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ABSTRACT
The numerical performances of Landweber iteration, the

Newton-CG method, the Levenberg-Marquardt algorithm, and
the iteratively Regularized Gauß-Newton method are compared
for a nonlinear, severely ill-posed inverse scattering problem
in two space dimensions. A modification of the Gauß-Newton
method is suggested, which compares favorably with the above
methods. A convergence proof is presented including the effects
of the numerical approximation of the solution operator.

Keywords: inverse obstacle scattering, iterative regulariza-
tion methods, operator approximations, convergence rates.

1 Introduction
We consider the following problem. Let D � IR2 be a

star-shaped, smooth domain describing the cross section of a
long, cylindrical scattering obstacle. For an incident plane time-
harmonic wave ui(x) := eikhx;di, jdj= 1;k > 0 the scattered field
us and the total field u := ui +us satisfy

∆u+ k2u = 0 in IR2nD̄ (1)
p

r

�
∂u
∂r
� iku

�
! 0; r = jxj ! ∞ (2)

u = 0 on ∂D: (3)

In acoustics, this describes scattering from a sound-soft obsta-
cle, and in electromagnetics, it describes scattering of a polar-
ized wave from a perfect conductor. The Sommerfeld radiation

condition (2) implies the asymptotic behavior

u(x) =
1
jxj

�
u∞

�
x
jxj

�
+O

�
1
jxj

��
; jxj ! ∞

(Colton, Kreß 97). The function u∞ : fx : jxj= 1g!C, called the
far-field pattern of us, is analytic. We want to solve the inverse
problem to identify the shape of D from measurements of u∞ for
one fixed incident wave ui. This problem is difficult to solve
since it is nonlinear and severely ill-posed. To formulate it as a
nonlinear operator equation

F(q) = u∞;

we describe the boundary ∂D by a radial function q : [0;2π]! IR:

∂Dq := fq(t)

�
cos t
sin t

�
: t 2 [0;2π]g

The characterization of the Fréchet derivatives of F, which
has been accomplished some years ago by Kirsch and others,
has paved the way for the application of iterative regularization
methods to solve this and related problems numerically. These
methods have been intensively investigated recently, and con-
vergence results have been obtained under some conditions on
the nonlinearity of the operator. Examples include Landwe-
ber iteration (Hanke, Neubauer, Scherzer 95), the iteratively

1 Copyright  1999 by ASME



regularized Gauß-Newton method (IRGNM) (Bakushinskii 92,
Blaschke/Kaltenbacher et al 97, Hohage 97) and inexact Newton
methods such as the Levenberg-Marquardt and the Newton-CG
algorithm (Hanke 97) or most recently a second degree method
(Hettlich, Rundell 99). We compare the numerical performance
of these methods applied to the above inverse scattering problem
and suggest a new, more efficient modification of the IRGNM.

While the numerical solution of the model problem (1) -
(3) is quite fast on modern computers, computation time be-
comes a central issue in large scale and 3-dimensional problems.
Hence we address the problem of minimizing computation time.
Roughly speaking, it does not pay off to pay too much effort in an
accurate evaluation of the operator as long as one is still far away
from the solution. We show how various discretization parame-
ters have to be increased during the iteration such that the order
of convergence established in the infinite dimensional setting is
maintained.

2 Iterative Regularization methods
We consider the following abstract setting: Let X and Y be

Hilbert spaces, and F : X � D(F)! Y a nonlinear operator that
is continuously Fréchet differentiable on its domain D(F). We
want to solve the operator equation

F(x) = y; (4)

and call the exact solution x†. Moreover, we assume that only
noisy data yδ are available satisfying

kyδ� yk � δ (5)

with some known noise level δ.

