
Inverse Problems in Engineering: Theory and Practice
3rd Int. Conference on Inverse Problems in Engineering

June 13-18, 1999, Port Ludlow, WA, USA

ID10

VARIATION BOUNDARY INTEGRAL EQUATION FOR FLAW SHAPE
IDENTIFICATION

Rafael Gallego�

Department of Structural Mechanics
University of Granada
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ABSTRACT
In this communication a Variation Boundary Integral Equa-

tion (BIE) for the solution of identification inverse problems is
presented. This equation relates the variation of the fields along
the boundary with the variation of the geometry of a flaw, whose
position and shape are unknown beforehand. The Variation BIE
is obtained linearizing the difference between the standard BIE
for the actual configuration (actual flaw) and the standard BIE for
the assumed configuration. The resulting Variation BIE has not
been completely derived before, to the authors knowledge. The
solution of the ensuing Variation BIE is tackled by a procedure
that avoids altogether the solution of a nonlinear minimization
problem. The variations of the design variables (geometry) have
been written in terms of a virtual strain field applied to the flaw.
This approach can be applied to flaws of any shape and location.
Several numerical applications are solved with the proposed for-
mulation.

INTRODUCTION
The study of inverse problems in engineering has become

and active area of research in the last two decades (Tanaka and
Dulikravich, 1998; Delaunay and Jarny, 1996; Zabaras, Wood-
bury and Raynaud, 1993). There are many important topics in
engineering which involve the solution of this kind of problems:
non-destructive evaluation of materials and structures, character-

�Address all correspondence to this author.

ization of material properties, medical imaging or even diagno-
sis, etc.

In this paper we consider the identification inverse problem
in the case of an acoustic field over a two-dimensional domain.
The aim in the identification inverse problem is to compute an
inaccessible part of the boundary of the domain, usually an in-
ternal flaw, using experimental data as additional information.
Since the objective is to find part of the boundary, an approach
based on Boundary Integral Equations appears as a very sensible
alternative.

The derivation of the gradient for such problems has been
tackle by several researches by either the adjoint variable ap-
proach or direct differentiation. The first method has been em-
ployed by several authors in different applications, i.e. Aithal
and Saigal (1995) for two-dimensional thermal problems; Bon-
net (1995a) for 3D inverse scattering problems by hard and pene-
trable obstacles; Meric (1995) for shape optimization in potential
fields. The direct differentiation approach has been extensively
used as well, for regular, strongly, and even hypersingular BIE
(Mellings and Alliabadi, 1993; Bonnet, 1995b; Matsumoto et
al., 1993; Nishimura and Kobayashi, 1991; Kirsch, 1993).

Zeng and Saigal (1992) developed a formulation for poten-
tial fields based on variations. Tanaka and Matsuda (1989) devel-
oped a similar approach years earlier using Taylor expansions of
the kernels and densities in the BIE. In these two papers, the au-
thors propose an approach different to the minimization of a cost
functional, but failed to demonstrate its reliability, due to math-
ematical inconsistencies (Tanaka and Matsuda 1989) or simply
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because no numerical application is carried out (Zeng and Sai-
gal, 1992). Gallego and Suarez (1999a) developed the variation
Boundary Integral Equation (δBIE) and presented some numer-
ical results using the non-minimization approach. Nevertheless,
the δBIE should be equivalent to the sensitivity integral equations
obtained by the direct differentiation approach, and therefore, the
δBIE can be used to compute the gradient of a given cost func-
tion, although no effort has been undertaken in this direction yet.

In this communication we demonstrate that the δBIE is a re-
liable method to solve identification inverse problems for acous-
tic fields. First the δBIE is reviewed and a numerical procedure
for its solution by collocation boundary element discussed. The
virtual strain field is introduced for the geometrical parameter
representation, which allows for greater flexibility for the shape
of the assumed flaw. An iterative procedure for the solution of
the identification inverse problem is proposed, and finally, some
numerical applications are presented.

INVERSE PROBLEM FOR LINEAR ACOUSTIC MEDIA:
BASIC EQUATIONS

In this section the basic equations for the solution of har-
monic wave propagation problems in a linear acoustic media are
reviewed. In the last paragraph the identification inverse problem
is briefly described.

