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ABSTRACT
A source-detector methodology is presented for the

construction of an inverse transport equation that once solved
provides estimates for radiative properties and/or internally
distributed sources in participating media. From the proper
combination of source and detector pairs, a system of non-linear
equations is assembled, taking also in consideration
experimental data on the exit radiation from the medium. Test
case results are also presented.

INTRODUCTION
The inverse analysis of radiative transfer in participating

media has several relevant applications in engineering,
medicine, geophysics, astrophysics and other research areas.

Ustinov (1978) estimated the extinction coefficient and
aerosol particles concentration in atmospheres. Bakirov et al.
(1986) proposed a methodology for the determination of mass
concentration of soot particles in flames. McCormick (1979),
McCormick and Sanches (1981), Ho and Özisik (1988),
Sanchez et al. (1990), Subramaniam and Mengüç (1991),
Nicolau et al. (1994), and Silva Neto and Özisik (1993, 1995),
just to name a few, solved inverse problems for single scattering
albedo, optical thickness and/or anisotropic scattering phase
function estimation.  Yi et al. (1992) estimated the location and
strength of a bioluminescent radiation source. Fukshansky et al.
(1991) estimated the absorption and scattering coefficients and
the asymmetry factor of scattering in living plant leaves.
Different types of radiation such as neutrons, gamma-rays and
photons have been used for object identification in industry
(non-destructive testing), and in medicine (diagnosis and
therapy). In many of the techniques used, scattering is
neglected, yielding relatively simple reconstruction problems.

This is the case in Computerized Tomography and Single
Photon Emission Computerized Tomography (SPECT).

When scattering has to be taken into account (McCormick,
1993, Mengüç and Dutta, 1994, Roberty and Oliveira, 1995),
such as in Near Infrared Optical Tomography (NIROT), the
reconstruction model becomes much more complex, non-linear,
even requiring the computation of the radiation field. This
particular  tomographic problem is placed in the same context
as radiative heat transfer in participating media and neutron
transport in nuclear reactors, being the related physical
phenomena (absorption, emission and scattering) modeled by
the linearized Boltzmann equation.

Silva Neto and Roberty (1998, 1998a) have been working
on a source-detector methodology for the estimation of
radiative properties and internally distributed sources in
participating media. In this work the methodology is presented,
as well as test case results for extinction and scattering
coefficients estimation in one-dimensional homogeneous media.

MATHEMATICAL FORMULATION OF THE DIRECT
PROBLEM

A plane-parallel, gray, anisotropically scattering slab of
thickness L, with transparent boundaries is subjected to an
external collimated radiation source that may be positioned in
different locations around the medium, as shown in Fig.1.

The mathematical formulation of this steady-state one-
dimensional radiative transfer problem is given by:
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where ),x(ak,a µφ  is the radiation intensity, x is the spatial
coordinate, µ is the direction cosine of the radiation beam with
the positive x axis, )x(tσ  is the total extinction coefficient
(absorption + scattering), ),',x(s µµσ  is the scattering
coefficient, S(x,µ) is an internally distributed source, A is the
amplitude of the strength of the external collimated radiation
source and )(f ak,b µ  represents its dependence with the polar
angle. The indices a and b represent, respectively, the surface in
which the source is located (a = 0 or a = L) and the surface for
which the boundary condition is being written (b = 0 or b = L).
The index ka represents the location of the source, ka = 1, 2, …
,Ia.

Figure 1 – Possible locations for the external collimated
radiation source.

When the geometry, boundary conditions, material
properties and the strength of the source are known, the
radiation intensity distribution, ),x(ak,a µφ  can be calculated.
Problem (1) is then called the direct problem. On the other
hand, when any of this information, or a combination of them, is
unknown, but experimental measurements of the transmitted
and/or reflected exit radiation are available, an estimation of the
unknowns may be possible. This is known as the inverse
problem.

MATHEMATICAL FORMULATION OF THE INVERSE
PROBLEM

The inverse problem  considered here involves the
estimation of the source S(x, µ) and extinction  and scattering
coefficients, using the source detector methodology. From the
direct problem, given by Eqs. (1), called here source problem,
an adjoint problem is constructed, and is called detector
problem. Convolving the source problem with the adjoint
function, that consists of the solution of the detector problem,
doing an integration by parts, and bringing the detector problem
itself into the resulting equation, a system of non-linear
equations is obtained. This system is called here the inverse
transport equation (ITE). From the solution of the ITE, taking
into account the experimental data on the exit radiation, the
unknown quantities are estimated. These steps will now be
described in more detail.