Definition 1. An iterative method xδ
n+1 := Φ(xδ

n; : : : ;x0;F;yδ)

together with a stopping rule N(δ;yδ) is called an iterative reg-
ularization method for F if for all x† 2 D(F), y := F(x†), all yδ

satisfying (5) and all initial guesses x0 sufficiently close to x† the
following conditions hold:

� xδ
n is well defined for n = 1; : : : ;N(δ;yδ), and N(δ;yδ) < ∞

for δ > 0.
� For exact data (δ = 0) either N = N(δ;yδ)< ∞ and xδ

N = x†

or N = ∞ and kxn� x†k! 0 for n! ∞.
� The following regularization property holds:

sup
kyδ�yk�δ

kxδ
N(δ;yδ)

� x†k! 0; δ! 0: (6)

The choice of the stopping index is a very important issue for
iterative regularization methods since typically, for noisy data,

the approximations deteriorate quite rapidly if one iterates too
often. The most well-known stopping rule is the discrepancy
principle which consists in stopping the iteration at the first index
N = N(δ;yδ) for which

kF(xN)� yδk � τδ (7)

with some fixed constant τ > 1.
Unfortunately, convergence in (6) can be arbitrarily slow if

(4) is ill-posed (see, e.g., Proposition 3.11 in (Engl et al. 96)).
We would like to have an estimate of the form

sup
kyδ�yk�δ

kxδ
N(δ;yδ)

� x†k= O(g(δ)) (8)

with some function g converging to 0 as δ ! 0. Such conver-
gence rates results can only be obtained if a so-called source
condition is satisfied which for nonlinear problems usually has
the form

x0� x† = f (F 0[x†]�F 0[x†])w; kwk � w̄: (9)

Since F 0[x†] is typically smoothing, this can be seen as an ab-
stract smoothness and closeness condition on the initial error.
The most common choice of f is f (λ) = λµ with some µ > 0. It
can be shown that the best-possible g in (8) for these so-called

Hölder-type source conditions is g(λ) = λ
2µ

2µ+1 . However, for
severely ill-posed problems such source conditions are usually
far too restrictive. For our inverse scattering problem, they imply
that the exact solution is known up to an analytic function! As
discussed below, appropriate functions f for severely ill-posed
problems are often of the form

fp(λ) = (� lnλ)�p
; λ > 0; fp(0) = 0

with some parameter p> 0. In this case, the best possible g in (8)
is g = fp (Mair 94), which is of course much worse than g(λ) =

λ
2µ

2µ+1 , reflecting the severe ill-posedness. In order to avoid the
singularity of fp at λ = 0, w.r.o.g. we will always assume that
F is scaled such that kF 0[x]�F 0[x]k � exp(�1) holds for x in a
neighborhood of x†.

Let us relate these abstract results to our inverse scattering
problem. First of all, we need the derivative of the domain-to-
far-field mapping F. We consider F in the function spaces

F : fq 2 Hs[0;2π] : q > 0g! L2(S1):
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Here Hs[0;2π] is the Sobolev space of index s of periodic func-
tions on [0;2π]. It can be shown (see Kirsch 93) that F 0 exists
and has the form F 0[q]h = LqMqh where Mqh := q

q2+q02
∂u
∂ν h and

Lq maps a (parametrized) function f on ∂Dq to the far field u∞
of the radiating solution v of the exterior Helmholtz equation
with boundary values vj∂D = f . In other words, the derivative
u0s[q]h = v of the scattered field us for the perturbation h has the
boundary values u0s[q]h=Mqh on ∂Dq. Whereas Mq has a simple
and stable inverse, all the ill-posedness of F 0[q] is in the operator
Lq. If D is a disk, i.e. q = const, then

Hs+p+ε[0;2π]� R( fp(L
�
qLq))�Hs[0;2π]

for all ε> 0 (Hohage 97). Hence, (9) with f = f p means, roughly
speaking, that the initial error x0 � x† is small in some higher
Sobolev norm, which is a quite natural condition. If, e.g., the un-
known domain has a corner the location of which is not known,
then convergence is very slow. These results, including the de-
pendence on the smoothness parameter p came out quite neatly
in numerical experiments. Similar (and often simpler) interpreta-
tions of logarithmic source conditions in terms of Sobolev spaces
can be given for many other severely ill-posed problems, e.g.
the backwards and sideways heat equation, an inverse problem
in satellite gradiometry, an inverse potential problem, and other
scattering problems (see Mair 94, Hohage 97,98,99, and Hohage,
Schormann 98).

