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ABSTRACT
Both sensitivity and nonlinearity are important for the ef-

ficiency of an estimation algorithm. Knowledge of a general
nature on sensitivity and/or nonlinearity for some class of mod-
els can perhaps be utilized to improve the estimation efficiency
for this class.

For an ODE model, a correlation between high nonlinearity,
low sensitivity, and small-scale perturbations, has been reported.
Also, it was found that representing the unknown function by a
multi-scale basis lead to faster estimation convergence than use
of a single-scale local basis. This was explained referring to the
above-mentioned correlation. Recently, the existence of such a
correlation for a large class of nonlinear models, including the
above-mentioned ODE model, was found.

Here, we further investigate into utilization of the correlation
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between nonlinearity, scale, and sensitivity within parameter es-
timation. Results from numerical experiments with alternative
optimizers on ODE and PDE models describing flow in porous
media, are presented.

1 INTRODUCTION
The mathematical modeling and simulation of the flow of

fluids through porous media are important for designing and
controlling a number of industrial processes, including the pro-
duction of oil and gas from underground reservoirs and remedi-
ation of underground water resources. The equations describing
porous-media flow contain several coefficient functions which
are inaccessible to measurement, but their specification is crucial
for the predictive power of the models. This gives rise to several
inverse problems of different structure and complexity.

In this paper, we study two such problems. A closer descrip-
tion of the problems is given later (see Section 4), but a common
feature is that the amount of detail with which it is possible to
determine the coefficient functions, is not known a priori. An
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important issue is therefore to be able to exert some control over
the scale for which one can be able to obtain accurate determina-
tion of the desired property for a given data set and expected data
accuracy.

In a multi-scale representation – such as use of the Haar
basis (Chui, 1992; Daubechies, 1992) to represent piecewise
constant functions – variation on many length scales can be ac-
counted for. The Haar basis is the first-order spline-wavelet
basis. Multi-scale representation of continuous functions, and
functions with higher degree of smoothness can be provided by
higher-order spline-wavelets (Chui and Quak, 1992).

In (Chavent and Liu, 1989; Liu, 1993), a correlation between
high nonlinearity, small-scale perturbations, and low sensitivity
was found for a 1D model problem, in the context of estimation
of a spatially dependent conductivity function. A multi-scale ap-
proach to estimation of the conductivity in that model was in-
vestigated in (Chavent and Liu, 1989; Liu, 1993), with positive
results.

In this paper we attempt to present some general features of
the influence of a correlation between nonlinearity, scale, and
sensitivity, on estimation efficiency. It is based on results in
(Grimstad and Mannseth, 1999; Brusdal and Mannseth, 1999;
Brusdal et al., 1999; Nævdal et al., 1999). We consider several
optimizers: The BFGS quasi-Newton algorithm and three vari-
ants of the Levenberg-Marquardt algorithm. The algorithms are
applied to two different model problems related to fluid flow in
petroleum reservoirs: The first is a further study with the ODE-
model studied in, e.g., (Chavent and Liu, 1989; Liu, 1993), at-
tempting to recover a spatially dependent coefficient function. In
the second, the task is to recover a state dependent coefficient
function, i.e., a function varying with the dependent variable in
the forward model.

In (Grimstad and Mannseth, 1999), the above-mentioned
correlation was found to be valid for a large class of parameter
estimation problems, including the one studied in (Chavent and
Liu, 1989; Liu, 1993). The structure of the class of problems
considered in (Grimstad and Mannseth, 1999) indicates that also
the problem involving estimation of the state dependent function
might be included. However, due to the complexity of the for-
ward model in that problem, this can only be investigated into
through numerical experiments.

In Section 2 some background on the correlation between
nonlinearity, scale, and sensitivity is given. Scale discrimin-
ate estimation is discussed in Section 3. This includes a brief
presentation of spline-wavelets. In Section 4, the model equa-
tions for both of the porous-media flow models considered are
presented, and some basic reservoir physics is briefly discussed.
Finally, we present and discuss some results of our estimations
in Section 5.

2 NONLINEARITY, SCALE, AND SENSITIVITY FOR
GENERIC MODELS
In this section, we give a brief background on, and present

some results illustrating, a correlation between nonlinearity,
scale, and sensitivity, for a certain class of models. It is included
primarily as a motivation for the remaining sections in the pa-
per. Readers who are particularly interested in the correlation
as such, will find a more thorough description in (Grimstad and
Mannseth, 1999).