Differential equation statement
Consider the well known problem of an acoustic field,

∇∇2u(x)+ k2u(x) = 0; x 2Ω (1)

subject to essential and/or natural boundary conditions,

u(x) = ū; x 2 Γu

q(x) = q̄; x 2 Γq

where, u(x) is the acoustic field in Ω; q(x) = ∂u=∂n is the flux
at a point x on the boundary Γ whose outward normal is n(x);
k = ω

c is the wave number, ω the frequency of the wave and c its
velocity; ū and q̄ represent known values of the field and flux on
Γu and Γq respectively, where Γu[Γq = Γ and Γu\Γq = /0.

To solve the problem stated in equation (1) one needs to
know (Kubo, 1988): the domain Ω and its boundary Γ, the dif-
ferential operator (∇∇2 + k2 in this case), boundary conditions (ū
and q̄, and their supports Γu and Γq), and material properties (c).
If one or several of these items are not completely known the
problem stated in equation (1) will not be well-posed and will
not have solution or if any, will not be unique. An inverse prob-
lem can therefore be stated whose objective is to find the miss-
ing information, using some additional data. Depending on the

missing information different kinds of inverse problems can be
stated. In this paper we deal with the so called identification in-
verse problem whose objective is to find part of the domain or its
boundary.

Integral equation statement
In the identification problem part of the boundary, say Γ̃h, is

the main unknown of the problem. Therefore the statement of the
problem in terms of Boundary Integral Equations (BIE) appears
as the most promising approach.

The acoustic problem, stated in differential form in equa-
tion (1), can be written in terms of BIE (Dominguez, 1993) by
the equation,

c(x)u(x) =
Z

Γ
fu�(y;x)q(y)�q�(y;x)u(y)gdΓ(y) (2)

where c(x), called the free term, is 0 if x 62Ω[Γ, 1 if x 2 Ω and
θ=2π if x 2 Γ, where θ is the interior angle between the left and
right tangents to the boundary at the point x; u �(y;x) and q�(y;x)
are given by

u�(y;x) =
1

2π
K0(z) (3)

q�(y;x) = �
1

2πr
zK1(z)ρρ �n (4)

where z = iωr=c, and represent the fundamental solution and its
flux for the Helmholtz equation; r = jy� xj is the distance be-
tween the collocation point x and the integration or observation
point y; i is the imaginary unit;Km (:) is the modified Bessel func-
tion of second kind and mth order; ρρ is a unit vector in the direc-
tion of y�x; and n is the outward normal to the boundary at the
observation point.

This boundary integral equation (BIE) can be used to solve
the direct problem stated in equation (1) if all the needed infor-
mation is provided. If part of the boundary is not known, this
BIE can be used to derive a new δBIE which relates the value of
the variables on the boundary, their variations and the geometri-
cal variation from an assumed shape and position of the missing
part of the boundary, as shown in the next section.

Identification inverse problem
In the sequel we will denote with a tilde (̃) the variables and

parameters in the real configuration, if they are different to their
counterparts in the assumed one.

In the identification problem a portion of the boundary,
termed Γ̃h, is not known. Usually Γ̃h represents the boundary
of an interior flaw whose shape and location is sought. In order
to find this flaw, additional data has to be provided, besides the
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known boundary conditions. For example, experimental mea-
surements may be available at a set of points on Γc, the known
and accessible portion of the boundary,

u(xα) = ū(xα); xα 2 Γc

q(xβ) = q̄(xβ); xβ 2 Γc

where α = 1; : : :Mu and β = 1; : : :Mq and therefore, M = Mu +
Mq supplementary values are known. In addition, measurements
at points inside the domain Ω can be provided as well. This
additional data will provide information to estimate the shape
and position of the unknown flaw.

BOUNDARY INTEGRAL EQUATION FOR THE IDENTIFI-
CATION INVERSE PROBLEM

By linearizing equation (2) with respect to small variations
of the geometry, a new BIE is obtained which relates the varia-
tion of the variables along the boundary with the transformation
of the geometry. In the next paragraphs the variations are de-
fined, and then the Variation BIE is presented. Finally this BIE
is established for a point on the boundary.

