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ABSTRACT

Regularised functional calculi (RFC) for solving linear ill-
posed problems are presented. Being very flexible with respect to
the different types of a priori information about the problem to
be solved, RFC provide the construction of the computationally
effective regularising algorithms using only algebraic operations
at ordinary numerical functions defined on the spectrum of a
certain operator associated with the problem. Modelling tech-
niques for obtaining regularised solutions via RFC are discussed
and some numerical examples are presented.

INTRODUCTION

From a computational point of view, the key feature of
regularising algorithms (RAs) is that they provide the stable
inversion of ill-conditioned matrices. From a mathematical
point of view, this inversion can be treated as the problem
of the best approximation of an unbounded linear opera-
tor by bounded linear operators. S.B. Stechkin (Stechkin,
1967) was the first to formulate and solve rigorously this
problem. The consequent developments were based mainly
on the variational approach that prevailed in the theory
of ill-posed problems for the last three decades. Although
the general spectral method for constructing the regular-
ising operators for linear ill-posed problems was proposed
more than thirty years ago (Bakushinsky, 1967), it was not
widely used in the scientific community. Perhaps this was
mainly because of the equivalence of the a—approximating
families of operators obtained from both the variational and
spectral approaches. This equivalence takes place if a pri-
ort information about the problem to be solved is used in
terms of the triple (4, ys5,0), where A is the given operator,

ys denotes the measured data, and & > 0 is the level of er-
rors in the data. If the other types of a priori information
are used, then either this equivalence does not take place
or using the variational approach meets serious difficulties.
In this case, the spectral approach becomes the effective
numerical technique for solving many linear ill-posed prob-
lems. In Refs. (Arsenin et al., 1985), (Arsenin et al., 1989)
the concept of local regularisation was proposed on the ba-
sis of the spectral approach, and in Ref. (Tikhonov et al.,
1987) this concept was successfully applied to constructing
the RAs for computer tomography.

The purpose of this note is to present regularised func-
tional calculi (RFC) as the practically effective numerical
technique for solving linear inverse problems of particular
interest to engineering and remote sensing.

BACKGROUND MATERIAL

Let ‘H be a complex separable Hilbert space, and A be a
linear operator acting in H. For brevity, let us assume that
the operator A is selfadjoint and positive definite. Oth-
erwise, one should consider either its polar decomposition
A =T(A*A)'/?, where 7 is a partly isometric operator act-
ing from D(A*) onto Im(A), or the operator A*A. Let us
first assume that the operator A is bounded. In this case, it
follows from the spectral theorem (Berezansky, 1996) that
there exists a resolution of the identity F4(\) on the o—
algebra of Borel subsets of the real axis, such that the oper-
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ator function f(A) can be represented as a spectral integral

A
f(4) = / FOVEL(N), (1)

where the function f(A) belongs to the algebra A of
bounded functions whose domain is a certain segment con-
taining the spectrum of the operator A. It is therefore nat-
ural to define a functional calculus for the operator A as
follows.

The map f(A) — f(A),f(N) € A f(4) € L(H), that
transforms the identity function f(A) = 1 to the identity
operator, and the function f(A) = X to the operator A is
said to be a functional calculus for A.

It is clear that the functional calculus determined by
the spectral integral (1) generates a homomorphism of A to
the algebra £(H) of bounded operators in the Hilbert space
H. It is also convenient to consider the inverse problems in
terms of an operator equation of the first kind

Az =y, x,y € H. (2)

For brevity, we assume that the map A is a one-to—one op-
erator. In this case, there exists the inverse A~! of the oper-
ator A, but it is, generally speaking, unbounded. One can,
however, define the functional calculus for the operator 4~
by analogy with the definition indicated above. Specifically,
let us consider a set of all functions f(A) that are measur-
able with respect to an algebra of subsets of the real axis
and almost everywhere finite with respect to an operator—

valued measure E4 (M), L.e., p({\ € R: |f(A)| = o0}) = 0.
In this case, one can define the operator

FATY) = J57 FOVdBA(N), (3)
D(f(A7") ={y € H: [ [f(NPd(Ea(N)y,y) < 00}

Since there is no guarantee that the measured data ys be-
long to the domain D(f(A~")), the functional calculus de-
fined by (3) needs to be regularised. Let us consider a set M
of all functions that are measurable with respect to E4(A).

The 0—parametric function fs()\) € M is said to be the
d—approzimating function if limg_q | fs(A)A — 1| = 0.

Let Fs be a collection of all §—approximating functions.
Then, one can define the regularised functional calculus for
A~ as follows.