2.1 Theory
Let xi denote external variables in a model (such as time,

temperature, etc). Let Fi(c) = F(xi;c) be the outcome of the
model when evaluated at the conditions xi with the parameter
values c.

The directional derivatives of F in the direction h in para-
meter space are denoted Fh for the first order derivatives and Fhh
for the second order derivatives. If we decompose the second or-
der derivative Fhh into Ft

hh parallel to the tangent plane defined
by Fh for all directions h, and F n

hh normal to this plane, the non-
linearity measures γ n and γ t of Bates and Watts (Bates and Watts,
1980) are defined as the maximum values of the curvatures
κ n

h = kFn
hhk=kFhk2 and κ t

h = kFt
hhk=kFhk2 for any direction

h. In this work we will use the parameter effects curvature,
κ t

h = kFt
hhk=kFhk2, as our measure of nonlinearity.

Suppose that the task is to estimate the parameters, c, as-
sociated with the function f (x;c) from measured data on some
nonlinear function of f . In (Grimstad and Mannseth, 1999), the
following model classes are studied:

m(x;c) = g( f (x;c)); (1)

for models in the non-integrated class, and

M(x;c) =
Z x

0
m(t;c)dt; (2)

for the class of integrated models. The function g can be any
smooth nonlinear function. Note that recovery of a coefficient
function, f , in an ODE- or a PDE-model have strong similarities
to the latter class, since solutions to such model equations are in
some sense integrals involving a nonlinear function of f .

2.1.1 Model derivatives For the calculation of sens-
itivity and curvature of the models, the first- and second-order
directional derivatives in an arbitrary direction h are needed. If
the function f is parameterized by a linear expansion in a set of
basis functions, f (x;c) = ∑i ciψi(x), these are

mh(x;c) = ∑
i

hi
∂m(x;c)

∂ci
= g0( f (x;c)) f (x;h); (3)
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mhh(x;c) = ∑
i; j

hih j
∂2m(x;c)

∂ci∂c j
= g00( f (x;c)) f 2(x;h): (4)

for the non-integrated models. The derivatives of any integrated
model, M, are obtained by integrating Equations 3, 4 with respect
to x.

2.1.2 Sensitivity and curvature We want to invest-
igate if there is a general correlation between low sensitivity and
large curvature seen only within the class of integrated models.
This means that we look for reasons causing kMhk to be small
and kMhhk=kMhk2 to be large, that would not produce similar
effects in kmhk and kmhhk=kmhk2.

Suppose that h is the direction vector of maximum curvature
for a model. There is one possibility that h is also a direction
of low sensitivity which is a unique feature of integral models:
If the integrand is oscillating rapidly about zero as a function of
the integration variable. From Equations 3, 4, it is seen that if
g0( f (x;c)) is slowly varying, such that rapid oscillations in mh
are caused only by rapid oscillations in f (x;h), similar oscilla-
tions in mhh would not occur. This would have the desired influ-
ence on the sensitivities and curvatures in both model classes, in-
dicating the existence of a correlation between high nonlinearity,
low sensitivity, and small scale (in the sense of rapid oscillations)
for the class of integrated models. In (Grimstad and Mannseth,
1999), several other scenarios leading to rapid oscillations of the
integrand are discussed.

2.2 Results for generic models
To check the predictions of the theory, numerical experi-

ments with the selection of nonlinear model functions listed in
Table 1, have been performed. Also, several normalized multi-
scale expansion bases for f (x;h) were tested, offering a variety
of possibilities to generate both slowly varying and rapidly oscil-
lating functions. See (Grimstad and Mannseth, 1999) for details.

Fig. 1 shows the curvature and the norm of the sensitivity
vector in the unit parameter directions when combining model
functions G and H in Table 1 with a basis of five sine-functions
with half-periods ranging from 1 to 2:5 � 10�2. The paramet-
ers are ordered according to half-period lengths of the associ-
ated basis functions, such that parameter no. 1 corresponds to
half-period 1, and parameter no. 5 corresponds to half-period
2:5 � 10�2. The function f (x;c) is proportional to the sine-
function with half-period 1, i.e., a slowly varying function on
[0,1].

All choices for g( f ), also those not shown here (Grimstad
and Mannseth, 1999), follow the same trend in behavior: For
the integrated models, perturbations f (x;h) with shorter charac-
teristic length have associated a lower sensitivity and a higher

Table 1. Nonlinear model functions.