Variation of the geometry and boundary variables
To transform the assumed domain Ω to the actual domain Ω̃

a point x is applied to a new point x̃ = x+ δx, where δx is the
variation of the geometry. It has to be emphasized that the whole
domain is distorted in order to change the shape and position of
the flaw from its assumed location to the actual one (Figure 1),
and not only the points on the boundary of the flaw.

The linearized integral equation will be written in terms of
the difference of the potential and flux between the actual and
the assumed domain. Then, the variation of the potential in the
assumed configuration is defined as,

δu(x) = u(x; Γ̃h)�u(x;Γh) (5)

Therefore, δu represents the difference in the potential at a given
point x due to the variation of the boundary of the domain. To
define δq extra care has to be exercised since the flux is defined at
the boundary of the domain, and this boundary changes when the
geometry is distorted. Taking into account that q(x) = ∂u=∂n =
∇∇u(x) �n(x), the following definition has been adopted,

δq(x) =
�

∇∇u(x; Γ̃h)�∇∇u(x;Γh)
	
�n(x) = ∇∇δu(x) �n(x) (6)

These are local variations since they are computed for a fixed
point, x. Alternative definitions would be the material variations

Figure 1. CONTINUOUS TRANSFORMATION FROM THE ASSUMED

DOMAIN, Ω TO THE REAL ONE, Ω̃

given by,

δu(x) = u(x̃; Γ̃h)�u(x;Γh) (7)

and,

δq(x) = q(x̃; Γ̃h)�q(x;Γh) = ∇∇u(x; Γ̃h) � ñ(x̃)�∇∇u(x;Γh) �n(x)
(8)

Both definitions for the variations are possible, but the first alter-
native has been used in this work. The consequence of using the
second definitions for the variations in the ensuing BIE are being
currently explored.

Variation integral equation
Equation (2) can be written for an interior point x in the

assumed domain,

u(x;Γh) =

Z
Γc

fu�(y;x)q(y;Γh)�q�(y;x)u(y;Γh)gdΓ(y)+
Z

Γh

fu�(y;x)q(y;Γh)�q�(y;x)u(y;Γh)gdΓ(y) (9)

and the same equation can be set at the corresponding point x̃ in
the actual domain,

u(x̃; Γ̃h) =
Z

Γc

�
u�(y; x̃)q(y; Γ̃h)�q�(y; x̃)u(y; Γ̃h)

�
dΓ(y)+
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Z
Γ̃h

�
u�(ỹ; x̃)q(ỹ; Γ̃h)�q�(ỹ; x̃)u(ỹ; Γ̃h)

�
dΓ(ỹ) (10)

Computing the series expansion of the terms of equa-
tion (10) with respect to the variation of the geometry δx, ne-
glecting terms of quadratic order and higher, and calculating the
difference of the ensuing expansion with the equation (9), the
following Variation Boundary Integral Equation is obtained,

δu(x)+∇∇u(x;Γh) �δx =Z
Γ
fu�(y;x)δq(y)�q�(y;x)δu(y)gdΓ(y) (11)

�

Z
Γc

f∇∇u�(y;x)q(y;Γh)�∇∇q�(y;x)u(y;Γh)g �δxdΓ(y)

+
Z

Γh

f[∇∇u�(y;x)q(y;Γh)�∇∇q�(y;x)u(y;Γh)] � (δy�δx) +

[u�(y;x)∇∇q(y;Γh)�q�(y;x)∇∇u(y;Γh)] �δy+

[u�(y;x)∇∇u(y;Γh)�∇∇u�(y;x)u(y;Γh)] �δm(y)gdΓ(y)

This BIE relates the variation of the potential and the geom-
etry at a point x 2 Ω, with the variation of the potential, flux and
geometry along the boundary of the domain. The potential and
flux of the primary problem on the assumed configuration, and
their gradients appear in the equation as well, but they can be
computed solving the direct problem.