The Source Problem. This problem consists on the direct
problem whose formulation is given by Eqs.(1), using estimates
for the unknown quantities. These estimates are obtained along
the iterative procedure adopted for the solution of the inverse
problem.

The Detector Problem. For each location where a detector is
positioned, an adjoint problem is formulated. This formulation
is obtained from the source problem by reversing the direction
of radiation transfer, i.e., by replacing µ by -µ,
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where σt
R , σs

R and q* are reference functions for the unknowns
σt , σs and S respectively.

In industry the reference values would be those of the
material under investigation in perfect manufacturimg
conditions. Any anomaly on the material properties or
geometry could then be estimated using the inverse technique
here described. In medicine the reference values would be those
of healthy organs or tissue. We expect then that the inverse
problem solution will show any deviation from these reference
values.

The index a’ represents the surface in which the sensor is
located and ka’ = 1, 2, …, Ia’, represents the position of the
detector around that surface.

By imposing the coincidence of the location of the detector,
ka’ = 1, 2, …, Ia’, with those for the source, ka = 1, 2, …, Ia,
function )(g 'ak,b µ  represents the measurement that would be
obtained by the detector for the strength of the source located at
that position,

a'a
k,bk,b kk),(Af)(g a'a =µ−η=µ (3)

where η is the efficiency of the detector.

The Auxiliary Problem. Reversing again the direction of
radiation transfer, i.e., replacing µ by -µ, and defining an
auxiliary fuofnction

),x(),x( * µ−φ=µφ (4)

we obtain from the detector problem the following auxiliary
problem
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The formulation of the auxiliary problem is the same as that
for the source problem, with the exception that the former uses
the reference values for the unknown quantities while the latter
uses estimates obtained along the solution of the inverse
problem.

The Inverse Transport Equation. In the first step on the
Inverse Transport Equation (ITE) construction we multiply Eq.
(1a) by the adjoint function ),x(* a'k,'a µφ , and integrate over the
spatial and angular domain, x=[0,L], µ=[-1,1], respectively.
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In fact Eq.(6) represents a system of M=(Io+IL)x(Io’+IL’)
nonlinear equations, taking into account all possible
combinations of source and detector locations.

Integrating Eq.(6) by parts, and plugging eq.(2a) into the
resulting equation, we get
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Defining the quantities
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and using the definition of the auxiliary function given by Eq.
(4), Eq. (7) is written as
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The system of non-linear equations represented by Eq. (9)
is here called the Inverse Transport Equation (ITE). Solving the
ITE, estimates for the unknown quantities are obtained.

A couple of comments are in order. As mentioned before,
the source problem and the auxiliary problem are very similar.
Therefore, the same method can be used for the solution of both
problems. For the computational implementation, this means
that the same computer program (actually subroutine) can be
used for their solution. This is why we write the ITE in terms of
the auxiliary function, instead of using the adjoint function.

On the right side of Eq. (9) the experimental data come into
place. Table 1 summarizes how the boundary conditions and
radiation exit measurements are taken into account.

Table 1- Radiation intensity φ(x,µ) and auxiliary function
φo(x,µ) at the boundaries1

source location

x=0 x=L
µ > 0 given =

 Af o,ko(µ)
[ηAf o,ko(µ) ]

µ > 0 given = 0
[0]

x=0

µ < 0 measured
[calculated]

µ < 0 measured
[calculated]

µ > 0 measured
[calculated]

µ > 0 measured
[calculated]

  b
o
u
n
d
a
r
y

x=L

µ < 0 given = 0
[0]

µ < 0 given =
Af L,kL(µ)

[ηA f L,kL(µ)]
1φo(x,µ) in brackets

THE SOLUTION OF THE INVERSE TRANSPORT
EQUATION

To keep this presentation as simple as possible, we will
consider the inverse problem of estimating only the extinction
and the scattering coefficients. We first make an expansion of
the unknown quantities given by Eqs. (8a-b),
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where ψ(x) is the base used for the spatial dependence
representation, while for the angular dependence we used an
expansion in Legendre polynomials. The indices n and l
represent the spatial and angular discretizations, respectively.

The solution of the ITE, becomes now the problem of
determining the coefficients { }tnσ∆  and{ }lnsσ∆ .
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Plugging Eqs. (10a-b) into Eq. (9), we obtain for the
problem with no internal sources,
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System (11) has E=(J+2)xN unknowns and M=(I0+IL)x(I0’+
IL’) equations. For I0 = I0’=IL=IL’=K, we get M=4K2 equations.
If we want the system to be overdetermined, i.e. M>E, we can
expect to recover {∆σtn} and {∆σsln} at not more than M/E = 4
K2/(J+2)xN elements each, i.e. N<4K2/J+2. For isotropic
scattering, J=0, we get N <2 K2.