A: g( f ) = f + exp( f )

B: g( f ) = f=(1+ f 2)

C: g( f ) = f 2
=2

D: g( f ) = 1=2ln(1+ f 2)

E: g( f ) = 2exp( f +1)� exp(2 f �3)

F: g( f ) = 1+ exp(� f 2
=5)

G: g( f ) = [1+ exp(� f 2
=5)]1=2

H: g( f ) = ( f +5) f=5
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Figure 1. Correlation between nonlinearity (curvature), scale, and sens-

itivity. Scale decreases from left to right.

curvature. For the non-integrated models, the variation in sensit-
ivity and curvature is minor and difficult to relate to the charac-
teristic length of f (x;h).

In (Grimstad and Mannseth, 1999), several other scenarios
were considered, and among other things, it was found that the
correlation is less evident if f (x;c) is not slowly varying.

3 SCALE-DISCRIMINATE ESTIMATION
Many estimation algorithms that utilize sensitivity informa-

tion to construct the next step, like quasi-Newton and Levenberg-
Marquardt, rely on a linearization of the model function about
the current point in parameter space. In this section, we briefly
describe some strategies which seek to utilize the correlation
between nonlinearity, scale, and sensitivity, when applying such
an estimation algorithm. But first, a short introduction to spline-
wavelets is given.

3.1 Spline-wavelets
Spline-wavelets are multi-scale functions. Essentially all

length scales are represented in the support, and in the charac-
teristic length of variation. This facilitates an investigation into
the role of various length scales on the estimation problem, see
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Sections 3.2 and 3.3.
The construction of spline-wavelets is closely related to B-

splines, see (Chui and Quak, 1992) for details. A few basic prop-
erties of spline-wavelets are given below.

Spline-wavelets on [0;1] of order m are defined on a nested
sequence of subspaces

V0 �V1 �V2 : : : : (5)

The space, V0, is spanned by m’th-order B-splines without in-
terior knots, on [0;1]. A basis for the space Vj is the set of m’th-
order B-splines with interior knots

�
k2� j

	
k=1;:::;2 j

�1 : The num-

ber of basis functions spanning Vj is 2 j +m� 1. The spline-
wavelets span the subspaces Wj = Vj+1 nVj. For m = 1, the
spline-wavelets constitute the Haar basis.

Here, we represent the coefficient functions using first- and
third-order spline-wavelets on the interval [0;1]. In Figure 2 we
show such spline-wavelets spanning V2.

Figure 2. Spline-wavelets of order 1 (upper row) and 3 (lower row) span-

ning V2 =V0�W0�W1: V0 (left), W0 (middle) and W1 (right).

3.2 Hierarchical estimation
Non-uniqueness and instability problems associated with

over-parametrization can be avoided by seeking the simplest (in
terms of the least number of parameters) estimated functions re-
conciling the data (Watson et al., 1988). To this end, an ap-
proach where a sequence of estimation problems with an increas-
ing number of unknowns are solved, was first suggested in (Wat-
son et al., 1988), and later verified in a series of cases. (See,
e.g., (Grimstad et al. 1997; Kulkarni et al., 1998; Richmond and
Watson, 1990).) With a multi-scale representation of the coef-
ficient functions, this approach can be pursued in a systematic
manner. This involves introducing parameters corresponding to
smaller and smaller scales-of-variation in the basis functions into

the estimation problem, sequentially. Such hierarchical estima-
tion was performed in (Liu, 1993). Note that hierarchical estim-
ation is an extreme form of scale-discriminate estimation.

3.3 Scale discriminate standard estimation

In standard estimation, estimation of all relevant parameters
simultaneously, is attempted. A simple strategy to systematic-
ally enhance sensitivities to large-scale parameters on behalf of
sensitivities to small-scale parameters, within standard estima-
tion, was introduced in (Brusdal and Mannseth, 1999) for the
BFGS quasi-Newton algorithm (see, e.g., (Gill et al., 1981)).
It was termed norm rescaling. With this approach, a sliding
scale-discriminate estimation, controlled by a single quantity,
γ, results. This quantity is the ratio of sensitivity enhancement
between neighboring scale levels. That is, basis elements in Wj

are divided by γ j. Hence, with γ 6= 1, scale-discriminate estim-
ation results, and γ > 1 corresponds to increased emphasize on
large-scale components.

