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ABSTRACT

An evolutionary computation approach is described for
the classical geophysics inverse problem of magnetotelluric
inversion. This kind of solution to the problem is formulated as
a stochastic, iterative optimisation problem, where the
evolutionary algorithm operates as the optimiser. Some aspects
of the approach are described, in particular three problem-
specific operators that were defined: local search,
homogenisation and spatial crossover. Comparison is then made
between the solution obtained with the evolutionary
computation method and another, that relies on a deterministic
optimiser plus an entropy-based regularisation. Our results
suggest that the evolutionary solution is more robust than the
other, more classical approach.

Introduction

Evolutionary computation (EC) was introduced as a
tool for the solution of complex problems. “In EC the
algorithms are based on models of organic evolution. They
model the collective learning process within a population of
individuals each of which represents a search point in the space
of potencial solutions to a given problem. The population
evolves towards better regions of the search space by means of
randomized processes of recombination, mutation and
selection” (Bäck, 1996). One of its advantages has been the
ability to tackle problems that have not yet been completely
solved; in these cases, it became unnecessary to know how to

find the solution, but only to recognise how good a potential
solution is, regardless the way it was generated.

Within the universe of evolutionary computation some
practitioners argue for using the same simple and sufficiently
tested evolutionary framework across the applications. The
main justification for this view is the possibility of obtaining
theoretical data (as, for example, the schema theorem or the
building-block hypothesis (Goldberg 1989; Forrest and Mitchell
1992) that may support the use of evolutionary computation
procedures. Such theoretical data have been obtained mainly for
engines that could be called “canonical” and, in principle,
would consist of: a) binary codification; b) fitness-proportional
or rank-based selection; c) 1-, 2-, n-point or uniform crossover;
and d) conventional mutation.

However, as well pointed out in Davis (1991), other
researchers make a case for using hybridisation, where
problem-dependent knowledge is introduced into the
evolutionary computation engine, so as to attain an improved
performance. According to Davis (1991) this can be done using
three principles: 1) Using algorithms adapted to the problem in
order to generate some of  the individuals of the initial
population; 2) Incorporating already known algorithm heuristics
or procedures to the genetic operators; 3) Enriching the
evolutionary algorithm with specific coding schemas.

Here we report on an evolutionary computation
approach that was able to produce a solution to an inverse
problem only through the design and use of ad-hoc evolutionary
operators.

Previously (in a paper presented during the last edition
of this conference) we tackled this problem and formulation
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through a gradient-based optimiser together with an entropy-
based regularisation principle, and obtained good results. In this
paper we review the problem cases therein, now with an
evolutionary computation approach, and our results suggest that
the latter solution is more robust than the previous, more
classical approach.

The Problem

Obtaining the pattern of underground electric
conductivities in some region of the Earth, based on
measurements of the electromagnetic field at the surface, is a
subject of great interest. This problem, called magnetotelluric
inversion, is a classical problem that appears in many
applications in geophysics (such as oil prospection, mining,
underground water prospection, etc) and has high relevance for
the exploration of regions that are difficult to study through
conventional seismic methods (Ramos and Velho, 1996).
Overall, what one wants to know is how to obtain underground
(conductivity) data, once surface data (electromagnetic field)
are known. The corresponding forward problem – obtaining
electromagnetic fields at the surface, from underground patterns
of electric conductivity – is solved through Maxwell’s equations
in a way that is much simpler than the inverse problem.

Several techniques may be used when looking for
inverse problem solutions. The one discussed here is non-linear
optimisation. The objective function is defined as the difference
between field data (or, in the cases reported herein, synthetically
generated data) and those produced by the forward model,
which represents an error measure for the candidate solutions.
This function is then iteratively minimised through an
evolutionary computation procedure. This paper follows
another, presented by Ramos and Velho (1996), which also uses
an iterative method (although based on a standard gradient-
based optimiser) in addition to explicit regularisation
procedures. The problem here is the same, but the optimiser has
been replaced by an evolutionary computation algorithm. In
either case, the forward model involved is the same one
presented in the original paper, where its mathematical
description was presented. This forward problem will be
completely ommitted here and will be used just as a ‘black-
box’. For simplicity of presentation (but with no loss of
generality), only the magnetic field will be considered in this
paper (in fact, in tune with what is done in Ramos and Velho
(1996).