Considering ψn(x)=1, xn<x< xn+1, n=1, 2, 3,…, N-1, with
xo=0  and xN=L, and isotropic scattering, Eq. (11) is further
simplified, yielding
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System (12), as well as system(11), can be written in a
more compact form as
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Wmj are coefficients obtained integrating each term on the left
side of Eq. (12) and hm are obtained by using the proper
combinations of the results of the source and auxiliary problems
and the experimental data according to Table1 on the right hand
side of the same equation.

As system (13) may be ill-conditioned, with  possible
problems of existence and uniqueness, an action by line, or
action by block, algorithm may be suitable for its solution. The
relatively smaller convergence rate of such methods when
compared with other methods, is compensated by its
robusteness on the treatment of  ill-conditioned problems.

Using the Bregman distance with the entropy function
(Bregman, 1967)
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where Z  is a vector with reference values for the unknowns, we
write the Lagrangian considering one line Bregman projection
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Regularization occurs through the projection on convex
sets (each line on system (13)).

In the presence of noise a squared residues norm is added
to Eq.(16) (Elfving, 1989) yielding a Tikhonov like nonlinear
regularization functional (Engl et al., 1996). With Tikhonov’s
functional an additional regularization is included by a small
spectral translation.

Writing the Euler-Lagrange equation, and solving for jZ
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and plugging Zj into Eq (13), one obtains the Lagrange
multiplier λm from the solution of the resulting nonlinear
equation with Newton’s method,

[ ]
[ ]jm
k
mj

E

j
jm

mim
k
mi

E

i
im

k
m

k
m

WZW

hWZW

,
1

,

,
1

,
1

exp

exp

λ

λ
λλ

=

=+
−

−= (18)

where k is the iteration counter.
From Eq. (17),

[ ]jm
k
mj

k
j WZZ ,

11 exp ++ = λ (19)

[ ]jm
k
mj

k
j WZZ ,exp λ= (20)

Plugging Eq.(18) into Eq.(19) and then using Eq.(20), we
write the action by line algorithm known as MART
(Multiplicative Algebraic Reconstruction Technique) (Censor
and Lent, 1981, Reis and Roberty, 1992):

for k=0 until maximum iteration number
for m=1, 2, …,M (one line at a time)
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where k is the iteration counter.
With the determination of the vector of unknown

coefficients, Z, we obtain an estimate for the unknowns given
by Eqs. (8) and (10). As the coefficients Wm,j in Eq.(13) depend
on the solution of the source problem, that depends on the
estimated values of the extinction and scattering coefficients
that we want to determine, we have an iterative procedure.

The Solution Algorithm. The iterative procedure is
summarized as follows:

1. choose an initial guess Zo;
2. solve the auxiliary problem, Eqs. (5a-b), to obtain

),x(ak,a µφ ;
3. solve the source problem, Eqs. (1a-b), to obtain

),x(ak,a µφ ;
4. assemble the ITE using Eqs. (12) and (13) as well as

Table1;
5. solve system (13) using, for example, the action by line

algorithm given by Eq. (21);
6. calculate σt(x) and σs(x,µ’,µ) using Eqs. (8);
7. terminate if a stopping criteria established a priori is

satisfied, e.g. ||Zk+1-Zk|| < ε. Otherwise, go back to step
3.

RESULTS
To demonstrate the feasibility of the solution of the inverse

problem with the source-detection approach described in the
previous sections, we will present some preliminary results
obtained for a homogeneous, gray (with no spectral
dependence), isotropic scattering medium. Furthermore, the
intensity of the internally distributed source is considered
negligible in comparison to the intensity of the radiation coming
from the external source.

In Fig.2 are presented the results from several simulations
considering hypothetical experimental data without
measurements errors. The circles represent the exact values of
the unknown properties, (σs; σt) = (0.1; 0.15); (0.6; 0.8); (0.7;
0.8); (0.2; 0.9); (0.8; 1.0) and (1.0; 1.0) and the crosses
represent the initial guesses employed. These were made equal
to the reference values, (σs

k=0; σt
k=0

) = (σs
R

; σt
R

) = (0.1; 0.15);
(0.4; 0.6); (0.6; 0.8); (0.7; 0.8); (0.8; 1.0) and (1.0; 1.0). The
units are cm-1 for both σs and σt. Convergence to the exact
values in all simulations shown in Fig.2 were obtained within no
more than fifteen iterations. All computational implementation
has been done with  MATLAB, and each simulation has taken
approximately forty minutes of  CPU time on a IBM compatible
personal computer with 200 MHz Pentium processor.