This integral equation would be much more useful if we are
able to write it for a point ξξ 2 Γ, since, in such case, only quan-
tities along the boundary will be involved. A careful limiting
process (see Guiggiani, 1992 and Gallego et al., 1996) such that
x! ξξ 2 Γ leads to,

c(ξξ)(δu(ξξ)+∇∇u(ξξ) �δξξ)+b(ξξ) : u(ξξ)∇∇δξξ = (12)Z
Γ
fu�δq�q�δugdΓ�

Z
Γ
f∇∇u�q�∇∇q�ug �δξξdΓ+

Z
Γh

f[∇∇u�q�∇∇q�u] �δy+[u�∇∇q�q�∇∇u] �δy+

[u�∇∇u�∇∇u�u] �δmgdΓ

which is the Variation BIE for a point ξξ 2 Γ, where c(ξξ) =
θ=2π and

b(ξξ) =
1

4π

�
sin2θ2� sin2θ1 cos2θ1� cos2θ2

cos2θ1� cos2θ2 sin2θ1� sin2θ2

�
(13)

This Variation Boundary Integral Equation (δBIE in the sequel)
is valid for any point ξξ 2 Γ, both on the known boundary Γ c and
the unknown boundary Γh.

The kernels in this equation are as the ones in the primary
BIE (2) plus their gradients,

∇∇u�(y;x) = �
ρρ

2πr
zK1(z) (14)

∇∇q�(y;x) = �
1

2πr2

�
zK1(z)n�

�
zK1(z)�

1
2

z2K0(z)

�
2ρρρρ �n

�

(15)

Dynamic kernels expansion
In order to asses the order of the boundary singularities in-

volved in the δBIE, the kernel series expansions as r ! 0 have
been computed.

The modified Bessel functions of the second kind can be
expanded as,

K0(z) = � lnz� γ+O(z) (16)

K1(z) =
1
z
+

z
2

�
ln

z
2
+ γ�

1
2

�
+O(z2) (17)

Then, it is easily shown that,

u�(y;x) = U(y;x)+O(z) (18)

q�(y;x) = Q(y;x)+O(z lnz) (19)

where

U(y;x) = �
1

2π
lnr (20)

Q(y;x) = �
1

2πr
ρρ �n (21)

are the kernels of the static problem (Laplace equation). Like-
wise,

∇∇u�(y;x) = ∇∇U(y;x)+O(z lnz) (22)

∇∇q�(y;x) = ∇∇Q(y;x)+O(lnz) (23)

where

∇∇U(y;x) = �
ρρ

2πr
(24)

∇∇Q(y;x) = �
1

2πr2 (n�2ρρρρ �n) (25)

As expected, the order of the singularity of the kernels is as
in the static counterpart of the δBIE (Gallego and Suarez, 1999a).
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NUMERICAL SOLUTION OF THE δBIE
The order of the singularities involved leads to the following

conclusions,

1. The δBIE is one order of singularity higher that the original
BIE, due to the term in ∇∇u�u �δm, which is O(r�1).

2. The equation is not hypersingular, in spite of the term ∇∇q �

since it is multiplied by the function (δy� δξξ) which van-
ishes at r = 0

3. The variables u(y) and q(y) have to be C 0 at ξξ, as in the
standard BIE. In addition, the limiting process (Gallego and
Suarez, 1999a) shows that ∇∇u �δy has to be C0 at ξξ as well.

4. Finally the most restrictive continuity condition is that δy
has to be C1 at the collocation point.

The increase in the order of the singularity is not critical
since the primary BIE is weakly singular, and therefore the vari-
ation BIE is strongly singular, but not hypersingular, and can be
easily handle.

The last two remarks, however, are specially important since
these continuity restrictions apply to the approximate variables
as well. The C1 continuity for the δy is difficult to fulfill at the
nodes on the contour (3D) or the ends (2D) of the elements, and
therefore a special approach has to be devised. The alternatives
to fulfill this continuity condition can be reduced to the follow-
ing: C1 elements, discontinuous elements, independent interpo-
lations for the variable and its gradient, and Multiple Collocation
Approach. This last method, which is the one employed in this
work, consists in collocating the δBIE at nodes inside the ele-
ments but without changing the interpolation of the variables,
therefore maintaining the same number of unknowns as in the
standard continuous elements. Gallego et al. (1996) proposed
this approach for 2D fracture dynamic problems, and Dominguez
et al. (1999) extended it to 3D elastostatic fracture cases. This
alternative is easy to implement in a conventional boundary ele-
ment code.

