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ABSTRACT
Tikhonov’s regularization approach applied to image

restoration, stated in terms of ill-posed problems, has proved to
be a powerful tool to solve noisy and incomplete data. This
work proposes a variable norm discrepancy function as the
regularization term, where the entropy functional was derived.
Our method is applied to true Atomic Force Microscopy (AFM)
biological images, producing satisfactory results. These images
represent a mapping of local interaction forces exerted between
a reduced scaled AFM sensing tip and the biological sample,
kept alive in aqueous or air enviroment.

INTRODUCTION
The Atomic Force Microscopy (AFM) technique (Binnig et

al., 1986) consists, basically, on the production of force images,
formated like tridimensional photographs, by means of very
small sensing tips, used to map the interaction between the
sample and the tip. The greatest advantage of the AFM
technique is its ability to image the surface of randomly
distributed macromolecules in situ, if not in vivo, which opens a
new promising approach in the structural biology field (Glaeser,
1994), complementing well with other techniques such as
electron-microscopy and X-ray diffraction. Among several
powerful capabilities, the AFM technique, when applied to
biological samples, allows the visualization of microscopic
structure features from cell membrane surfaces, like proteins, in
the nanometer range (Amato, 1997; Oberleithner et al., 1994).
For images in this range scale, the interaction between the tip an
the sample can produce blurred images, with the blurring being
related to the tip geometry (operator). Besides the blurring
effect, additive noise is also present. Being an ill-posed
problem, a direct inversion is not directly applied to deconvolve
the blurred image.

The solution of ill-posed problems, by means of
regularization (Tikhonov and Arsenin 1977), resulted in a
substantial number of developments in different application
fields, such as astronomy (Gull and Daniell, 1978) and
scanning-tunneling microscopy (Kokaram et al., 1995). For the
solution of any direct problem, three essential requirements
have to be satisfied: existence, uniqueness and stability.
Depending strictly on the quality of the operator in presence of
noise, at least one of these qualifiers may not be met on the
formulation of inverse problems. The regularization theory
applied to image restoration is based on the trade-off between
fidelity to the data and smoothness of  the solution in the space
domain, converting an ill-posed problem into a well-posed one
(Kang and Katsaggelos, 1995), deriving an acceptable
approximation towards the most feasible solution (original
image).

MATHEMATICAL FORMULATION OF THE DIRECT
AND INVERSE PROBLEMS

When the operator intrinsically exhibits geometrical
limitations, as is the case of the cantilever’s tip used in AFM to
produce sample scanning images in the nanometer range,
considerable blurring effects (tip-to-sample convolutions) may
occur. Also due to the extremely small scale, other undesirable
additive perturbations (noise) could lead to images with poor
signal-to-noise ratios. Differently from image enhancement
(Wu, 1997), the main goal in image restoration is to make the
processed image to be as close to the true image as possible in
regard to intensity distribution. Therefore, the effects of blurring
and additive noise may be outlined as:

    y Bx n= + ,                      (1)
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where y ∈ψ  represents the real image, x ∈ℑ  the original
image (being ℑ  and ψ Hilbert spaces), B a compact operator,
described by a point-spread function (PSF) matrix of the
imaging system ( B X Y: → ) and n the additive noise, generally
of Gaussian type. Considering only the first term in the right
hand side of Eq. (1), the image (without additive noise) is
described by a Fredholm equation of the first kind
(Kress,1989):

y z b z w w dw( ) ( , ) ( )= ϕ                  (2)

where ϕ( )w  represents the expected unique solution obtained
along the restoration process, located near the primitive
intensities in the domain region, in analogy to x in Eq. (1).

This problem is considered well-posed if, for each y ∈ψ ,
a unique solution x ∈ℑ  does exist, depending continuously on
the observed data, otherwise it would be ill-posed (Karayiannis
and Venetsanopoulos, 1989), with no apparent solution if the B
operator is a square matrix, with det(B)=0. Based on this
argument, the inverse problem

x B y= −1   (3)

was considered ill-posed by Franklin (1970). As the eigenvalues
accumulate in zero (Tikhonov and Arsenin, 1977), a small
perturbation yields a large perturbation in the solution (Kang
and Katsaggelos, 1995). Therefore, the inverse problem is
solved as a finite dimensional optimization problem in which
we minimize a functional such as the one with the square
residues

  L x y Bx( ) || ||= − 2    (4)

This is the well known least squares method.

TIKHONOV REGULARIZATION
The functional to be minimized may also be constructed

based on the Bayesian argument of conditioned probability
(Kokaram et al., 1995). Searching for an adequate compromise
between accuracy and stability, a Tikhonov regularizing term is
added to the norm given by Eq. (4)
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generating a regularized solution to this problem (Mohammad-
Djafari and Demoment, 1985), based on the classical Tikhonov
regularizing functional (Kress, 1989), where y(i,j) represents the

acquired image, b(k,l) the PSF, x
^

 the estimated data that we
want to determine, and αS the regularization term, where
parameter α determines the trade-off between the accuracy and
the stability of the solution; (i,j) is a specific pixel of the total M
x M image pixels, and the blurring discrete operator b(k,l)

convolves (2N+1) x (2N+1) pixels around that specific pixel.
Depending on the image characteristics, the functional S can be
defined by any prior function that imposes no correlation on the
image for which there is no evidence in the available data
(maximally noncommittal).

