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ABSTRACT

We consider the inverse conductivity problem in Electrical

Impedance Tomography for which we focus on the case of im-

portant conductivity jumps. If we formulate the problem with a

boundary element method we obtain a nonlinear system which

can be solved by a Levenberg-Marquardt method. The impor-

tant size of this system is reduced by simulating a global current

injection. The resolution of the new nonlinear system allows us

to reconstruct the �rst layer of the domain. Once this layer ob-

tained we iterate the process to reconstruct the next layer by

choosing an accurate starting point that is a conductivity dis-

tribution which minimizes the di�erence between measured and

calculated potentials on the boundary. With this method we

obtain a layer reconstruction algorithm which gives good results

not only for small conductivity jumps but also for important

jumps.

NOMENCLATURE

�i Conductivity distributions
' Potential distribution
'm Potential measurements
'h Potential distribution for an homogeneous

domain
�' Potential di�erence
� Potential distribution for a global injection

i Domain
�i Boundary of a domain
�ij Boundary between 2 domains
EM Elementary solution of Laplace equation

�M Dirac distribution at point M
�i Outward unit normal

INTRODUCTION

Electrical Impedance Tomography (EIT) seeks to re-
cover the interior electrical conductivity of an inhomoge-
neous conducting object by means of low{frequency voltage
and current measurements at the boundary. The applica-
tion of EIT is, for example, in medical and geophysical �elds
where low{resolution images are adequate, when alternative
techniques do not exist, or when inexpensive systems are
necessary.
The EIT is related to a nonlinear inverse problem. For sim-
plicity, we assume that the studied domain 
 with bound-
ary � is a disk. We denote the electrical conductivity by �
and potential by '. The problem can be formulated as a
boundary value problem governed by the elliptic equation:

r � (�r') = 0 in 
 (1)

with boundary conditions which can be Dirichlet, Neumann
or mixed conditions.
If the conductivity � is known in 
, the forward problem
consists in calculating the potential '. The inverse problem
for its part consists in reconstructing the conductivity dis-
tribution � in 
 from potential measurements 'm on �.
Some results on the uniqueness of the solution can be
found in the works of Sylvester, Uhlmann and Nachman
(Nachman et al.,1988), (Nachman,1995), (Sylvester and
Uhlmann,1986), (Sylvester and Uhlmann,1987). In 1988,
Alessandrini (Alessandrini,1988) has explained the low res-
olution of EIT images proving a weak dependance between
the data and the conductivity. More recently Allers, Dobson

and Santosa (Allers and Santosa,1991),(Dobson and San-
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tosa,1994) have given some stability results.
Several methods of current injections can be used. We used
injections by two adjacent electrodes and potential measure-
ments by adjacent pairs of electrodes as proposed by Barber
and Brown (Barber and Brown,1983). We can �nd an other
method in the work of Isaacson (Isaacson,1986) based on an
optimal current density which improve the \distinguishabil-
ity" between two conductivity distributions.
As for the existence of a solution, since the EIT problem is
ill{posed and the measured data are not exact, there is no
exact solution to the inverse problem of EIT. So we have
to ask how we can stabilize the ill{posed problem and then
�nd an approximate solution. The �rst attempts in this di-
rection are to linearize the ill{posed problem (like in (Bar-
ber and Brown,1983),(Barber and Brown,1986)). These
linearization methods are very attractive because of their
mathematical simplicity and computational fastness but
they have the defect of ignoring the nonlinearity of EIT
which implies di�culties in the case of important conduc-
tivity jumps. There exists another category of methods
which acknowledges the nonlinearity and ill{posedness of
EIT and attempts to treat it without linearization. Most
of these approaches reformulate the EIT problem as a non-
linear optimization one, which requires the solution of the
direct problem at each step of the iterative procedure used
to obtain the solution.
Our approach is to stay as near as possible from the non-
linearity of the problem to take into account not only small
conductivity jumps but also important conductivity jumps.

FORMULATION BY BOUNDARY ELEMENT METHOD

Let's consider 
 a medium of boundary �0 and con-
ductivity �0 perturbated by conductivity anomalies �i on
subdomains 
i of boundary �i. We call �ij the bound-
ary separating two subdomains 
i and 
j (see �gure 1).
We suppose the conductivity constant on each subdomain
which implies that the potential is harmonic on each 
i.
If we consider EM , the elementary solution of Laplace equa-
tion de�ned by:

�EM = ��M in IR
2 (2)

where �M is the Dirac distribution at point M , the second
Green formula gives:

Z



[EM�(�') � �'�EM ]d
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Figure 1. Hexagonal conductivity perturbations

that is:

�(M )'(M ) =
X
i

�i

Z
�i

[EM

@'

@�i
� '

@EM

@�i
]d�i (4)

where �i is the outward unit normal to 
i. If we take into
account the continuity of the current normal component
through the interface �ij:

�i
@'

@�i
+ �j

@'