Parametric variation of the geometry
The aim in the solution of the identification inverse problem

is to find the shape and position of an unknown flaw. A prob-
lem therefore arises which is how to parameterize these shape
and position in order to define the geometry of the flaw with a
finite, small number of geometrical parameters or design vari-
ables. For the present procedure what has to be written in terms
of a finite number of parameters is the vector δy, along the as-
sumed boundary Γh. An obvious choice would be to define the
vector δy at every node in the discretization of the flaw, but this
will lead to a big number of unknowns. Since the identification
inverse problem is ill-conditioned, a big number of geometrical
parameters could lead to unstable and/or non-convergent results.

In the present communication we use the parameterization
already tested by the authors for the static problem (Gallego

and Suarez 1999b): it is assumed that the flaw is modified
as if subject to a virtual strain field. The flaw suffers a uni-
form displacement (δyo

1;δyo
2), a rotation around its centroid δωo

and a distortion and deformation field given by the parameters
(δεo

11;δεo
22;δεo

12).
It can be readily shown that the displacement vector (u 1;u2)

at every point of the cavity (y1;y2), due to a uniform virtual strain
field can be computed by the formula:

�
u1
u2

�
=

�
1 0 j[y2]j j[y1]j 0 j[y2]j
0 1 � j[y1]j 0 j[y2]j j[y1]j

�
0
BBBBBB@

δyo
1

δyo
2

δωo

δεo
11

δεo
22

δεo
12

1
CCCCCCA

(26)

where j[yi]j= yi�yo
i , and yo is the centroid of the assumed cavity.

An equivalent parameterization can be established using the
natural decomposition of the strain tensor in its isotropic and
deviatoric parts. This approach can be extended in order to al-
low for a greater number of parameters (see Gallego and Suarez
1999b).

Boundary Element discretization
The numerical solution of equation (12) can be tackled using

Boundary Element techniques. In this paper quadratic isopara-
metric elements has been employed. Thus, a scalar function, say
p(y) will be interpolated at a given element e as,

p(y) = φ1 p1
e +φ2 p1

e +φ3 p1
e = φφpe (27)

where φφ = (φ1;φ2;φ3) and pe = (p1
e ; p2

e ; p3
e)

T . φi are the standard
quadratic shape functions, defined in a reference element whose
natural coordinate is ξ 2 [�1;1], while pi

e are the values of the
variable p(y) at the nodes of the element. The same kind of inter-
polation can be used for all the variables in the δBIE (12). Using
the equation (26) to compute the variation of the geometry at the
three nodes of an element, the following matrix relationship is
obtained,

δy j = P j δv (28)

where δv = (δyo
1;δyo

2;δωo;δεo
11;δεo

22;δεo
12)

T is the geometrical
parameter vector, and, P j, the parametric matrix for the element
j, which depends on the values of the increments j[y1]j and j[y2]j
for the three nodes of the element.

Using the interpolation (27) for all the variables in the δBIE
and (28) for the variation of the geometry, after discretization the
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equation (12) can be written as,

Ne

∑
j=1

hi jδu j =
Ne

∑
j=1

gi jδq j +∆∆iδv (29)

where,

hi j =
1
2

φφ(ξξi)δi j +
Z

Γ j

q�φφdΓ j (30)

gi j =

Z
Γ j

u�φφdΓ j (31)

∆∆i =
Ne

∑
j=1

�
da

i jP j
�
�

Ne

∑
j=1

�
db

i j

�
ΦΦ(ξξi)Pi�

1
2

∇∇u(ξξi) �φφ(ξξ)Pi

(32)

The terms da
i j and db

i j are given by the element integrals,

da
i j =

Z
Γ j

f(∇∇u�q�∇∇q�u+u�∇∇q�q�∇∇u) �ΦΦ+

(u�∇∇u�∇∇u�u) �ΨΨgdΓ j (33)

db
i j =

Z
Γ j

f∇∇u�q�∇∇q�ugdΓ j (34)

where ΦΦ and ΨΨ are matrices which collect the interpolation func-
tions and their derivatives, respectively.

