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ABSTRACT
This paper concerns the area of vibrations in piping systems

of nuclear power plants. One needs to represent as best as pos-
sible the dynamic behaviour of those systems with respect to the
measurements performed on a real structure. In a software deve-
loped by Electricite de France, this behaviour is idealised in me-
chanics with exact dynamic stiffness matrices, and in acoustics
with plane waves. The proposed approach tries to combine in the
same computation the identification of unknown inputs with the
updating of unknown parameters. An objective function based on
the difference between known forces and computed ones is mini-
mised in order to find the solution. At the opposite of traditional
methods, we are not forced to compute the objective function at
sensor locations, but perform an exact condensation on what we
call ”test degrees of freedom” which are locations where external
forces are well known.

NOMENCLATURE

[Z] Dynamic stiffness matrix
fqg Generalised displacements
fQg External forces
fCg Measurement vector
ω Pulsation
Ω A set of pulsations: Ω = fω1; � � �;ωng
p Updating parameters vector

INTRODUCTION

The fluid filled piping networks are often huge and have a
complicated behaviour. A typical example is the piping system
of energy production plants which are often several hundred of
meters length and include a lot of singularities. The vibrational
analysis of these systems and the diagnosis of their function-
ing anomalies require the use of a mathematical model idealiz-
ing their behaviour. So, the knowledge of the solicitations and
the boundary conditions acting on such a system is very impor-
tant. In order to improve the agreement between a mathematical
model and the physical behaviour of the real system, inverse and
updating methods using measured response data are used. Those
measurements can be performed on a system in real functioning
conditions or in laboratory in order to identify a single compo-
nent behaviour.

One of the difficulties encountered in a functioning analy-
sis is the description of the interface conditions between the real
structure and the ground. Moreover, piping systems analysis in-
volves generally strongly coupled phenomena like fluid/structure
interaction. They are often responsible of sources generation and
also make the system behaviour depending on the functioning
conditions which have to be taken into account during the ana-
lysis. This requires the dynamic knowledge of acoustic and vi-
bration sources acting on the system. Actually, some of these
sources cannot be idealized because of the lack of knowledge
about them. So, boundary conditions at these locations have to
be identified via an inverse method using measured data.
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Once the identification of unknown boundary conditions is
solved, some uncertainties remain on the model: physical param-
eters like Young modulus, sound velocity, etc. can still be badly
estimated by the user. Updating methods are then used in order to
identify those badly known parameters ((Natke, 1988), (Ewins,
1990)). Measurements performed on the real structure are used
to build an objective function defining a distance between the
model and reality. A generalized least squares method using ex-
act dynamic stifness matrices derivation can then be performed
to estimate unknown parameters.

We present in this paper an overview of our research in the
field of experimental analysis which aims to characterize the dy-
namic behaviour of a part of a piping system and to identify
and/or update its mechanical characteristics in real functioning
conditions. The outline of this paper is as follows, first of all
we present the boundary identification method, then we discuss
about the updating process and show results for each part.

GENERAL APPROACH

We are interested here in a steady state and linear behaviour,
so we use the frequency domain analysis. First, we developed a
new approach to characterize the unknown boundary conditions
which consists in identifying generalized forces and displace-
ments at the interface between studied network and the ground.
The main structure is assumed to be accurately modeled using
exact dynamic stiffness matrices formulation. Spatial piping
networks are then idealized with curvilinear elements. The pres-
sure fluctuation inside the pipes is assumed to be propagated in
plane waves and we take into account the fluid/structure interac-
tion in elements like elbows or bifurcations.

In a second step, we use the same approach combined with
a sensitivity method to update the structural model of the main
network. Some known forces are identified and used to test the
reliability of the inverse model. The most important feature of
our method consists into its aptitude to combine both problems:
identification of boundary conditions and structural updating of
piping networks in real functioning conditions.

Figure 1 and Table 1 illustrate a schematic example of the
decomposition of the different dofs we can find on an idealised
structure. fQg are external forces applied on the structure, fqg
are the generalised displacements and an overlined vector

�
X
	

denotes a vector with numerically known values.

When performing a direct computation, only free dofs��
q f
	
;

�
Q f
	�

and clamped dofs (fqcg ;fQcg) are present. The
model equilibrium at pulsation ω can then be written:

��
Q f
	

fQcg

�
=

�
[Z f f ] [Z f c]
[Zc f ] [Zcc]

�
:

��
q f
	

fqcg

�
(1)

Table 1. DECOMPOSITION OF DEGREES OF FREEDOM.

