defined by

A =

2
66664

1 �1 0 0 . . .
0 1 �1 . . . .
0 0 1 �1 . . .
. . . . . . .
0 0 . . . 1 �1

3
77775
:

To the problem of minimizing the misfit function under these
constraints J(T �) = min

AT=B
J(T ), we associate the Lagrangian

function defined by

LB(T;λ) = J(T )+< λ;AT �B > (4)

where λ is the Lagrange multiplier associated to the constraint
AT =B. Then the Lagrange condition ensures that T � is obtained
by solving

∂LB

∂T
(T �

;λ�) = ∇J(T �
)+AT λ� = 0;

∂LB

∂λ
(T �

;λ�) = AT �
�B= 0:

(5)

If we denote by J�B = J(T �) =LB(T �
;λ�) the optimal misfit asso-

ciated to the right hand side B of the constraint, we deduce from
(4) and (5) that

∂J
∂B

jB=0�λ� =
∂L
∂B

(T �
;λ�)jB=0 = 0: (6)

Therefore the Lagrange multiplier gives us the sensitivity of the
optimal data misfit J�B to the perturbation B. For this reason we
call λ� a refinement indicator. It can be easily deduced from
equation (5). In the case of our example, to the refinement shown
in fig. 1(c) we associate an indicator

λ� =
∂J
∂T1

(T �) =�

∂J
∂T2

(T �): (7)

And without solving (P2), this indicator indicates if the sug-
gested refinement in figure 1(c) is likely to induce an important
decrease of the misfit function.

One can see that we define such a refinement by introducing
a curve (the boundary of Z2 in fig. 1(c)). Such a curve is called
a cut and divides the domain into only two zones of different
transmissivities. In practice, we will use only the cuts shown in
fig. 2.

(d)(a) (b) (c)

Figure 2. Four elementary cuts: (a) vertical, (b) horizontal, (c) checker-

board, (d) oblique

Z1 Z2

Z3 Z4

Figure 3. A four zone parameterization partition

The suggested refinement may also consist in dividing the
domain in four zones of different transmissivities like in fig. 3.
Then discontinuities between values of transmissivity in different
zones can be writen:

σ1;2 = T1�T2; σ2;4 = T2�T4; σ3;4 = T3�T4; σ1;3 = T1�T3:

These four equations are not independant, as we have σ 1;2 �

σ3;4 = σ1;3 �σ2;4. Therefore they correspond to only three in-
dependant constraints which we write as

(T1+T3)� (T2+T4) = σV

(T1+T2)� (T3+T4) = σH

(T1+T4)� (T2+T3) = σC:

(8)

The first equation in (8) corresponds to a refinement given by
a vertical line (T1 = T3;T2 = T4) dividing our domain into two
zones, such line is called a “cut”. The second one corresponds to
a horizontal cut (T1 = T2;T3 = T4) and the third one corresponds
to a checkerboard cut (T1 = T4;T2 = T3).
The matrix A corresponding to constraints (8), is now

A =

2
4

1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

3
5
:

Using the first equation in (5), we deduce that the associated La-
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grange multiplier λ = (λV ;λH ;λC) satisfies

λV +λH +λC = �

∂J
∂T1

(T �);

�λV +λH �λC = �

∂J
∂T2

(T �
);

λV �λH �λC = �

∂J
∂T3

(T �
);

�λV �λH +λC = �

∂J
∂T4

(T �
):

(9)

λV , λH and λC are the refinement indicators associated respec-
tively to the vertical, horizontal and checkerboard cuts. Obvi-
ously we have

0 =
∂J
∂T1

(T �
)+

∂J
∂T2

(T �
)+

∂J
∂T3

(T �
)+

∂J
∂T4

(T �
) =

∂J
∂T

(T �
)

since T � is the minimizer for problem (P1) where the parameter
is constant over the whole domain.

Given a current partition Z and once the gradient of J is
calculated, refinement indicators can be calculated from (7) in
a computationally inexpensive way for a large number of cuts.
Only a few degrees of freedom corresponding to the cuts with
the largest indicators jλ�j are selected. The degree of freedom
finally added to the current parametrization is that which gives
the largest actual decrease of the misfit function among those
selected according to the size of jλ�j:

1.2 Coarsening indicators
Consider the example shown in fig. 1, and suppose that in

a first step the cut represented in fig. 1(c) is selected: the parti-
tion Z contains two zones, an interior zone Z1 and an exterior
zone Z2, with the corresponding optimal values of transmissiv-
ity T �

1 and T �

2 . Suppose that refinement indicators correspond-
ing to various positions and forms of cuts have been computed
and that two cuts C1 and C2 in the interior zone have been se-
lected (fig. 4 left). Therefore the cut defining the interior zone
(its boundary) is divided into several subcuts, i.e. the boundaries
∂Z1;1 \ Z̄2;∂Z1;2 \ Z̄2 and ∂Z1;3 \ Z̄2 in fig. 4 right. The question
now is “ should we keep all the cuts, or are some of the subcuts
sufficient to give the expected decrease of the misfit function?”.
Our goal now is not to choose new degrees of freedom to add, but
to test if some of those considered are overabundant. Therefore
we have to study the influence of removing each subcut on the
optimal value of the misfit function.
With the current parametrization of fig. 1(c), minimizing the two
variable misfit function is equivalent, with the parametrization

C1
C2

Z1;1
Z1;2

Z1;3

Z2

Two selected cuts New parametrization to study

Figure 4. A refinement for figure 1(c)

of fig. 4 right, to minimizing J(T1;1;T1;2;T1;3;T2) under the con-
straints

T1;1 �T2 = T �

1 �T �

2 ;

T1;2 �T2 = T �

1 �T �

2 ;

T1;3 �T2 = T �

1 �T �

2 :

(10)

We can write these constraints using matrix form as

2
4

1 0 0 �1
0 1 0 �1
0 0 1 �1

3
5

2
664

T1;1

T1;2

T1;3

T2

3
775=

2
4

T �

1 �T�

2
T �

1 �T�

2
T �

1 �T�

2

3
5
:

Aggregating for example the two zones Z 1
1 and Z2 is equivalent

to set to 0 the righthand side of the first constraint:

T1;1+T2 = 0;
T1;2+T2 = T �

1 �T �

2 ;

T1;3+T2 = T �

1 �T �

2 :

(11)

The effect, at first order, of this aggregation on the optimal data
misfit is measured by the corresponding Lagrange multiplier

λ2�
1;1 =�

∂J
∂T1;1

(T �

1 ;T
�

2 ): (12)

Similarly the effects of aggregating Z1;2 with Z2 and Z1;3 with Z2

are measured respectively by

λ2�
1;2 = �

∂J
∂T1;2

(T �

1 ;T
�

2 );

λ2�
1;3 = �

∂J
∂T1;3

(T �

1 ;T
�

2 ):

(13)
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Notice that one has

λ2
1;1+λ2

1;2+λ2
1;3 =

∂J
∂T2

(T �

1 ;T
�

2 ) = 0:

The λ2�
1;i; i = 1::3 are numbers associated to the subcuts of the cut

defining the interior zone. Computing these indicators allows us
to keep or to remove some subcuts, according to their values and
their signs. For this reason we call these indicators “coarsening
indicators”.

1.3 Algorithm
We have used the refinement and coarsening indicators

introduced above, for several numerical studies according to the
following algorithm:

1. Choose an initial parameterization partition Z.

2. Do until data are satisfactorily fitted:

3. Compute transmissivity with current parameterization
partition Z by minimizing J.

4. For every part Zi of Z do

Compute the refinement indicators I corresponding
to tested cuts in Zi.

Enddo

5. Compute Imax the largest absolute value of all computed
refinement indicators in all parts Zi. Select all cuts cor-
responding to refinement indicators which are larger than
80% of Imax (this percentage can be adjusted)

6. If some of these cuts generate subdomains with more than
one connected component then

Compute the refinement indicators corresponding to
the subcuts associated to each connected component.

Update the set of selected cuts according to the 80%
rule.

Endif

7. If the selected cuts or a priori information suggest a re-
finement pattern to the interpreter then

Compute the corresponding refinement indicator,
and update the set of selected cuts.

Endif

8. Minimize J successively with all parameterizations asso-
ciated to all selected cuts.

9. Keep only the selected cuts which induce a decrease of J
larger than 80% of the largest one

10. If two or more selected cuts divide the same part Zi then

Compute the corresponding coarsening indicators.

Aggregate the subdomains where coarsening indica-
tors allow it.

Endif

11. Update the current partition by refining according to the
selected refinement and coarsening indicators. This pro-
duces the new partition Z

12. Enddo

2 NUMERICAL EXPERIMENTS
Numerical experiments have been performed in several sim-

ple situations. There correspond to synthetic examples in which
we try to recover two or three transmissivity values and the zones
where they take these values (the range of this values go from 5
to 20). In all examples boundary and initial data are zero and the
righthand side Q of equation (1) is constant in space and time.
The piezometric heads are measured in the whole domain and at
all time.

In the following figures the transmissivity values are repre-
sented with a grey scale and the discretization of the domain –
a 6� 6 rectangular grid – is shown as well as the cuts or the
parametrization partitions obtained.

2.1 Case of a central inclusion
We begin our numerical study by the case of a central inclu-

sion (fig. 5). We suppose that the initial transmissivity is constant
in the whole domain (fig. 6) and minimize the misfit function ac-
cording to this parameterization.