In (Brusdal et al., 1999; Nævdal et al., 1999), norm rescaling
was applied to define and test three variants of the Levenberg-
Marquardt algorithm (see, e.g., (Gill et al., 1981)). It was shown
that pure norm rescaling corresponds to modifications both in
the trust-region test, and in the step formula. This variant will be
referred to as (TS). The two other variants correspond to modific-
ations in either the trust-region test (T), or the step formula (S).
For details, see (Brusdal et al., 1999; Nævdal et al., 1999).

Norm rescaling can also be applied along with hierarch-
ical estimation, since large-scale parameters are not fixed when
smaller-scale parameters are introduced. The large-scale para-
meters merely provide a good initial value for the estima-
tion involving also the next scale level. Although scale-
discriminate standard estimation does not remove the risk of
over-parameterization, it will be of interest to compare conver-
gence speeds of this algorithm to that of hierarchical estimation,
for various values of γ.

4 POROUS-MEDIA FLOW MODELS

In porous media there exists, as the name indicates, an in-
terconnected matrix of pores and channels through which fluids
may flow. We study macroscopic models for single- and two-
phase fluid flow in porous media. The fraction of porous medium
available for fluid flow is called the porosity, φ, and is an example
of a volume averaged quantity, i.e., a quantity characteristic of a
macroscopic point containing many individual pores. All quant-
ities entering the model equations below should be interpreted
in this sense. A standard reference on porous-media flow in the
context of petroleum reservoirs is (Aziz and Settari, 1979).
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4.1 Single-phase flow
Steady-state, 1D, horizontal flow of a single incompressible

fluid phase in a porous medium is described by an equation form-
ally identical to that describing steady-state, 1D heat conduction

� d
dx

�
a(x)

dp
dx

�
= r(x): (6)

In this equation, a(x) represents the permeability (i.e., the fluid
conductivity) of the porous medium, r(x) is a source term rep-
resenting injection or production of fluid, and p(x) represents
the fluid pressure. The permeability is assumed to be piecewise
constant. The inverse problem considered for single-phase flow
in Section 5.1, is to recover a(x) from spatially distributed data
on p(x).

4.1.1 Relation to the class of integrated models
The solution to Equation 6 can be expressed in closed form, see
e.g., (Liu, 1993). The result is an integral in x, but more com-
plex than Equation 2. Still, the correlation between nonlinear-
ity, scale, and sensitivity can be shown to hold for this model
also (Grimstad and Mannseth, 1999). (See also (Chavent and
Liu, 1989; Liu, 1993).) However, at stage n in an estimation, the
current point in parameter space, cn, may not always correspond
to a slowly varying function, an(x). As mentioned in Section 2,
the correlation can be expected to be less evident when an(x) is
not slowly varying (Grimstad and Mannseth, 1999).

4.2 Two-phase flow
When two fluid phases flow simultaneously in a porous me-

dium, each phase obstructs the flow of the other phase. To ac-
count for this, a quantity, ki, called the relative permeability of
phase i, is introduced. The relative permeability is a monotonic-
ally increasing function of the fluid saturation, Si, i.e., the frac-
tion of pore space occupied by phase i. It may assume values in
the range [0,1].

Due to interfacial tension, two phases may coexist in the
porous medium at different phase pressures, pi. The pressure
difference is given by the capillary pressure, Pc = p2� p1, which
is a function of fluid saturation. With a nonzero Pc, the process
of fluid flow in porous media is not symmetrical with respect to
the two phases.

Denoting the viscosity of phase i by µi, 1D, horizontal flow
of two immiscible, incompressible fluid phases in a porous me-
dium is then described by

φ
∂Si

∂t
=

∂
∂x

�
aki(Si)

µi

∂pi

∂x

�
; i = 1;2; (7)

p2� p1 = Pc(S1); (8)

S1 +S2 = 1: (9)

The inverse problem considered for two-phase flow in Sec-
tion 5.2, is to recover k2 from data measured on a small sample
(typical dimensions are in the range of a few cm) of the porous
medium when fluid 2 is displaced by fluid 1, which is injected
at one end of the sample. The data will consist of time series of
produced volume of fluid 2, and pressure drop across the sample.
For simplicity, it will be assumed that k1 and Pc are known func-
tions of fluid saturation.