The Evolutionary Method

Fitness Function
Every individual in the population is represented by a

matrix of 7 x 10 real numbers, each one referring to a
rectangular slice of underground material (in fact, a prism cut
by a half-plane) of unknown conductivity. These conductivities

multiply the value 4π × ω × 10-10 and are given in mhos/m; the

dimensions of the underground rectangles are taken as ∆y = 10

km  and  ∆z  varying from 1 to 10 km. The objective function
to be maximised is

where f is the fitness of an individual, K is a parameter (kept
constant, equal to 0.01, in the present case) that allows for the

selective pressure to be tuned, and ε is the  magnetic error
given by
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=
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In this expression Hp is the component of the magnetic field
generated from field measurements (or, out of the simulated
measurement, in the case of synthetic data) and Hc is the
calculated component by the evolutionary engine. The number
440 results from the fact that measurements are being made at
11 points on the surface of the earth, in 20 frequencies (ω,
varying from 0.0001 and 0.01 Hz), yielding both real and
imaginary components of the magnetic field at those points. In a

situation with real data ε would be the only error capable of
being obtained. However, since the present case uses synthetic
data, the original individual the evolutionary process will try to
reconstruct is already known. So, although the evolutionary

search is guided by the error ε, it is possible to define a second
error measure, named conductive error given by

where E (conductive error) is the absolute values adding up of
70 differences between standard and calculated conductivities.
The reason for presenting these two kinds of error resides in the
fact that, due to noise (a typical ocurrence in the inverse
problem context), minimisation of the magnetic error not
necessarily entails minimisation of the conductivity error. In
fact, pushing minimisation of the former error too far, may lead
to an increase of the latter. Naturally, the evolutionary search
process has to avoid  being misled by this feature.

Problem-Specific Evolutionary Operators
The numerical results reported below were obtained

using three problem-specific evolutionary operators – local
search, homogenisation, and a specific crossover operator
named SPAUC (SPAtial Uniform Crossover) – all of them
described below.
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SPAUC
The SPAUC operator considers each individual as a two-

dimensional entity. Accordingly, when genetic material is
interchanged, full rectangular patches of the candidate solutions
are involved. The operator implements the neighbourhood
concept both vertically and horizontally. This action prevents
two common problems that appear when a two-dimensional
individual is represented in one dimension, namely, the
possibilities that: a) two neighbouring vertical positions in the
chromosome no longer be neighbours; and b) originally distant
elements get closer to each other than they should (for example,
as happens when the last value on a row and the first value in
the subsequent row are involved).

In order to implement the SPAUC operator, we used
the following algorithm: a) n horizontal cuts are generated on
random sites across the individual; b) k vertical cuts are
generated on random sites across the individual (amounting to r

patches, r = (n+1)×(k+1)) ; c) a V mask of size r is generated
having random binary values; d) given the two ancestors that
will be operated by SPAUC, the offspring to be generated will
obey the following rule: patches with a mask value equal to 0
are filled up with values from the first parent, while patches
with a mask value equal to 1 take their values from the
corresponding patch in the second parent. Notice that the longer
the mask V, the closer SPAUC will resemble the standard
uniform crossover. Detailed description of SPAUC, as well as
various other aspects related to it and the other genetic
operators we used can be found in (Navarro et al, 1999).

Local Search
Local search is implemented as simple a hill-climbing

algorithm. At every 5 generations the attempt is made to
improve the fitness of the fittest individual by aproximately 13
cycles, of 140 trials each (the number of cycles is an average
figure, since it starts smaller and increases throughout the
generations). The value 140 derives from the fact that the
chromosome is 70 points long, and each one of them is
subjected to two small random increments (one positive and the
other negative), which represent probing two neighbouring
positions in the fitness landscape. These probed positions with
higher fitness are stored until the end of the cycle, when all the
changes are applied at once, thus generating a new, higher fitted
individual  that replaces the original. This is not a novel
approach, though; in fact, Bäumer (1996), studying a similar
problem stated that: “the most efficient way is to start with a
genetic algorithm for calculating a population of nearly
optimal models which then are used as initial models for local
search methods”.