Although other general functionals can be used (Anteneodo
and Plastino, 1999), like the Csiszer’s measure (Kapur and
Kesavan, 1992), this work proposes another functional, which
we call q-discrepancy, to derive a family of regularizing terms
using Bregman distances of convex projections
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with non-negative q, from where the modified cross-entropy
functional
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is obtained as a particular case when q → 0, where x i j
^
( , )

represents the estimated image data values, x i j
_
( , )  describes a

prior reference model, being the latter stated in terms of the
weighted average from the acquired image data. The functional
Q, given by Eq. (5), will be minimized when both the squared
residues, given by Eq. (4), and discrepancies tend to be minimal
(maximal configurational entropy); the maximum entropy
criterion, proposed by Jaynes (Kapur and Kesavan, 1992),
applied to image restoration by Frieden (1972), establishes that
“of all feasible (possible) solutions, there should be used the
one that has the maximum configurational entropy” (Wu,
1997).

In order to minimize the Q functional we make

∂ ∂Q x/
^

= 0 , yielding a system of non-linear equations
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where MxM=65536 (each row represents the whole image), for
an image of 256 x 256 pixels. To solve this system we use the
multivariable Newton-Raphson method, in which a linearization
is obtained using the Taylor expansion, keeping only the first
order terms. Making use of such procedure, corrections of the
unknowns can be obtained iteratively, using the Gauss-Seidel
method (Wu, 1997):
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where c is the step iteration counter. The Newton Raphson
estimates are obtained with
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where γ is used as a gain factor to produce more stability along
the iterative process, as the convergence takes place towards the
expected solution. Figure 1 illustrates the algorithm’s flow
chart, which uses the Qmin criterion to stop the process. The
program was written in C language, using the C++ Builder
Server/Client  platform from Borland Inc., with a user friendly
interface.
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Figure 1.  Image restoration algorithm.

RESULTS AND DISCUSSION
In our case, the cantilever’s tip effects (blurring) present in

the 256 x 256 AFM images can be clearly observed in
dimensions less than or equal to 1µm x 1µm. For this reason, in
this scale, postacquisition processing (image restoration)
becomes necessary to reveal important specimen’s structural
and functional features. Both the regularization parameter α and
the gain factor γ were adjusted to produce optimal restoration in
the observer point of view. The mathematical representation of
the tip geometry (blurring operator) was chosen to be similar to
a Gaussian tridimensional distribution (Kokaram et al., 1995),
with adjustable variance (σ2). The cross-entropy functional,
derived from the Bregman distance based on the q-discrepancy
functional ( q → 0), was used in the regularization term.

Figure 2a illustrates a true 1µm x 1µm AFM biological
image of an eritroblast in leukemia pathology, whose details
were improved (Fig. 2b) after running the algorithm, assuming a
9 x 9 deconvolution Gaussian matrix (DGM) with σ2 =10, using
α=0.03 and γ=0.2.

Figure 3a shows another true 600 nm x 600 nm image of the
same sample, restored with different Gaussian tip profiles (Figs.
3b and 3c), using the same α and γ=values as in Fig. 2b. Figure
3b shows minor improvements in its contrast contents for a 9 x
9 DGM with σ2 =10, whereas Fig. 3c reveals more visible
contours after deconvolving the true image with a 15 x 15 DGM
with σ2 =40.

    
              Figure 2a. AFM true 1µm x 1µm  image of an
                          eritroblast in leukemia.

      
               Figure 2b. Restored image using a 9 x 9 DGM
                                 (σ2 =10),  with α=0.03 and γ=0.2.
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    Figure 3a. AFM true 600 nm x 600 nm image

                                  of an eritroblast in leukemia.

      

       
         Figure 3b.  Restored image using a 9 x 9 DGM

  (σ2 =10),  with α=0.03 and γ=0.2;
  tip geometry is shown bellow.

      

           Figure 3c. Restored image using a 15 x 15 DGM
                       (σ2=40),  with α=0.03  and γ=0.2;
                        tip geometry is shown bellow.

We must stress that for the expert observer the structures
added to the reconstructed images do not correspond to
artifacts. They bring relevant contrast information that would be
lost if other techniques, such as Fourier Transform (FFT), had
been applied.

It can be noted that all restored images exhibit a false frame
(border effect) due to the calculations made around the image
border, by using values outside the image domain. We are
working on the attenuation of such undesirable effect by
reflecting the image’s border values. We should emphasize that,
as expected, the results obtained depend on the choice of
parameter=α. Therefore, the proper choice (determination) of α
is an important aspect of the inverse problem here described.

CONCLUSIONS
The results obtained so far have been very encouraging. At

the moment we are working on the implementation of a general
regularization term based on the q-discrepancy. Our goal is to
determine which value for q yields the best solution of the
reconstruction problem.

With respect to the regularization parameter in Eq. (5), one
comment is in order. The determination of an optimal parameter
is possible, and has already been done for the squared residues
norm (Kress, 1989), but is computationally involved. Therefore,
the most common approach is to perform numerical
experimentations for the estimation of such parameter (Kokaram
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et al., 1995). The results presented in Figs. 2 and 3 were
obtained applying this approach.

We have also in mind to develop and implement an
automatic correction of the regularization parameter along the
iterative procedure, that may improve the estimates.
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