Boundary Generalised Associated

conditions displacements forces

link to identify: fqlg to identify: fQlg

known test to identify: fqtg known:
�

Qt
	

external to identify: fQtg

force free unknown:
�

q f
	

imposed:
�

Q f
	

clamped imposed: fqcg unknown: fQcg
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Figure 1. A TYPICAL PIPING SYSTEM.

and solved classically like in a finite element analysis:

�����
�

q f
	
= [Z f f ]

�1
:

��
Q f
	
� [Z f c] :fqcg

�
fQcg= [Zc f ] : [Z f f ]

�1
:
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Q f
	
� [Z f c] :fqcg

�
+[Zcc] :fqcg

When unknown boundary conditions are present, we intro-
duce new kinds of dofs:

1- link dofs (fqlg ;fQlg) which are places where neither
generalised displacements, nor external forces are known. The
model equilibrium can then be written:

8<
:
�

Q f
	

fQcg
fQlg

9=
;=

2
4 [Z f f ] [Z f c]

�
Z f l
�

[Zc f ] [Zcc] [Zcl ]�
Zl f
�
[Zlc] [Zll ]

3
5

:

8<
:
�

q f
	

fqcg
fqlg

9=
; (2)
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but is now ill-posed because of the lack of known information.
In order to solve this problem, measurements are introduced as
we will see in the next section.

2- test dofs
�
fqtg ;

�
Qt
	�

which are locations where external
forces are known (like free dofs) but are going to be considered
unknown and identified in a fQtg vector. fQtg is then compared
to the known

�
Qt
	

in order to build the objective function in the
updating process. Locations where there is no external force are
very good places for test dofs because the corresponding

�
Qt
	

component is completely known to be null.

BOUNDARY CONDITIONS IDENTIFICATION
Development

A brief presentation of the boundary identification approach
is given here. More details are provided in reference (Frikha,
1992). The unknown boundary conditions can describe the con-
nections between the studied part of the network and the ground
or the rest of the network. The inverse problem consists in com-
puting the frequency spectra of the generalized displacements
fqlg and the external generalized forces fQlg at these connection
dofs. Experimental data are the responses at a few points of the
idealized structure. Either generalized displacements or internal
forces (stress) can be used as measurements. Elements describe
all the mechanical and geometrical characteristics of each part of
the network by means of exact dynamic stiffness and transfer ma-
trices. Those matrices are used to express the dynamic behaviour
of a curvilinear element and to relate the measured components
to the dofs:

fCg= [ZC] :fqg

Assembling all elementary matrices leads to a global equa-
tion which relates the external forces fQg and the measurements
fCg to all displacements fqg, at the pulsation ω:

8>><
>>:

�
Q f
	

fQcg
fQlg
fCg

9>>=
>>;

=
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775 :
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:
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fqcg
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9=
; (3)

The inverse problem consists in using network measured re-
sponses to identify the unknown quantities fqlg and fQlg. From
equation (2), an exact condensation of clamped and free degrees
of freedom is performed in order to dissociate the modeled data
from the experimental one and to reduce the size of the inverse
problem. That leads to a condensed dynamic stiffness relation
of the modeled network part (eq. (4)) and to a transfer matrix
relating in a global manner the measured responses to the link
degrees of freedom (unknown of the inverse problem, eq. (5)):

Figure 2. PIPING NETWORK FOR IDENTIFICATION.

fQlg = [Zl] :fqlg+
�

Q0

l

	
(4)

fCg = [ZC] :fqlg+
�

C0

	
(5)

�
Q0

l

	
and fC0g includes all known forces and displacements

at free and clamped dofs. Overabundant measurements are usu-
ally used to minimize the noise effects and equation (5) is solved
for each pulsation using a least square method:

fqlg=
h
[ZC]

T [ZC]
i
�1

: [ZC]
T
:

�
fCg�

�
C0

	�
(6)

Replacing the identified vector fqlg in equation (4) gives the
link external forces fQlg and completely defines the boundary
dynamic state:

fQlg= [Zl ] :
h
[ZC]

T [ZC]
i
�1

: [ZC]
T
:

�
fCg�

�
C0

	�
+
�

Q0

l

	
(7)

Results
The system presented on figure 2 is a part of a nuclear piping

network including pipes, elbows, supports and a pump (Moussou
& al, 1999). The comparison between a first direct computation
using CIRCUS code and on-site measurements gave bad ade-
quacy: computed speed amplitudes were about a decade below
the measured ones. Unsuccessful attempts were made to match
the computations and the measurement values: calculation with
smaller frequency step in order to catch the resonance maxima,
introduction of non infinite stiffnesses for the supports, etc. We
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Figure 3. MOVING PUMP IDEALIZATION.

came to the conclusion that the pump did not behave as expected:
it should be mobile, and the inner fluid should move with the
pump.