Homogenisation
This operator is based upon the notion that

neighbouring regions will have greater probability of having
similar conductivities. At every 5 generations an attempt is

made to improve the fitness of the fittest individual through an
average of 13 cycles of 3 trials each. Every trial starts with the
generation of a rectangular random patch and continues, firstly,
by replacing all values in the patch, for one of the existing
values – thus generating an homogeneous patch – and checking
the resulting fitness; secondly, by repeating the same procedure,
individually for all the other values in the patch. The patch that
results the best (improved) performance, if any, replaces the
original.

The parameter values associated to the local search and
homogenisation operators (5 generations, 13 cycles, 3 trials)
were not obtained after an exhaustive search. Rather, they
resulted from a trial-and-error process that was performed until
satisfactory results were found. At the moment, we are
deepening the analyses of the effect of parameter values in the
behaviour of the model.

We used the genetic algorithm package GALLOPS
(Goodman 1996), modified by the 3 operators above that were
added to it. The following parameters were used: population
size of 100, tournament selection of size 15, 3% mutation per
conductivity value, and crossover at a rate of 85%.

In addition to the use of homogenisation alone, it was
also used in association with the SPAUC operator, when, after
recombination, each one of the regions created undergoes the
action of homogenisation. But while homogenisation alone is
applied with 100% probability to the best individual only, in
association with SPAUC it is applied to all individuals created
out of the recombination (i.e., potentially to the entire
population), and with low probability (5% in this case, to each
generated region).

Results

The SPAUC-based evolutionary process  is compared to a
classical iterative approach for the problem, that uses a
sophisticated gradient-based optimiser – the routine E04UCF
from the NAG library (NAG, 1988) – plus an entropy-based
regularisation process. This experiment is fully performed in the
presence of 1% gaussian noise, with the same amount for both
approaches. The comparisons were made in four well-defined
test cases, meant to explore significant problem features. In
each test case the algorithms try to reconstruct the conductivity
pattern represented by it.

Test Case 1
The first test case is represented in Table 1, where an

underground region is represented by a matrix of conductivity
values; it is assumed that a rectangular block with conductivity
100 is to be found immersed within a rocky background with
conductivity 10. Ramos and Velho (1996) investigated the same
problem running their model 4 times and obtaining an average
conductive error (Eavg) of 453.8. Their best solution is shown
in Table 2. The same problem was run 6 times with the
evolutionary, SPAUC-based approach, yielding an average
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conductivity error of 210.5, and the fittest individual is
represented in Table 3.

Table 1: Test case 1
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 100.0 100.0 100.0 100.0 100.0 10.0 10.0 10.0
10.0 10.0 100.0 100.0 100.0 100.0 100.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

Table 2. Best solution for teste case 1 found in Ramos and Velho (1996)
10.02 10.25 9.64 10.09 10.03 9.58 10.15 10.07 9.97 9.94
10.02 9.64 97.10 100.00 88.98 97.62 100.00 10.07 9.95 9.94
9.79 9.64 97.10 99.97 88.98 97.62 100.00 10.07 9.95 9.93
9.78 9.63 10.08 10.02 12.38 16.85 9.56 10.06 9.95 10.54
9.78 9.62 10.08 10.03 12.38 16.85 9.57 9.97 9.95 10.54

10.25 9.63 10.08 10.02 9.58 10.16 9.57 9.97 9.94 10.55
10.25 9.63 10.09 10.02 9.58 10.15 10.09 9.97 9.94 10.55

Table 3. Fittest individual for test case 1 found by the evolutionary approach
9.89 10.17 9.72 10.34 9.44 10.51 9.73 10.24 10.25 10.19
9.62 9.85 96.78 98.84 90.48 98.27 94.57 10.29 9.16 10.89

10.61 10.98 99.84 99.96 74.33 99.47 92.17 10.43 8.78 10.58
10.26 8.83 8.63 16.27 7.06 11.48 12.91 11.19 11.29 10.20
8.82 11.75 10.60 6.95 11.81 11.81 8.85 10.90 9.73 9.45

12.86 6.99 10.98 12.41 8.28 4.22 6.95 8.22 11.74 11.15
4.20 34.73 5.26 10.29 3.23 9.74 19.85 11.25 10.44 6.43

Other Test Cases
Tables 4, 5 and 6 represent the other test cases. Table 4

refers to a problem with two underground patches to be found,
one defined by a block of material with conductivity 10 times as
much that of the background, and another with 1/10 the
background conductivity. Test case 3,  represented by Table 5,
depicts a big and irregular conductive region that stretches
throughout the background. Finally, test case 4 shows a very

small patch of low conductivity material, embedded in rock, as
represented in Table 6.