3 Comparison
Here we review some iterative regularization methods that

have been suggested in the literature and compare the numerical
results for the application to our inverse scattering problem. All
convergence theorems need some condition restricting the degree
of nonlinearity of the nonlinear operator F. Unfortunately none
of these conditions could be verified for our inverse scattering
problem, yet. Nevertheless, the convergence results have been
confirmed in numerical experiments.

Landweber iteration
Landweber iteration is defined by the formula

xδ
n+1 := xδ

n +µF 0[xδ
n]
�(yδ�F(xδ

n)): (10)

µ is a scaling parameter that has to be chosen such that kF 0[x]k�
1=η for all x in a neighborhood of x†. Hanke, Neubauer, and
Scherzer (95) have proved the following result:

Theorem 1. If the nonlinearity condition

kF(x)�F(x̄)�F 0[x](x� x̄)k � ηkF(x)�F(x̄)k (11)

holds for all x; x̄ in a neighborhood of x† and some η <
1
2 , then

Landweber iteration together with the discrepancy principle with
τ > 2 1+η

1�2η is a regularization method in the sense of Definition
1.

In (Deuflhard et al. 98) an estimate

kxδ
n� x†k �C(lnn)�p (12)

and optimal order convergence rates with N =O((� lnδ)�2p
=δ2)

have been shown for logarithmic source conditions, but under a
nonlinearity condition that does not hold for scattering problems,
as the case of concentric circles shows.

Landweber iteration has been applied to the sound-soft scat-
tering problem by Hanke, Hettlich, and Scherzer (95), and a char-
acterization of the adjoint F 0[xδ

n]
� has been given.

Inexact Newton methods
In inexact Newton methods, we want to solve the linearized

equation

F 0[xδ
n]hn +F(xδ

n) = yδ (13)

for the update hn = xδ
n+1� xδ

n. As (13) inherits the ill-posedness
from the nonlinear problem, it has to be regularized. This leads
to formulae of the form

hn := gn(A
�
nAn)A

�
n(y

δ�F(xδ
n)): (14)

where An := F 0[xδ
n] and gn(λ)� 1=λ.

If Tikhonov regularization is applied to solve (13), we have
gn(λ) = 1=(λ+αn). Then the updates hn 2 X solve the mini-
mization problems

kAnh+F(xδ
n)� yδk2 +αnkhk2 = min! (15)

This is the Levenberg-Marquardt algorithm. A convergence
analysis was given by Hanke (97) under the assumption that αn

is chosen such that

kAnhn +F(xδ
n)� yδk= ρkF(xδ

n)� yδk (16)

with some ρ < 1 and that the discrepancy principle (7) is used
with τ > 1=ρ.

Another possibility is to use the CGNE (conjugate gradi-
ent method for the normal equation) in order to regularize (13),
leading to the Newton-CG method. Here gn is a polynomial de-
pending on the right hand side, making the CGNE a nonlinear
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method. This method has also been investigated by Hanke (97) .
He suggested to stop the inner iteration by a condition similar to
(16) and use (7) with τ > 2=ρ2.

Theorem 2. Let F satisfy the nonlinearity condition

kF(x)�F(x̄)�F 0[x](x� x̄)k � ckx� x̄kkF(x)�F(x̄)k (17)

for all x; x̄ in a neighborhood of x†. Then the versions of the
Levenberg-Marquardt algorithm and the Newton-CG method de-
scribed above are regularization methods in the sense of Defini-
tion 1.

If the adjoint F 0[xδ
n]
� can be computed directly, this has the ad-

vantage that a costly computation and inversion of the matrix for
An can be avoided.

Second Degree methods
Recently, Hettlich and Rundell (99) have suggested a class

of methods that use the second derivative of the operator F . A
predictor-corrector procedure is used to avoid solving quadratic
equations. The predictor h̃n is computed by a formula similar to
(14). Then, the corrector hn is obtained as a regularized solution
of the linear equation

Anhn +
1
2

F 00[xδ
n](hn; h̃n) = yδ�F(xδ

n):

The authors used Tikhonov regularization with constant regular-
ization parameter in both the predictor and the corrector step.
The following convergence result was shown:

Theorem 3. The second degree method described above with
the stopping rule (7) is a regularization method in the sense of
Definition 1 if (17) holds, kF 0k, and kF 00k are locally bounded,
and if τ and the regularization parameter in the corrector step
are chosen sufficiently large.