The functional calculus for A=', defined by the spectral
integral (3), is said to be RECif f(\) € Fs and the deviation
of f(A™Y) from the operator A™', i.e.,

A(f,y,6) = sup{(fF(A " )ys, A7) 2 2 (y,05)"/* < 6},

converges to zero as 6 — 0.

Let f5(A\) denotes an arbitrary function belonging to
the set Fys. It is clear that any regularised functional calcu-
lus f5(A~") is the regularised operator for the problem (2).
Thus, the RFC reduce the problem of construction of the
regularising operators to the problem of finding the appro-
priate d—approximation of a spectral function generated by
the inverse operator AL

It is convenient sometimes to consider an inverse prob-
lem in terms of calculating the values of a linear unbounded
operator instead of the solution of Eq. (2). To this point,
one can formulate two problems. First, given a linear un-
bounded operator U = A~! acting in H and a certain
approximation ys € H of an element y € H, such that
(ys,y)'/? < 6. Find the element Uys = x5, such that
xs — Uy = x as 6§ — 0. It is obvious that if the opera-
tors A and U are invertible, then these problems are equiv-
alent each other because of the equalities U = A~! and
A =U~!, In this case, one can construct the RFC for the
operator U using the resolution of the identity of the oper-
ator A. Second, given a linear unbounded operator A and
a certain approximation x5 € H of an element z € H, such
that (zs5,2)'/2 < 6. Find the element Az; = ys, such that
ys — Az =y as 6 — 0. The reason why we consider the
second problem is that the map A can be a differential op-
erator. In this case, we should construct the RFC using the
resolution of the identity of the unbounded operator. In the
latter case, the definitions need to be changed. Specifically,
the following conditions should be satisfied:

lims—o [f(A)A = A[ =0,
A(f,2,6) = sup{(f(A)ws, Ax)'/? : (z,25)"/? < 5}

The general scheme for computing the RFC can be de-
scribed as follows.

1. Formalise a prioriinformation about the problem to be
solved in terms of the spectral properties of the opera-
tor A, the desired solution x, the measured data ys5, and
errors in the data. A priori information is used to de-
rive the appropriate d—approximating functions fs(X)
that generate RFC for the operator A='. Often it is
sufficient to consider only all rational é—approximating
functions f5(A) on the real semiaxis in order to derive
these functions.

2. Determine the spectral measure E4()) of the opera-
tor A. Since in computational practice the operator
A is considered in a finite—dimensional Hilbert space,
dim H = n, the spectral measure is determined as
>n_1 P(Ag), where P(A;) is an orthogonal projector
onto a set of all eigenvectors of the operator A, i.e., a

Copyright (©) 1999 by ASME



set {¢p € H: Ap = Ay} In other words, we should
solve the eigenvalue problem for a matrix generated by
the operator A. The computationally effective methods
for solving this problem are indicated in Refs. (Fad-
deev, 1963), (Golub, Van Loan, 1996). However, it
is not necessary to solve the eigenvalue problem if the
d—approximating functions fs(\) generate the iterative

processes.
3. Calculate RFC as

n

F5(A™ys =D Fs()(Ws, 0k) k-

k=1

Since many linear inverse problems can be reduced to
solving either a system of linear equations whose matrices
are ill-conditioned or an integral equation of convolution
type of the first kind, we show below how RFC can be ap-
plied to the numerical solution of these problems.

REGULARISED LEAST SQUARES SOLUTIONS VIA RFC
Let us assume that the operator A in Eq. (2) is gen-

erated by a certain matrix belonging to the vector space

R™>™ The corresponding linear least squares problem is

min{|| Az —y|? : A€ R™*",x € R",y € R™,m > n}. (4)

If the condition number p = || Al/||A~"|| of the matrix A is
sufficiently large, the problem (4) is called ill-conditioned.
For brevity, let us assume that ker A = §. The most popu-
lar numerical method for solving the problem (4) is based
on the well-known factorisation A = UDV™* (Gantmacher,
1959), where U € R™*™,V € R™ " are the orthonormal
matrices, and the matrix D € R™*™ has diagonal form,
D = diag(di,ds,...,d,), where d, > 0, 3 = 1,2,...,r are
singular values of matrix A. This decomposition is known
in the contemporary literature as the singular value decom-
position (SVD) of the original matrix A. Note that the
columns of matrix V are eigenvectors of matrix A*A and
columns of matrix U are eigenvectors of matrix AA*. There-
fore, SVD is closely related to the Schur decomposition
of matrix A*A = VAV*, where A = diag{\1, A2, ..., An},
and \; = d?, (i = 1,2, ...,n) are eigenvalues of matrix A*A.
Since the problem (4) is equivalent to the normal equation
A*Axr = A*y, it is sufficient to consider the Schur decom-
position of matrix A*A, and the rational é—functions fs in
the form