@�j
= 0 (5)

and that �i = ��j, we obtain the potential integral repre-
sentation for M 2 
:

�(M )'(M ) = �0

Z
�0

[EM

@'

@n0
� '

@EM

@n0
]d�0

�
X
i;j

(�i � �j)

Z
�ij

'
@EM

@�i

d�i (6)

We show that we have the same formulation for M 2 �0
with:

�(M ) =

8<
:
�i for M 2 
i

�0=2 for M 2 �0
(�i + �j)=2 for M 2 �ij

(7)

If we call 'h the potential distribution on the homogeneous

domain of conductivity �0, equation (4) gives in this case,
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for M 2 �0:

'h(M )

2
=

Z
�0

[EM

@'

@�0

� '
@EM

@�0

]d�0 (8)

We can consider �' = ' � 'h the di�erence between the
perturbated and homogeneous potentials. Then, by di�er-
ence between equation (6) and equation (8), we obtain, for
a perturbated medium and for M 2 �0:

�0

2
�'(M ) = �

X
i;j

(�i � �j)

Z
�ij

'
@EM

@�i
d�i (9)
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Figure 2. Five conductivity perturbations in an homogeneous domain with

values (from the center to the boundary) 4, 10, 100, 300, 500 : Real image

If we write equation (6) and equation (9) for all the
discretization points of 
 and for each independent injec-
tion, we obtain a nonlinear system which unknowns are the
conductivities �i and potentials ' (for each injection) inside
the domain:

8>>>>>>><
>>>>>>>:

�0

2
�'(M ) = �

X
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Z
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@EM
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(10)

To solve such a system we use a Levenberg-Marquardt type
algorithm: the subprogram SNLS1E of the numerical li-
brary CML (Common Mathematical Library) of SLATEC
(Sandia, Los alamos, Air force weapons laboratory Tech-
nical Exchange Committee). We obtain good results with
this algorithm as shown in �gure 2 and 3. In this test, we
put 5 perturbations of conductivity values (from the center
to the boundary) 4, 10, 100, 300, 500, in an homogeneous
medium of conductivity 1. The conductivity values are re-
constructed with a precision of 10�7 but with important
computation times. This is due to the size of the system:
for example, for a small mesh of 19 hexagons, and only 16
electrodes we have a system of 2272 equations and 2035 un-
knowns. But the quality of the results obtained for impor-
tant conductivity jumps encourage us to treat the problem
in a nonlinear way. Now, the question is: how can we reduce
the size ?
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Figure 3. Image obtained by resolution of the nonlinear system.

GLOBAL INJECTION ALGORITHM

The important size of the system comes from the fact
that we write the equations 10 not only for all the discretiza-
tion points of 
 but also for all independent injections.
If we take into account the linearity of this system with re-
gard to the potential, we can group all the injections and
then simulate one injection simultaneously by all electrodes
(see �gure 4) which comes to sum the corresponding equa-
tions. The system is then reduced to the size of a system
corresponding to one injection . We can �nd a theoretical
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Figure 4. Global injection on the boundary

justi�cation of this in the work of Kohn and Vogelius (Kohn
and Vogelius,1984).

If we call � =
X

i=1;3;:::;N�1

'i where N is the number of in-

jections and 'i the potential corresponding to injection i,
we can write the new system,for all the discretization points
of 
, as:

8>>>>>>><
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(11)

To solve this nonlinear system we use the same
Levenberg-Marquardt type algorithm. If we test this
method on a domain with small conductivity jumps (�gure
5), with values between 0.9 and 1.5, we obtain a good qual-

ity image as shown in �gure 6 with a precision of 10�4 for
the conductivity values. Moreover, as expected, the com-
putation time is decreased signi�cantly.

If we look at di�erent iterations of the algorithm, we
can see a layer reconstruction begining with the layer near
the boundary and making way to the center. In the case
of important conductivity jumps (in the same con�gura-
tion as in �gure 5 but with conductivity values from 1 to
1000) we quickly reconstruct the �rst layer of the domain

(as shown in �gure 7) with a good precision but it's impos-
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Figure 5. An example of perturbated domain.

1

2

16

15

3

14

4
5

13

6

12

7

11

8

10

9

Figure 6. Image obtained by the Global Injection Algorithm on small con-

ductivity jumps.

sible to reconstruct the other layers. In fact, when we have
reconstructed the �rst layer, the function, which must be
minimized, takes very small values. So it becomes di�cult
to minimize it without entering in an instability domain. It
comes from the fact that, grouping the injections, we loose
the \distinguishability" power of separated injections. It's
also well known that the �rst layer has a big inuence on
the measured potentials, hiding the other layers.
Once we have reconstructed the �rst layer, we have a new
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Figure 7. Image obtained by the Global Injection Algorithm for important

conductivity jumps.

information on the domain. So the question is: how can we
use this information to reconstruct the next layers ?
One way to answer to this question is to think to a \layer"
algorithm. In fact we reconstruct the �rst layer from the
knowledge of the potentials and currents on the exterior
boundary (�2 in �gure 8) of the layer. Once the layer re-
constructed we can try to calculate the potentials and cur-
rents on the interior boundary (�1 in �gure 8) to iterate the
process for the next boundary. We have to solve a Cauchy
problem which is ill-posed. To solve it we can use the Hib-
ert Uniqueness Method proposed by JL Lions (Lions,1988)
which is based on the exact controlability in ill-posed prob-
lems (we can �nd some results on this method in (Dai and
Marsili,1993)). This method is very attractive in theory but
in this case, due to the important sensibility of the problem,
we are confronted to the classical problem of the derivatives
approximation.
If we can't strip the layer, we must use it to iterate the
process and reconstruct the other layers.