In order to apply this method to the scattering problem in Sec-
tion 1, boundary values of the second derivative u 00s (h; h̃) of the
scattered field have been computed. A simpler proof, showing
analyticity of F and giving boundary values of derivatives of ar-
bitrary order for Dirichlet and Neumann boundary conditions, is
given in (Hohage 99).

Numerical experiments have shown that better reconstruc-
tions can be obtained in the first iteration steps, but the asymp-
totic behavior is the same as for the Levenberg-Marquardt algo-
rithm.

Bakushinskii methods
Another class of iterative regularization methods is given by

the recursion formula

xn+1 := x0 +gn(A
�
nAn)A

�
n

�
yδ�F(xδ

n)+An(x
δ
n� x0)

�
: (18)

For the choice gn(λ) := 1
αn+λ , suggested originally by Bakushin-

skii (92), this is the iteratively regularized Gauß-Newton method
(IRGNM). The regularization parameters αn are chosen such that

1� αn

αn+1
� R and lim

n!∞
αn = 0 (19)

with some R > 1, e.g.

αn = α0R�n
: (20)

From the theory of linear Tikhonov regularization, it easily fol-
lows that the updates hn = xδ

n+1�xδ
n solve the minimization prob-

lems

kAnh+F(xδ
n)� yδk2 +αnkh+ xδ

n� x0k2 = min! (21)

The additional term xδ
n�x0 as compared to (15) has an additional

regularizing effect and facilitates the convergence analysis. In
particular, it allows to obtain convergence rates which are not yet
available for inexact Newton methods.

Here, we suggest to use (18) with

gn(λ) :=
(λ+αn)

l �αl
n

λ(λ+αn)l
; (22)

l 2 IN. This corresponds to iterated Tikhonov regularization and
contains the IRGNM as the special case l = 1. The implemen-
tation of one iteration step is similar to linear iterated Tikhonov
regularization (Engl et al. 96).

h1 := solution to (21)

for( j = 2; : : : ; l)

h j := argminh2X(kAnh+F(xδ
n)� yδk2 +αnkh�h j�1k2)

xδ
n+1 := xδ

n +hl

Note that the computation of h2; : : : ;hl is very cheap since the
same matrix has to be inverted as in the first inner step, and there
is no further operator evaluation. Roughly speaking, one gets the
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Landweber

-
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-

Levenberg-Marquardt

-

IRGNM

-

Figure 1. Reconstructions for exact data after 100 its

effect of almost l Newton steps for the cost of somewhat more
than one.

It was shown in (Blaschke/Kaltenbacher et al. 97) that
the IRGNM with the discrepancy principle is a regularization
method under the nonlinearity condition

F 0[x̄] = R(x̄;x)F 0[x]+Q(x̄;x) (23)

kI�R(x̄;x)k �CR; kQ(x̄;x)k �CQkF 0[x†](x̄� x)k

for x; x̄ in a neighborhood of x†. Moreover, optimal order con-
vergence rates have been shown for Hölder-type source condi-
tions with 0 < µ � 1=2. For logarithmic source conditions, it
was shown in (Hohage 97) that optimal order convergence rates
hold and that

kxδ
n� x†k �C fp(αn) (24)

for n� N(δ;yδ) with N(δ;yδ) = O(� lnδ). A convergence anal-
ysis for the method (18), (22) with l > 1 will be given below as
a special case of Theorem 4.

Numerical Results
Figures 1 and 2 show reconstruction and corresponding er-

ror plots for regularization methods described above. We always
chose the unit circle as initial guess, and k = 1 in (1).

Landweber iteration is clearly the slowest method. Al-
though some good progress is made at the beginning in filtering
out the low frequency components of the error, Landweber itera-
tion is extremely slow at the high frequency components. From

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90 100

step

L2-error
Landweber
Newton CG
Lev.-Marqu.