The results achieved by the gradient-based otimisation
technique plus regularisation, and by the evolutionary
procedure are summarised in Table 7, for test cases 2, 3 and 4.
In the table, the minimum and average values of the
conductivity error (E) and magnetic errors (ε) found in each
case are presented for both approaches.
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Table 4: Test case 2
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 1.0 1.0 10.0 100.0 100.0 10.0 10.0 10.0
10.0 10.0 1.0 1.0 10.0 100.0 100.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

Table 5: Test case 3
10.0 100.0 100.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 100.0 100.0 100.0 100.0 100.0 100.0 10.0 10.0 10.0
10.0 100.0 100.0 100.0 100.0 100.0 100.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 100.0 100.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 100.0 100.0 100.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 100.0 100.0 100.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

Table 6: Test case 4
10.0 10.0 10.0 10.0 1.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

Table 7: Summary of results between two techniques for the test cases 2, 3 and 4
Gradient-Based + Entropic Regularisation Evolutionary ApproachTest

Case # runs E min. E avg ε min ε avg # runs E min. E avg ε min ε avg
2 5 7.3 258.5 0.1356 0.4980 3 150.7 229.5 0.2891 0.4480
3 1 714.5 -- 0.6116 -- 3 185.5 447.3 0.1721 0.2272
4 3 32.3 109.4 0.3770 3.9821 2 61.12 64.59 0.1555 0.1646

In test case 2, one of the five runs with the gradient-based
approach yielded an excellent result which, represents a clear
shift away from the average (notice the columns with the
minimum figures); however, when all runs are considered, the
superiority of the evolutionary approach appears, since both
errors are smaller for this approach. In test case 3 the averages
are not included because only the result of a single run was
available; for this problem instance, the results obtained from
the evolutionary computation are clearly better. And finally, in
test case 4 the minimum conductive error is better in the
gradient-based process, but the minimum magnetic error and
both averages values are better in the evolutionary approach.
Overall,  the conclusion, therefore, is  that the evolutionary
technique is showing more robustness than the other, more
classical approach.

Bäumer (1996), studying a similar problem, makes
the comparision between two methods: genetic algorithm and
simulated annealing. This study pointed at the superiority of
the non-linear methods, such as the evolutionary (in contrast to
the classical), since those are less dependent on the initial
solution used to trigger off the search process. As suggested
from the minimum errors found by the evolutionary approach
in our experiments, the same point can be made here.
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Concluding Remarks

The first point to notice is that our experiments have
once more suggested that the use of canonical, ready-to-use
genetic algorithms seems to be only appropriate for simple
problems. In more complex, real-world situations – such as
magnetotelluric inversion, a high dimensional inverse problem
– in order to attain satisfactory results it seems necessary to
add problem-specific knowledge into the evolutionary engine.

In the case we reported we explicitly relied on the
following facts: individuals are two-dimensional and should be
handled as such; conductivity distributions in the underground
of the earth should follow homogenous patches; and simple
hill-climbing algorithm should be used to help improve the
results.

Another point to be remarked is that the evolutionary
engine presented better results than a conventional optimiser,
although at higher cost. So, while the best result from the
Ramos and Velho (1996) test case 1, establishes an

approximate amount of 14×103 objective function calls, a

similar result found here requested approximately 100×103

calls. Fine-tuning the evolutionary method so as to decrease
such a cost is a real possibility that we are currently
investigating.

However, on real-world data, where processing time
gives place to robustness, an evolutionary technique such as
the one we presented may be a more attractive alternative. In
fact, in real-world situations, where noise and lack of
information about the prospected underground areas are the
general rule, robustness issues, such as independence on the
initial solutions of the search process, the use of a stochastic
optimisation method (such as the one presented herein) is a
very appealing alternative. Another possibility, as concluded
by Bäumer (1996), is using evolutionary computation in order
to find the best region of the search space, and then performing
an efficient local search so as to find the best point of that
region.
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