As σt ≥σs,all meaningful test cases have to be taken at or
above the dashed line in Fig.2.

Figure 2 – Simulation results for test cases without measurement error.
o  exact values          + initial values = reference values

Numerical experiments have shown that convergence to the
exact values is achieved for any value of the initial guesses,
except when they are relatively far and greater than the exact
values. As in real applications one does not know whether the
reference values are far from the exact values or not, a

refinement was introduced in the algorithm presented in the
previous section. As soon as convergence is achieved, say at
iteration k*, the reference properties are replaced by the
estimated properties (σs

R
; σt

R) = (σs
k=k*

; σt
k=k*), and the iterative

procedure is restarted from the beginning. If the estimated
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values at the previous iteration cycle (σs
k=k*

; σt
k=k*) are indeed a

solution of the inverse problem, the new cycle of iterations
stops at the very first iteration, otherwise it will go on until
convergence is again achieved. The replacement of the
reference values is done once more and a new cycle of iteration
is initiated. This procedure is repeated as many times as
necessary until no more variation is observed on the estimated
properties.

Just to give an example of this situation, in Table 2 are
presented the estimates for the scattering and extinction
coefficients at each iteration for a case with (σs; σt) = (0.1; 0.15)
and (σs

R
; σt

R) = (0.6; 0.8). After repeating the iterative
procedure just one time convergence to the exact values has
been achieved.

As often is the case, less experimental data is available than
the number of unknowns to be estimated, therefore uniqueness
of the solution can not be assured. In such situation one must try
different initial guesses if more than one solution is to be found.
We have to keep in mind, though, that our main objective is to
find deviations from the reference values (flaws in materials or
anomalies in biological tissue), and in that sense any solution
that deviates from the reference may be good enough.

In Fig. 3 are presented the results for a test case with the
exact values (σs; σt) = (0.5; 0.9) with the initial guesses and
reference values (σs

k=0
; σt

k=0) = (σs
R

; σt
R) = (0.2; 0.9) considering

simulated experimental data with 1%, 5% and 10% error with
respect to the maximum measured radiation intensity. For each
run shown in Fig.3, a different set of simulated experimental
data was used. Each set of experimental data was obtained by

adding random errors to the exact calculated values of the exit
radiation.

Table 2 – Estimated values for σs and σt at each iteration.

iteration # σs (cm –1) σt (cm –1)
1 0.0843 0.1878
2 0.4370 0.5580
3 0.2810 0.3974
4 0.3497 0.4681
5 0.3198 0.4373
6 0.3329 0.4508
7 0.3272 0.4449
8 0.3297 0.4475

σs
R = 0.6

 σt
R = 0.8

9 0.3291 0.4468

1 0.0176 0.0626
2 0.1282 0.1786
3 0.0911 0.1412
4 0.1028 0.1528
5 0.0991 0.1491
6 0.1003 0.1503
7 0.0999 0.1499

σs
R = 0.3291

 σt
R = 0.4468

8 0.1000 0.1500

σs
R = 0.1000

 σt
R = 0.1500

1 0.1000 0.1500

Figure 3 – Simulation results for test cases with measurement errors.
___  exact values * __ _ __ _ *  1% error
o----o  5% error +___+  10% error
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In all simulations presented here we have considered 10
possible source and detector locations, being 5 on each side of
the slab. For the solution of the direct problem we have used the
discrete ordinates method.

CONCLUSIONS AND FUTURE WORK
The results obtained so far are very encouraging. The

method seems to perform well regarding both accuracy and
computational performance (reasonable memory and CPU time
requirements).

At the moment we are working towards the simulations
dealing with internally distributed sources, heterogeneous and
isotropically as well as anisotropically scattering media. In such
cases the computation of the coefficients of the linear system
given by Eq.(13) becomes more involved, and the number of
unknowns to be estimated scales up quickly.

We are also starting the modeling of the problem for two-
dimensional regions. Although the inverse problem in higher
dimensions (2-D and 3-D) becomes more involved
computationally, we expect the method presented here to
perform even better, because more experimental data may be
taken into account.

Mathematical and numerical analysis of several aspects
such as existence, uniqueness and stability must be performed
in order to get the full potential of the method.
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