A

fs(A) = g

(5)

where ¢s(A) > 0 are certain functions measurable with re-
spect to E4(A).

a—parametric RFC

There are a number of RAs based on either the
Tikhonov’s scheme of regularisation (Tikhonov, 1965),
(Varah, 1973), (Elden, 1977) or the truncated singular value
decomposition (TSVD) (Hansen, 1987). These RAs can,
however, be generated by RFC as well. Indeed, if we choose
the function gs in the form g5 = «(8), where (4) is the reg-
ularisation parameter, then the functions fs(A~!) generate
the well-known Tikhonov’s regularisators. If we choose the
functions gs(A) > 0 in the form

w0 ={ 2o ©)

then these functions generate the d—approximations fs(A)

(AN > ald)
f"“)_{o it A < a(d),

that are equivalent the regularised TSVD. Note that we
used above a priori information about the problem to be
solved in terms of the triple (A, ys,6). The a—parametric
RFC allow the smoothed approximations of the desired so-
lution because of the global level § of errors in the measured
data. Often we wish to reconstruct the “fine” structure of
the desired solution. In this case, more a priori informa-
tion is needed in order to provide this reconstruction. For
example, such an information can be given in the form of
the componentwise errors |ysk — yk| < 0k, (k = 1,2,...,m).
In this case, it is not feasible to construct a—aproximations
because of the numerical regularisation parameter «. For-
tunately, it is possible to construct RFC using the general
scheme indicated above.

gs—parametric RFC

As an example, we consider the case of the spectral com-
ponentwise errors, i.e., |bs,—b,| < §,, where §2 = S 0%, b
and bs are spectral decompositions of vectors b = A*y and
bs = A*ys, respectively. Here A* is the transpose of the
matrix A. The general scheme is, however, applicable for
the other cases as well. In order to clarify why we need to
construct the gs—parametric RFC, we show that there ex-
ists the gs—function that minimises the upper bound of the
error ||z, — =||?. Let & be the spectral decomposition of the
vector x, i.e., £ = V*z. Then, minimising the upper bound
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of the error

- )‘?5]2 + qg()\])\if?]P

g — 2| <
" 2 DT a0F
we obtain
~ oo ifz,=0 ;
. — 2
0 ‘;’—lz if 2, # 0. @

Since the “optimal” function g5 depends on the unknown
solution z, it cannot be implemented in practice. One can,
however, try to construct the other d—functions which would
be close in some sense to the “optimal” function. One
class of such functions was described in Ref. (Arsenin et al.,
1985). According to the general scheme one can consider a

collection of vectors qo = {qglf), ,qon } in the form

]

k) _ 32|12 if &%) # 0
q o

so that the kth vector of the regularised spectral decompo-
sition has the form

(k) A
W - A k=1,2,..). 9)
0 )\2+q(k 1) 0

(k)

It is easy to see that the vectors g5’ generate RFC for

the pseudo—inverse of A if the initial vector q( )
such RFC, i.e., if the element x((s ) = Va;((s ) converges to the
desired solution as 6 — 0. The initial approximation can

be determined as a;( =V Ay V*bs, where

generates

if |bs,| < 6,
Lif |bs,| > 6.

NON { )
% >‘35J(‘bﬁj| - 5])7

and

)\1 )\n

Ay = diag{ yrens .
! Nt A+l

Note that the initial approximation satisfies the variational
problem

argmin{|z|? : x € R",|\,&, — b5, <4,},  (10)

that generalises the well-known discrepancy method for
solving ill-posed problems. Furthermore, there exists the
converging limit function that has the form

0 if |bs,| < 26,
. 0 if \ISDJ\ > 26,,|#)| < B,
P01 T A ths,C, if [bsy| > 20 (0 _ (11)
7 Y ] 1 ‘ 0]‘ 7 |$¢> |
X, Vb5, D if [bs,| > 26, |x£)| > B],
where A, = |bs,| — 402, B, = 0.50;%(|bs,[2—262 —A)),

C] =1- 25]2<|b<5]‘2 - ]) 1v D] =1- 25]2(|i’6]‘2 + A])_l
Analogously, the other RFC can be constructed for any
other a priori information about the problem to be solved.