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Figure 5. Exact transmissivity:

unknown of the inverse problem

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Figure 6. Initial transmissivity
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The different absolute values of refinement indicators are repre-
sented in fig. 7. The largest values correspond to four checker-
board cuts, so we pass to step 6 of the algorithm, and we com-
pute the refinement indicators corresponding to corner subcuts
of the checkerboard cuts (there are four corner subcuts for each
checkerboard cut).

Four of these subcuts represented by the symbols *, x, � and
�, are selected (fig. 8). According to step 7 of the algorithm, we
compute the refinement indicator corresponding the aggregated
cut formed by these corners (symbol� on fig. 7) and we observe
that it has the largest absolute value of all computed refinement
indicators. Therefore we select the corresponding cut and we
obtain at the end of this first iteration the partition shown in fig. 9.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

Figure 7. Computed absolute

values of refinement indicators

in decreasing order

1 2 3 4 5 6 7
1

2

3

4

5

6

7

�: Top left, x: Bottom left
�: Top right, *: Bottom right

Figure 8. The 4 corner cuts

corresponding to the largest ab-

solute values of computed re-

finement indicators

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Figure 9. Partition obtained at

the end of the first iteration

For the second iteration we begin by minimizing the mis-
fit function, considering the parameterization partition obtained
at the first iteration. Then we compute refinement indicators
(fig. 10) and we observe that their highest absolute value cor-
responds to two cuts which divides the central zone into three
parts (fig.11). The three corresponding coarsening indicators are
computed, their absolute values showed in fig. 10 by the sym-
bol �. Therefore only the middle part, corresponding to the

largest value, is selected and we obtain the new partition shown
in fig. 12.

At the beginning of the third iteration, after minimization,
the misfit function vanishes up to machine precision, with trans-
missity values that correspond to the exact ones (fig.13).

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 10. Computed absolute

values of refinement indicators

and three coarsening indicators

(* symbol)

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Figure 11. Computed trans-

missivity calculated on the parti-

tion shown in fig. 9 and selected

cuts

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Figure 12. Partition obtained at

the end of the second itération

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Figure 13. Optimal transmis-

sivity computed with partition

shown in fig. 12 is equal to the

exact transmissivity

2.2 Case of an off center inclusion

An other case that we have studied is that of an off center
inclusion (fig. 14). We start with the same constant initial trans-
missivity as in the previous case (fig. 6) and we proceed in the
same manner as in the previous case. Figures 15, 16, 17, 18, 19
show the partitions obtained at each iteration and the transmis-
sivity calculated on these partitions.
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1 2 3 4 5 6 7
1
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4

5
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7

Figure 14. Exact transmissivity:

unknown of the inverse problem

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Figure 15. Transmissivity com-

puted as a constant

We remark observing fig. 19 that the optimal transmissiv-
ity is recovered even though the partition has four zones instead
of two. However we note that the number of zones (4) is quite
smaller than the number of calculation cells (64), which shows
the interest of the method.

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Figure 16. Partition obtained at

the first iteration and the corre-

sponding computed transmissivity

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Figure 17. Partition obtained at

the second iteration and the corre-

sponding computed transmissivity
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4

5
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Figure 18. Partition obtained at

the third iteration and the corre-

sponding computed transmissivity

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Figure 19. Partition obtained at

the fourth iteration and the corre-

sponding computed transmissivity

2.3 Case of a three zone transmissivity
The last case that we consider here is that of three zones

of transmissivity as in fig. 20. Again we start with a constant

transmissivity (fig. 6) and we follow the steps of the algorithm
described in section 1.3. As in the previous case we show in
figures 21, 22, 23, 24, 25 the partitions obtained at each iteration
and the transmissivity calculated on these partitions.

In this case one notice, observing fig. 25, that only a close
approximation of the exact partition and transmissivity is recov-
ered.

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Figure 20. Exact transmissiv-

ity: unknown of the inverse prob-

lem
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7

Figure 21. Transmissivity com-

puted as a constant
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Figure 22. Partition obtained at

the first iteration and the corre-

sponding computed transmissivity
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Figure 23. Partition obtained at

the second iteration and the corre-

sponding computed transmissivity
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Figure 24. Partition obtained at

the third iteration and the corre-

sponding computed transmissivity

1 2 3 4 5 6 7
1
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3

4

5

6

7

Figure 25. Partition obtained at

the fourth iteration and the corre-

sponding computed transmissivity

3 CONCLUSION
We presented a procedure for calculating transmissivity

whose parameterization is constructed iteratively. The transmis-
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sivity is a piecewise constant function of space defined on a par-
tition of the domain which is also an unknown of the problem.

An algorithm based on indicators for refining or coarsening
this partition has been tried with success in simple situations.
Further work will attack more realistic situations.
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