IRGNM
Bakush., l=3

Figure 2. Convergence plots for different methods

(12), (20) and (24), we see that in order to get the effect of one
IRGNM step one has to multiply the number of Landweber steps
by R!

Although the Newton-CG method is significantly faster than
Landweber iteration, and the low-frequency components of the
error are eliminated remarkably fast, the asymptotic convergence
is also very slow. This can (informally) be explained as fol-
lows: As for Landweber iteration, the updates hn contain only
very little high-frequency components since they are images of
a reasonable-size functions under the highly smoothing operator
F 0[xδ

n]. We chose ρ = 0:8 and imposed a maximum number of 50
inner iterations which was rarely reached.

The performance of the Levenberg-Marquardt algorithm
and the IRGNM is very similar if the same regularization param-
eters αn are used. Levenberg-Marquardt is slightly faster, but
somewhat less stable since high-frequency components may add
up in course of the iteration. We have found in numerical exper-
iments that the choice (16) of αn almost leads to an asymptotic
behavior of the form (20). Therefore, the numerical results with
the a-priori choice (20) are similar to those with the a-posteriori
choice (16). (16) has the advantage that only one free parameter
ρ occurs, whereas (20) has two free parameters α0 and R, and
particularly α0 is very problem dependent. Therefore, one may
consider to chose α0 by (16) when using (20). For an effective
implementation of (16) we refer to Chapter 9 of (Engl et al. 96).

Let us now compare the methods (18), (22) for l = 1 and
l > 1. As expected from the theoretical convergence result (24),
for the same choice of αn the order of convergence is the same,
only the constant is somewhat smaller for l > 1. However, we
may reduce αn faster, i.e. increase R in (20), for l > 1, and
then convergence becomes significantly faster. Of course, for
ill-posed problems, fast convergence is to some extent always
obtained at the cost of stability, but we claim that the method
(18), (22) with l > 1 is a good trade-off. To support this, we
have tested this method with noisy data on a kite-shaped do-
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1% noise, 6 its

-

10% noise, 4 its

-

Figure 3. method (18), (22) with l = 3 for noisy data

0.9
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1.1
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1.3

1.4

10 20 30 40 50

step

H2-error

Figure 4. Speed of convergence for method (18), (22) with l = 3

main which is known as a difficult test example. It turned out
that the method, with l = 3 and R = 5 in (20), is stable even
with 10% white noise added to the data, and only very few itera-
tions were needed to meet the stopping criterion (7) with τ= 1:1.
Moreover, to check our theoretical result on the speed of conver-
gence, we have plotted kxδ

n� x†k over n on a double logarithmic
scale for the bean-shaped domain in Figure 1. From (24) we have
lnkxδ

n� x†k � c� p lnn, so assuming this estimate to be asymp-
totically sharp, we expect the plot to be close to a straight line.
This is confirmed in Figure 4.

4 Operator Approximations
We now consider the situation where in the n-th step of the

Bakushinskii-iteration (18) the operator F is approximated nu-
merically by an operator F (n), and the derivative F 0[x] is approx-

imated by an operators A(n)
x . We will shortly write A(n)n and A(n)

†

for A(n)
xδ

n
and A(n)

x† , rsp. Thus, (18) is replaced by the formula

xδ
n+1 := x0 +gn(A

(n)
n

�
A(n)

n )A(n)
n

��
yδ�F(n)(xδ

n)+A(n)
n (xδ

n� x0)
�
:

(25)
We will assume that the approximation errors satisfy

max
�
kF(n)(xδ

n)�F(xδ
n)k;kA(n)

† �A†k
�
� ηn; (26)

and that A(n)
x is almost (if not exactly) the derivative of F (n), i.e.

kA(n)
x �F(n)0[x]k � ηn: (27)

Finally, we will replace (23) by an analogous condition for the
discrete operators:

A(n)
x̄ = R(n)(x̄;x)A(n)

x +Q(n)(x̄;x) (28)

kI�R(n)(x̄;x)k �CR; kQ(n)(x̄;x)k �CQkA(n)
† (x̄� x)k

It may be advantageous to state the nonlinearity condition for the
discrete operators since it may be easier to verify in this form, and
a more careful analysis can also deal with a moderate dependence
of the constants on n. However, we have not been able to provide
such an analysis for the sound-soft scattering problem.