4.2.1 Relation to class of integrated models The
estimated function of the current model is a not a direct function
of the integration variable, as is the case for the models described
by Equation 2, and in Section 4.1. Rather, it is a function of x and
t through the dependence on fluid saturation. To study this kind
of dependence, Equation 2 should perhaps be replaced by generic
models of the form

M(t;c) =
Z t

0

Z L

0
g( f (S(u;v);c))dudv: (10)

However, an explicit correspondence between such a model and
Equations 7–9 is not known. Hence, Equation 10 is only intended
as an indication as to how the PDE-model, Equations 7–9, might
be related to the class of models where a correlation between
nonlinearity, scale, and sensitivity exists. However, an important
prerequisite for a strong correlation is fulfilled; relative permeab-
ility is known to be a slowly varying function of saturation. With
a slowly varying initial function, an iteration sequence of slowly
varying functions, fk2;ng, where k2;n ! k2;true, is a possibility.

5 RESULTS
Through numerical experiments, we investigate into the pos-

sible influence of the correlation considered in Section 2 on
the estimation efficiency of the quasi-Newton and Levenberg-
Marquardt optimizers. The selection of results presented in this
section are concerned with both single-phase flow (Section 5.1),
and two-phase flow (Section 5.2). The selection is made to illus-
trate some general trends seen in (Brusdal and Mannseth, 1999;
Brusdal et al., 1999; Nævdal et al., 1999).

In all cases, synthetic observation data with an added error
vector drawn from a Gaussian distribution, have been applied.
For the cases shown here, the standard deviations of the Gaus-
sian distribution have been kept smaller than those that can be
anticipated in practice. Nevertheless, use of an added random
error allows for the application of statistically based solution cri-
teria (see, e.g., (Grimstad et al. 1997)) for the inverse problem.
This concerns the closeness of the final value of the objective
function to its expected value.
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5.1 Single-phase flow model: Estimation of permeab-
ility

Results with the single-phase flow model (see, Section 4.1)
are presented. The permeability is assumed to be a piecewise
constant function of the spatial coordinate. Hence, first-order
spline-wavelets (i.e., the Haar basis) have been applied to repres-
ent a(x). The number of parameters needed to represent the true
permeability is 32, i.e., atrue(x) 2 V5. Equidistantly distributed
data for p(x) have been applied.

5.1.1 Quasi-Newton optimizer In this section, some
results from applying norm rescaling to the BFGS quasi-Newton
optimizer are shown. Relevant details concerning the setup of
the numerical experiments are found in (Brusdal and Mannseth,
1999).
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Figure 3. Logarithmic relative objective functions for problem with small

fine-scale variation in atrue(x) (left), and for problem with large fine-scale

variation in atrue(x) (right).

Figure 3 shows results from one experiment with small fine-
scale variation in atrue(x), and one experiment with large fine-
scale variation. The horizontal line on the plots in the right
column corresponds to the expected value of the logarithmic re-
lative objective function. The label ‘Norm. Haar’ corresponds
to use of the normalized Haar basis (i.e., γ = 1), while the label
‘Usual Haar’ corresponds to γ =

p
2. Some benefit from enhan-

cing large-scale sensitivities (i.e., selecting γ > 1) is seen in both
cases. However, as indicated by the results for γ = 2 to the right
on Figure 3, stable improvement with γ > 1 was not always the
case for the quasi-Newton algorithm. For details and more res-
ults, see (Brusdal and Mannseth, 1999).

5.1.2 Levenberg-Marquardt variants In this sec-
tion, some results from estimation with three variants of the
Levenberg-Marquardt optimizer are shown. In essence, the vari-
ants, labeled (S), (T), and (TS), correspond to different forms

of scale-discriminate estimation, see also Section 3.3. More de-
tails, including a motivation for each of the variants, are found
in (Brusdal et al., 1999; Nævdal et al., 1999). Details on the
setup of the numerical experiments are found in (Brusdal et al.,
1999).
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The Levenberg-Marquardt variants were always able to
bring the objective function down to the desired level, and for
small data errors there were no visible differences between the
true and estimated a(x). Figure 4 shows the number of itera-
tions needed to reach the desired level for the objective function
versus the value of γ, for 32 data points (i.e., equal to the number
of parameters) and for 100 data points. A benefit from enhan-
cing large-scale sensitivities is seen for (S) and (TS) with 32 data
points, but this benefit almost vanish as the number of data points
is increased to 100. For details and more results, see (Brusdal et
al., 1999).
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Figure 5. The estimated a(x) closest to atrue(x) obtained with γ = 1
(after 67 iterations) and γ = 2 (after 26 iterations).
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For larger data errors visible differences between the true
and estimated a(x) are found. For such data errors, the minimum
error in the estimated function is not found at the final value of
the objective function. Figure 5 shows the best estimates (in this
sense) with (TS) for γ = 1 (after 67 iterations) and γ = 2 (after
26 iterations). However, the estimated a(x) with γ = 1 and γ =
2 at the final value of the objective function were not visually
different, but the difference in the number of iterations persisted.