Figure 3 shows the special model of the pump made in order
to take into account the following hypotheses:

� the pump frame has a vertical stiffness,
� internal vibration forces are applied to the pump frame,
which generates acoustic pressure fluctuations by
fluid/structure interaction.

19 sensors (fig. 4) regularly located on the studied portion
were used in order to identify the following unknown boundary
conditions:

- the displacements of the pump mechanically considered as
a rigid body,
- the acoustical flow sources on both sides of the pump,
- the acoustical pressure at each end of the studied part.

The identified source flow at the suction of the pump is
shown on figure 5 in straight line. It’s about a decade bigger
than the code’s one (dashed line). This can be explained by a
bad idealization of the coupling phenomena induced inside the
pump. The same result is obtained at the discharge of the pump.

Figure 6 shows the flow sources at the suction and the dis-
charge of the pump. The order of magnitudes are the same, and
the phases are in opposition below 100 Hz, as usual for an acous-
tical pump source. When looking at the mechanical vibrations of
the pump, a rigid body movement was identified with a domi-
nant vertical displacement. Figure 7 shows its spectrum which
contains significant peaks at 25, 42, 60 and 110 Hz.

These identified sources were then injected in the whole pip-
ing network model, a new direct computation was performed and
levels of speed magnitudes became similar to the measured ones.

1e-08

1e-07

1e-06

1e-05

20 40 60 80 100 120 140

m/
sq

rt(
Hz

)

f (Hz)

Figure 4. A MEASURED SENSOR EXAMPLE.
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Figure 5. COMPARISON IDENTIFICATION VS DATA BASE.

DYNAMIC UPDATING
Development

We present in this section a new updating method (Gaudin,
1996) for piping network having unknown boundary conditions.
In the last section, the modeled part of the network and the sen-
sors measuring its response provide an estimation of boundaries
dynamic state. Obviously, like any measuring device, the accu-
racy of the identified boundary conditions depends on the knowl-
edge accuracy of its physical behaviour. The calibration of such
device often improve that knowledge by measuring a set of well-
known quantities. This principle is used here in order to improve
the knowledge of the physical characteristics of the tested net-
work. So, besides really unknown boundary conditions, a set of
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Figure 6. IDENTIFIED VOLUMIC FLOW SOURCES.

well known boundaries are identified (fQtg), and compared to
the known ones

��
Qt
	�

. This difference is used to test and im-
prove the accuracy of the network model. Actually, the mechan-
ical behaviour of the instrumented piping network is idealized
using a mathematical model parameterized by its physical char-
acteristics. Its calibration consists in correcting that parameters
and agreeing them with the real ones. That is well known as an
”updating procedure”. The inverse problem expressed in equa-
tions 4 and 5 becomes after including all dofs to be identified
(”link” ones: fqlg and ”test” ones: fqtg, see Table 1):

�
fQlg
fQtg

�
=

�
[Ztt ] [Zlt ]
[Ztl ] [Ztt ]

�
:

�
fqlg
fqtg

�
+

��
Q0

l

	
fQ0

tg

�
(8)

fCg = [ZC] :

�
fqlg
fqtg

�
+
�

C0

	
(9)

Matrices [Z
::

], vectors
�

Q0

l

	
, fQ0

tg and fC0g depend on the
structural parameters that have to be corrected. The number of
sensors has to be greater or equal to the number of identified dofs
(fqlg ; fqtg). Solving (9) and replacing identified fqlg and fqtg
in (8) gives an estimation of fQlg and fQtg:
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[Ztl ] [Ztt ]

�
: [ZC]

+
:

�
fCg�

�
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+
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tg

�

(10)

where [ZC]
+ is the generalized inverse of [ZC]. Model updating
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Figure 7. IDENTIFIED VERTICAL DISPLACEMENT.

consists in finding the best p vector which minimizes the distance
between identified external forces fQtg and known ones