Theorem 4. Assume that (4), (5), (7), (19), (22), and (25) - (28)
hold with CR;CQ sufficiently small, τ and α0 sufficiently large,
and

ηn � cη
p

αn fp(αn) (29)

with cη sufficiently small. Then, there exist ρ; w̄ > 0 such that
for all x0 satisfying kx0� x†k � ρ and (9) with f = fp, the iter-
ates xδ

n are well defined for n� N(δ;yδ) and satisfy the estimate
(24) with a constant C independent of n;δ and yδ. Moreover,
N(δ;yδ) = O(� lnδ), and the order-optimal convergence rate (8)
with g = fp holds.

Proof. Since parts of proof are similar to the proof for the
IRGNM with exact operators (Hohage 97), we just outline the
main ideas, and only describe the new features in some detail.
A key observation, making Bakushinskii methods easier to an-
alyze than other methods, is that the total error en = xδ

n � x†

can be decomposed into an approximation error ẽapp
n , a prop-

agated data noise error enoi
n , and a Taylor remainder etay

n , i.e.
en = ẽapp

n + etay
n + enoi

n with

ẽapp
n := rn(S

(n)
n )e0;

enoi
n := gn(S

(n)
n )A(n)

n
�
(yδ� y);

etay
n := gn(S

(n)
n )A(n)

n
�
(y�F(n)(xδ

n):+A(n)
n (xδ

n� x†))

Here rn(λ) := 1�λgn(λ), S(n)n := A(n)
n

�
A(n)

n , and correspondingly

we will use S(n)† := A(n)
†

�
A(n)

† and S† := A�
†A†. The approxi-

mation error ẽapp
n is now further decomposed into an error eapp

n

which corresponds to the approximation error for the linear equa-

tion A(n)
† x = y, an error enl

n describing the nonlinearity effect that

6 Copyright  1999 by ASME



A(n)
n 6= A(n)

† , and an error ediscr
n containing the effects of the dis-

cretization error in A(n)
† : ẽapp

n = eapp
n + enl

n + ediscr
n with

eapp
n := rn(S

(n)
† ) fp(S

(n)
† )w;

enl
n :=

�
rn(S

(n)
n )� rn(S

(n)
† )
�

fp(S
(n)
† )w;

ediscr
n := rn(S

(n)
n )
�

fp(S†)� fp(S
(n)
† )
�

w

where we have used (9). Now all error terms are estimated sepa-
rately to yield a recursive estimate of the total error of the form

ken+1k � a1 fp(αn)+a2kA(n)
† enk: (30)

The estimates on enoi
n and etay

n , derived from (28), (26), (27), and

kgn(S
(n)
n )A(n)

n
�
k�

q
l

αn
, are very similar to those in (Hohage 97).

We have

kenoi
n k �

s
l

αn
δ�

s
l

αn

CR +1+ 1
2kenkCQ

τ�1
kA(n)

† enk;

ketay
n k �

s
l

αn

�
(2CR +

3
2
kenkCQ)kA(n)

† enk+(1+kenk)ηn

�
:

Moreover, from rn(λ) = (αn=(αn+λ))l , it can be shown that the
estimates

keapp
n k � c1 fp(αn); kA(n)

† eapp
n k � c2

p
αn fp(αn): (31)

derived for Tikhonov regularization, also hold for iterated
Tikhonov regularization. To estimate kediscr

n k, we use the in-
equality

k fp(S†)� fp(S
(n)
† )k � c fp

�
kS†�S(n)† k

�

(Hohage 99). This, together with (26), (29), and krn(S
(n)
n )k �

krnk∞ � 1 yields kediscr
n k = O( fp(ηn)) = O( fp(αn)). The es-

timate on enl
n depends heavily on the form of rn. For iterated

Tikhonov regularization we use the formula

rn(S
(n)
n )� rn(S

(n)
† )

= αl
n(S

(n)
n +αn)