The former discrete equation (29) can be established in a set
of collocation nodes. In this work we have adopted the follow-
ing scheme: for the elements on the known part of the boundary
Γc, standard collocation is performed since δy = 0 in these ele-
ments, and therefore, the continuity requirements are obviously
fulfilled; for each element on the unknown part, the cavity, three
equations are established: one for the central node, and one at a
point close to each end of the element. The equation at each end
is simply added to the corresponding equation at the same end in
the contiguous element. The final discrete system can be written
as,

Hδu = Gδq+∆∆δv (35)

where H and G are N �N and N �Ne matrices respectively, N
being the number of interpolation nodes, while ∆∆ is a N�6 ma-
trix.

Iterative solution of the inverse problem
In this section, the numerical solution of the set of integral

equations comprised by the BIE of the direct problem (2) and the
δBIE of the inverse problem (12) is summarized.

The discretization of the primary BIE leads to the well
known set of algebraical equations,

Hu = Gq (36)

where the vectors u = (u1;u2; : : : ;uN) and q = (q1;q2; : : : ;qN)
collect the potential and flux at the interpolation nodes. After the
application of the primary boundary conditions to the former set,
a square system of equations is obtained whose solution com-
pletely determined the vectors u and q.

On the other hand, the discretization of the inverse δBIE
leads to the following set of equations 35,

Hδu = Gδq+∆∆δv (37)

where the vectors δu and δq collect the variations of the potential
and the flux at the interpolation nodes, respectively. The varia-
tion of the geometry of the boundary Γ h is in the geometrical
parameter vector δv as shown in the previous subsection. The
application of the boundary conditions for the inverse problem
yields,

Hrδx = ∆̃∆δv (38)

where δx are the N unknown variations of the potential and/or
fluxes. The right hand side matrix ∆̃∆ stems from ∆∆ and the bound-
ary conditions.

The former set of N equations cannot be solved since the
number of unknowns is N + 6. To solve it, the M experimen-
tal values are taken into account. At the points on Γc where the
potential is measured, δu = u(y; Γ̃h)�u(y;Γh) can be computed
since u(y;Γh) is known from the primary problem. Likewise at
the points where the flux is measured, δq can be computed. The
number of unknowns is therefore reduced to N +6�M. Collect-
ing the unknowns to the left hand side a non-square system of
equations is obtained

Aδh = c (39)

The number of equations is N and the number of unknowns
N �M + 6. Obviously, M � 6, i.e. the number of experimen-
tal measurements should be greater or equal to the number of
geometrical parameters, in order to obtain a square or overdeter-
mined system of equations. The solution of this overdetermined
system of equations can be tackled by standard least squares
techniques.

The solution of these equations yields the unknown geomet-
rical parameters δv. By equation (28) δy j is computed and the
flaw shape updated. The procedure is repeated after convergence
is attained.
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Figure 2. L-SHAPE FLAW: GEOMETRY, REAL FLAW AND BOUND-

ARY CONDITIONS

NUMERICAL EXAMPLES
In this section the solution of three series of problems is pre-

sented. In all series the known geometry and the real shape and
position of the flaw is the same, and the boundary conditions as
well. The material wave propagation velocity is c = 0:1

The defect is an L-shape flaw at the right upper corner of
a 2� 2 square. The boundary conditions and the geometry are
shown in Figure 2. The flaw is 0:1 units wide and its arms are 0:3
units long. The Boundary Element model has sixteen quadratic
elements for the exterior boundary and ten quadratic elements for
the assumed flaw.

In the real problem, with the boundary conditions shown in
Figure 2, the frequency of the excitation has been modified in a
wide range. The ensuing amplification of the potential (displace-
ment considering an antiplane problem) at the middle of the left
side can be used to compute the natural frequencies of the prob-
lem. The first natural frequency is about ωn = 0:075s�1 and it
will be used as a reference.

For each series, three frequencies have been tested ω1=ωn =
0:53, ω2=ωn = 0:8 and ω3=ωn = 1:47, the first two under the first
natural frequency and the third above it.

L-shape crack: exact shape for the assumed flaw
The assumed flaw has the shape and orientation of the real

flaw but it is displaced to the left lower corner of the square (see
Figure 2). Depending on the frequency a number of experimental
measures M has been simulated for this application: M = 6 for
ω1 and M = 20 for ω2 and ω3. These measures are exact in the
sense that they have been computed by a direct BE code and no
experimental error has been included.

The initial, intermediate and final position of the flaw are
shown in Figures 3 to 5 for the frequencies ω1 to ω3 respectively.