�
Qt
	

:

fε(ω;p)g=
�
fQt(ω;p)g�

�
Qt(ω)

		
(11)

All derivatives of fε(ω;p)g may be computed analytically.
The assembling technique of stiffness matrices and their deriva-
tives is similar and uses the same assembling guides. Then, the
minimization of the objective function is performed using a first
order Taylor expansion of the error vector fε(ω;p+∆p)g:

fε(ω;p+∆p)g = [S(ω;p)] :∆p+fε(ω;p)g (12)

where : [S(ω;p)] =
�

∂fε(ω;p)g
∂p1

: : :

∂fε(ω;p)g
∂pn

�

The number of columns of [S(ω;p)] equals the number of
updating parameters and its number of rows equals the number
of test degrees of freedom. We introduce damping by means of
a complex Young modulus Ee2 jζ where ζ is the damping coeffi-
cient. So when damping is present, both sensitivitymatrix and er-
ror vector are complex. Updating parameters being real numbers,
the error vector and the sensitivity matrix are splitted into their
real and imaginary parts. Hence, the solution consists in min-
imizing the non linear objective function fε(Ω;p)gT

:fε(Ω;p)g
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Figure 8. FRAMED NUMERICAL TEST.

where Ω is a set of frequencies and:

fε(Ω;p)g=

8>>>>><
>>>>>:

ℜ(fε(ω1;p)g)
ℑ(fε(ω1;p)g)

...
ℜ(fε(ωn;p)g)
ℑ(fε(ωn;p)g)

9>>>>>=
>>>>>;

(13)

The identification of actual unknown boundary conditions is
performed in the same time using equation (9). At the begin-
ning of the minimization procedure, the identified unknowns are
probably erroneous. These identified values are being corrected
progressively and simultaneously with model parameters updat-
ing. Their final value should be the correct one if the mathemati-
cal model used to idealize the tested network is able to reproduce
its physical behaviour and if the chosen sensors provide a infor-
mation which make observable the updated parameters and the
unknown boundary conditions.

Results
In order to make a simple validation of the proposed ap-

proach, we tested the framed structure shown on figure 8. This
frame contains 8 circular bars, 6 nodes and is clamped at the left
side.

A first evaluation of the dynamical behaviour of the frame
was performed with Fx = Fy = 100 N. Displacements were ex-
tracted at 8 locations (X and Y directions at nodes 2, 3, 4 and 5,
see fig. 9), in the frequency range [1;200 Hz]. Dimensions and
material characteristics were:

� φbars = 10 mm
� E = 2:11011 N=m2

� ρ = 7800 kg=m3

� ν = 0:3
� no damping

In this example, the unique updating parameter is chosen to
be the Young modulus of bars 7 and 8. This value is initially
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Figure 9. MEASUREMENT SAMPLE.

perturbed and equals 1:81011 N=m2. We also assume that exter-
nal forces exciting the frame (Fx and Fy) are unknown. In or-
der to perform the identifying/updating process, we have to fix
two other variables: the frequency choice and the location of test
degrees of freedom. Considering the unique updating parame-
ters, we need a few frequencies. The frequency choice is set
to Ω = f40;90;140 Hzg. If measurements were perturbed with
noise, more frequencies should be taken in order to smooth the
effect of noise on parameters estimation. Concerning the loca-
tion of test degrees of freedom, no extensive exploration of the
best location to place those dofs was done. For this kind of prob-
lem, we don’t need a lot of them. In the proposed example, we
choose the X direction at nodes 2 (qt1) and 5 (qt 2).

The identifying/updating process applied on this simple ex-
ample gives the results shown on figures 10 and 11. We can see
that it takes 12 iterations to reach the good agreement (Fx = Fy =
100 N and E = 2:11011 N=m2).

CONCLUSION
We present in this paper an efficient approach for experi-

mental analysis of piping system response subjected to vibra-
tory and acoustical solicitations. The main feature of the devel-
oped method is that it is suitable to be used in real functioning
conditions, taking into account unknown boundary conditions.
The solicitations applied to the analyzed structure do not have
to be known or controlled, but measurements performed on the
real system permits the identification of those unknown boundary
conditions and the updating of unknown parameters. The origi-
nal feature of this work is that we can perform both computations
in the same procedure.

The complicated and strong coupling existing in piping net-
works make them a good application of our developments. How-
ever, these ideas are probably useful for all in-situ analysis prob-
lems.
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