�l
�
(S(n)† +αn)

l � (S(n)n +α)l
�

�(S(n)† +αn)
�l

= αl
n(S

(n)
n +αn)

�l
l

∑
i=i

�
i
l

�
αl�i

n

�
(S(n)† )i� (S(n)n )i

�
�(S(n)† +αn)

�l
;

and treat each term in the sum as in (Hohage 97) using (28) and
(31). This yields an estimate of the form

kenl
n k � c

 
1+

kA(n)
† enkp

αn

!
fp(αn)kwk: (32)

A recursive estimate of the form

kA(n)
† en+1k � ã3kA(n)

† eapp
n k+a4kA(n)

† enk+a5kA(n)
† enk2

can be derived analogously. It follows that

kA(n+1)
† en+1k � a3

p
αn fp(αn)+a4kA(n)

† enk+a5kA(n)
† enk2

:

Now an induction argument shows that under certain small-
ness assumptions on a1; : : : ;a5 corresponding to smallness as-
sumptions on CR;CQ;1=τ;1=αn;ηn;ρ, and w̄, we have

kenk � ρ;
kA(n)

† enkp
αn fp(αn)

�C

for n� N with C independent of n;δ, and yδ. Together with (30),
this yields (24).

To prove (8), it suffices to show that αl
N = O(δ). This can be

done in a fashion similar to (Hohage 97). First, it is shown that

A(n)
† en is dominated by A(n)

† eapp
n , in the sense that

kA(n+1)
† en+1k � ckA(n)

† eapp
n k:

For the right hand side, with n = N�1, we have the estimate

kA(N�1)
† eapp

N�1k = krN�1

�
A(N�1)

† A(N�1)
†

��
A(N�1)

† e0k

� αl
N�1�


A(N�1)

†




2
+α0

�l kA(N�1)
† e0k:

Together with the estimate δ� c̃
τ+1kAN

† eNk, which can be derived
from (7) and (28), the proof is complete.
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Typically, the operators F (n) and A(n)
x are of the form F (n) =

Q(qn)F̃( fn) and A(n)
x = Q(qn)Ã(an)

x P(pn) where P(m) is an orthogo-
nal projection on a finite dimensional subspace Xm of X , Q(m) is
a projection on a finite dimensional subspace Ym of Y , and F̃(m)

and Ã(m)
x are numerical approximations of F and F 0[x], rsp. Qn is

not necessarily orthogonal, e.g., it can be a collocation operator.
If gn(λ) = (λ+αn)

�1, then hn = xδ
n+1� xδ

n solves the mini-
mization problem

kA(n)
n h+F(n)

n (xδ
n)� yδk2 +αnkh+ xδ

n� x0k2 = min! h 2 X :
(33)

If X0 �X1 �X2 � : : :, an induction argument shows that hn 2Xpn

and xδ
n � x0 2 Xpn�1 . This means that (33) is actually a finite-

dimensional minimization problem. We may replace yδ in (33)
by Q̃(qn)yδ where Q̃(qn) is the orthogonal projection on Yqn .

By the triangle inequality, we have the estimate

kA(n)
x �F 0[x]k � kQ(qn)

�
Ã(an)

x �F 0[x]
�

P(pn)k

+ k
�

Q(qn)� I
�

F 0[x]P(pn)k+kF0[x]
�

P(pn)� I
�
k:

If the sound-soft scattering problem is implemented as suggested
in (Hohage 97, 98), then Xm and Ym are spaces of trigono-
metric polynomials of order � m, and an; fn correspond to the
number of quadrature points for the integral operators. Using
kF 0[x](P(pn)� I)k= k(P(pn)� I)F 0[x]�k and exponential conver-
gence of the trigonometric interpolation error for analytic func-
tions, it can be shown that (26)-(27) are satisfied if the discretiza-
tion parameter are chosen of the form pn;qn;an; fn = d0 + nd1

with sufficiently large d0;d1. We do not discuss this in detail
here since for the two-dimensional sound-soft scattering prob-
lem computation time is actually not a real problem. However,
Theorem 4 will be useful for large-scale problems.
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