Figure 3. L-SHAPE FLAW: FREQUENCY ω1=ωn = 0:53 (L-SHAPE

INITIAL FLAW)

Figure 4. L-SHAPE FLAW: FREQUENCY ω2=ωn = 0:8 (L-SHAPE INI-

TIAL FLAW)

L-shape crack: circular initial flaw
For the second series the initially assumed flaw is a cen-

tered circle with radius 0.1. A set of M = 20 exact experimental
data is provided, five in each side of the square. For the highest
frequency, ω3, in order to attain convergence the solution of the
overdetermined system of equations in equation (39) is solved by
a weighted least square method where the weights of the equa-
tions corresponding to the experimental measures are set to 10
while the rest of the weights are kept to 1. In this series the de-
formation of the flaw is restricted and it can only be displaced
but not deformed.

The initial, intermediate and final position of the flaw are
shown in Figures 6 to 8 for the frequencies ω1 to ω3 respectively.

L-shape crack: circular initial flaw
This third and last series is like the foregoing, but the vari-

ation of the assumed flaw is now parameterized with the vector
δv = (δyo

1;δyo
2;δωo;δεo

m;δεo
12)

T , i.e., displacement of the center
of the flaw δyo

1, δyo
2, rotation of the flaw δωo, isotropic dilatation
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Figure 5. L-SHAPE FLAW: FREQUENCY ω3=ωn = 1:47 (L-SHAPE

INITIAL FLAW)

Figure 6. L-SHAPE FLAW: INITIAL, INTERMEDIATE AND FINAL

SHAPE AND POSITION OF THE FLAW FOR FREQUENCY ω1=ωn =
0:53 (CIRCULAR INITIAL FLAW; RESTRICTED GEOMETRICAL VARI-

ATION)

δεo
m, and distortion δεo

12
Again M = 20 experimental measures have been provided.

The initial, intermediate and final position of the flaw are shown
in Figures 9 to 10 for the frequencies ω1 and ω2 respectively.
For this case it has not been possible to attain convergence for
the highest frequency

CONCLUSIONS
The derivation of the variation boundary integral equation

(δBIE) for the Helmholtz equation is presented in this paper. This
δBIE can be use to solve identification inverse problems for 2D
acoustic fields, although its extension to more complicated prob-
lems is straightforward. The integral equation is one order of
singularity higher that the primary BIE, but it can be easily han-
dle. The continuity requirements for the variation of the geome-
try and for the gradient of the potential is ensured by the Multiple
Collocation Approach. This approach is simple and reliable and
easily implemented in a conventional Boundary Element code.

Figure 7. L-SHAPE FLAW: FREQUENCY ω2=ωn = 0:8 (CIRCULAR

INITIAL FLAW; RESTRICTED GEOMETRICAL VARIATION)

Figure 8. L-SHAPE FLAW: FREQUENCY ω3=ωn = 1:47 (CIRCULAR

INITIAL FLAW; RESTRICTED GEOMETRICAL VARIATION)

Figure 9. L-SHAPE FLAW: FREQUENCY ω1=ωn = 0:53 (CIRCULAR

INITIAL FLAW; FULL GEOMETRICAL VARIATION)

To parameterize the variation of the defect geometry, the as-
sumed flaw is translated, rotated and strained, as if it were in a
virtual strain field. A clear advantage of this approach is that the
assumed flaw can have any shape (square, circle, ellipse, etc.)
since what it is computed is its variation. Different flaw shape

8 Copyright  1999 by ASME



Figure 10. L-SHAPE FLAW: FREQUENCY ω2=ωn = 0:8 (CIRCULAR

INITIAL FLAW; FULL GEOMETRICAL VARIATION)

can be assumed without difficulty, and without implementing a
particular parameterization for each shape.

An iterative procedure is devised which allows to compute
successive positions of the flaw, without minimizing any cost
function. A series of examples demonstrated the effectiveness
of the present approach. The procedure detects the position and
approximate shape of the real flaw for most of the applications
solved. The last example where the frequency is higher than the
natural frequency of the problem and where the parametric vari-
ation of the geometry is more complex does not converge. We
expect that a refinement in the solution of the system (39) will
improve the convergence of the iterative algorithm.
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