5.2 Two-phase flow model: Estimation of relative per-
meability

Results with the variants of the Levenberg-Marquardtoptim-
izer applied to the two-phase flow model (see, Section 4.2) are
presented. The relative permeability is a smooth function of sat-
uration. Third-order spline-wavelets have been applied to repres-
ent k2(S2). The data are time-series of produced volume of phase
2, and of applied pressure drop across the core sample. Details
on the setup of the numerical experiments are found in (Nævdal
et al., 1999).
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Figure 6 shows the number of iterations needed to reach the
desired level for the objective function versus the value of γ. The
left plot corresponds to a better initial value than the right. It is
seen that (S) and (TS) benefit from selecting γ > 1, especially if
the initial value is not very good. As for the single-phase flow
model, there was no gain in using the (T)-variant.

The influence that the choice of γ has on the scale structure
of the initial steps taken by the optimizer is illustrated in Figure 7.
The next few steps have similar structures. Hence, selecting γ >
1, ensures that the first few steps are dominated by large-scale
components. A similar scale structure were found for the steps
when estimating the permeability in Section 5.1, see, (Brusdal et
al., 1999).
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Figure 7. Changes in the oil relative permeability curve corresponding

to the first step with (TS), for γ = 1 (left) and γ = 4 (right).
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Figure 8. Number of iterations versus γ with standard estimation (left),

and with hierarchical estimation (right).

Figure 8 shows results from applying standard and hierarch-
ical estimation to the same case, with the (S) and (TS) vari-
ants. It is seen that the better performances are obtained with
a good choice of γ and standard estimation. Hierarchical es-
timation seems more indifferent to the choice of γ. However,
hierarchical estimation perform better than standard Levenberg-
Marquardt (i.e., corresponding to γ = 1 on the left plot in Fig-
ure 8) for all values of γ. This is largely the impression also
when estimating the permeability (Brusdal et al., 1999). Thus, if
convergence speed with an a priori number of identifiable para-
meters was the only issue, the better choice seems to be scale-
discriminate standard estimation with a proper choice of γ. How-
ever, in practice, the number of identifiable parameters is often
not known a priori, making hierarchical estimation an attractive
alternative.

6 SUMMARY AND CONCLUSIONS
The focus of this paper has been on the possible influ-

ence of a correlation between nonlinearity, scale, and sensitivity,
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on estimation efficiency for the quasi-Newton and Levenberg-
Marquardt algorithms.

The correlation was demonstrated for a class of integrated
nonlinear models of a specific form. The correlation was found
to be strong at points in parameter space corresponding to slowly
varying functions, and less evident for other points.

Multi-scale spline-wavelet bases were used to represent the
function to be estimated, to facilitate various forms of scale-
discriminate estimation strategies. These strategies aim at en-
hancement of sensitivities to parameters associated with low non-
linearity. The correlation guides us to enhance sensitivities to
parameters associated with large-scale basis elements.

Two estimation problems, stemming from porous-media
flow, was considered: (1) Estimation of a spatially dependent,
piecewise constant function (the permeability) in a single-phase
flow ODE-model. (2) Estimation of a state dependent, smooth
function (a relative permeability) in a two-phase flow, coupled
PDE-model.

Both model problems were found to be related to the class of
models for which the correlation has been demonstrated. Prob-
lem (1) has been shown to belong to this model class, but the
permeability is not always slowly varying, making the strength
of the correlation uncertain. The relative permeability is slowly
varying, but due to the complexity of the two-phase model, prob-
lem (2) can not be shown to belong to the model class, by ana-
lytical means.

Numerical results indicated that there is a benefit of apply-
ing scale-discriminate estimation, although the effect was some-
what problem dependent. Both scale-discriminate standard es-
timation, and hierarchical estimation, usually performed better
than ordinary estimation (i.e., straightforward quasi-Newton and
Levenberg-Marquardt). The best scale-discriminate standard es-
timation performed better than hierarchical estimation. However,
in practice, the number of identifiable parameters is often not
known a priori, making hierarchical estimation an attractive al-
ternative.
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