LAYER ALGORITHM

Once the �rst layer reconstructed, we can ask what ini-
tial conductivity we must take in the other layers to restart
the process without falling in an instability domain. This is
the di�culty for all optimization problems: the initial point
value.
If we take an arbitrary conductivity value we fall in a high
instability domain. Our �rst attempt was to take an initial

conductivity value equal to a mean conductivity (with re-
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Figure 8. One layer of the domain

gard to the real conductivity values) which isn't utopian be-

cause we can calculate an approximation of such a conduc-
tivity by measuring the energy dissipation in the domain.
We obtained a convergence of the Levenberg-Marquardt al-
gorithm only in some simple cases.
Then, we tried to start as near as possible from the solu-
tion by taking an homogeneous conductivity in the center
of the domain which minimize the di�erence on the domain
boundary between calculated and measured potentials. To
�nd this \optimal" conductivity we consider the unknown
conductivities in the center of the domain as one unknown
homogeneous conductivity (the conductivities on the �rst
layer have already been calculated). When we solve the
nonlinear system we �nd in just a few iterations (around 4
iterations) the \optimal" conductivity. In the case of �gure
7 with conductivity values from 1 to 1000, the \optimal"
conductivity value was about 2.23 which gives a relative er-
ror on the boundary potentials shown in �gure 9. The peak
is related to the electrod where the potential is near 0 and
where the error is not signi�cant. If we don't consider this
peak we obtain a mean error of 2%. Moreover if we cal-

culate the potentials inside the domain (with the �rst layer
reconstructed and the \optimal" conductivity) and compare
them to the real ones, we obtain the relative error shown
in �gure 10. We can see that the error is quite small in the
right side of the �gure which is related to the potentials in
the �rst layer of the domain.
Following these results we can say that the \optimal" con-
ductivity found minimizes not only the error on the poten-
tial on the boundary but also the error ont the potential in

the �rst layer of the domain. With this new starting point,
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Figure 9. Relative error on measured potentials at the electrodes for the

\optimal" conductivity
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Figure 10. Relative error on potentials inside the domain for the \optimal"

conductivity

we reconstruct the next layer with a good precision and it-
erating this by calculating a new \optimal" conductivity in
the center of the domain at each step, we reconstruct all
the domain with a relative error on conductivities between
0.1% (near the boundary) and 1.5% (at the center). These
results were obtained in the same case as �gure 6 but for
important conductivity jumps (conductivity values from 1
to 1000).

So we have the following layer algorithm:

� Initial step: reconstruction of the conductivity on
the �rst layer of the domain with the global injection
algorithm,

� Step 1: Computation of an \optimal" conductivity by
minimizing the di�erence between calculated and mea-
sured potentials on the boundary,

� Step 2: Computation of the corresponding potential
distribution in the domain and on the boundary,

� Step 3: Reconstruction of the next layer, taking the
conductivity and potentials calculated in step 1 and 2 as
a new starting point for the global injection algorithm,

� Iteration: Go to Step 1 and so on until we have re-
constructed all the domain.

CONCLUSION

Our aim was to work on domains with important con-
ductivity jumps, a case where linearization techniques have
some di�culties to work. With the formulation of the prob-
lem by a boundary element method, we obtain a nonlinear
system where the unknowns are the conductivities and po-
tentials inside the domain. This system can be solved by
a Levenberg-Marquardt algorithm which gives good results
but with a quite long computation time due to the size of
the system. To reduce this size we consider one global in-
jection on the boundary which allows us to reconstruct the
�rst layer of the domain. If we calculate a good starting
point we can iterate the algorithm and then reconstruct,
layer after layer, all the domain with a good precision not
only for small but also important conductivity jumps.
We used the same mesh for the direct and inverse problems
which explain the important quality of the results. But if a
method doesn't work on the same mesh it can't work in a
real case. So the quality of the results obtained lead us to

think that this algorithm could give quite good results on
di�erent meshes, which we are testing now. This is a di�-
cult problem in inverse problems : how to adapt the mesh
to the reality ? The problem of the injection type also can
been studied testing our algorithm with, for example, an
optimal current density.
It's obvious that, even with improvements, this nonlinear
approach can't be used for real-time applications but it can
be usefull for applications where time is less important than
the results quality.
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