A Model Problem
To evaluate RFC indicated above, the computational
experiment has been conducted. The test problem was ini-
tially formulated for the compact integral operator A =
f K(t —t)dt',t € [c,d] with the kernel function K(t) =
1+ tz) 1. After its discretisation the eigenvalues of the
matrlx generated by a finite—dimensional approximation of
the operator A decreased rapidly. It allowed for modelling
an ill-conditioned system of linear equations. The exact
solution was defined as the unit vector x = [1,1,...,1].
The typical values of m and n were equal to 1000 and 100,
respectively. The exact right-hand side was perturbed by
uniformly distributed random vector modelled noise. Each
noise sample has been rescaled from 10% down to 0.01% of
the norm of the right-hand side as follows

g=y+olylliel™

where § > 0 is the root mean square of the right-hand side.
The quality of RFC has been characterized by the relative
error of the regularised solution, i.e., ¢ = |z, — | ||z| !

Calculations were carried out with double precision. Ta-
ble 1 summarizes values of ¢ for the Tikhonov’s scheme of
regularisation using QR decomposition of the matrix A*A,
SVD and TSVD of the original matrix A, and the initial
approximation of the RFC. Comparing the values of €, one
can notice that the RFC provide more accurate regularised
solutions for any reasonable values 6. In our calculations
we used the standard FORTRAN routines JACOBI and
DSVD!. It was expected that the different results would
appear when another routines were used. Table 2 contains

1These routines were implemented by Applied Mathematics Divi-
sion of Argonne National Laboratory.
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) QR SVD TSVD RFC
1078 .581d-2 .595d-2 .385d-2 | .202d-2
1078 .237d-1 .237d-1 .140d-1 | .116d-2
1074 .570d-1 .b71d-1 475d-1 | .310d-1
1072 .724d-1 .735d-1 .724d-1 | .400d-1

5-1072 | .982d-1 .958d-1 | .115d+4-0 | .554d-1
107! .138d+4-0 | .133d+0 | .213d+0 | .664d-1

Table 1. Comparison of the relative errors for RA's based on the QR decom-
position, SVD, TSVD and the RFC (initial approximation).

s QR SVD TSVD | RFC
10°% | .151d-1 | .169d-1 | .835d-2 | .613d-2
107° | .413d-1 | .421d-1 | .346d-1 | .238d-2
107* | .482d-1 | .477d-1 | .474d-1 | .320d-1
107* | .524d-1 | .528d-1 | .511d-1 | .334d-1

5-107% | .832d-1 | .817d-1 | .982d-1 | .467d-1
107" | .128d+0 | .123d+0 | .204d+0 | .575d-1

Table 2. Comparison of the relative errors for RA's based on the QR decom-
position, SVD, TSVD and RFC (initial approximation).

the results obtained by IDL standard routines®. Although
the slightly different results were obtained, the difference
was not essential. This means that both the a- and g¢s—
parametric RFC are computationally stable with respect to
the errors caused by the different approximate algorithms
for computing eigenvalues and eigenvectors.

Regularised Mode Filtering

As an alternative to known matched—field processing
(MFP), matched—mode processing (MMP) has been devel-
oped recently (Baggeroer, et al., 1993) in ocean acoustics for
detection and localisation of a source in shallow water. The
main advantage of MMP is its potentially low sensitivity
to environmental noise. Since the effectiveness of MMP de-
pends strongly on the accuracy of mode filtering, the mode
filtering algorithms are the core of MMP. In order to outline
the basic problem of mode filtering, let us consider an acous-
tic field generated by a narrow—band point source. Without
loss of generality, let us assume that the oceanic waveguide
is cylindrically symmetric, and the source is situated at the

2Interactive Data Language, a data analysis software product from
Research Systems, Inc.

point (rg, z,). Then the complex pressure field received by
a vertical hydrophone array situated in the far—field zone
can be expressed as a finite series whose elements are the
weighted propagating normal modes

P27, 25) = bzn: u](z)u](zs)eXp(Zk”rs —6rs) (g9

= ErgTs

where u,(z), ), and k,, are the modal eigenfunctions, the
attenuation and the horizontal wavenumbers, respectively.
The modal eigenfunctions satisfy the Sturm-Liouville prob-
lem, and they are orthogonal. The time dependence term
will be neglected here because it is not essential for the argu-
ments below. For similar reasons, we do also not explicitly

define the complex—valued coefficient b. Defining the modal

amplitudes as z,(rs, z5) = b - u](zs)exp(zk”k—\/ﬂﬂs), we rep-
TS

resent Eq. (12) as a system of linear equations
n
Az = Za”x] =p(z;7rs,25), (20 =1,2,...,m), (13)
7=1

where the matrix A acts from an n-dimensional vector space
into an m-dimensional vector space. The case of a horizon-
tal hydrophone array can be considered analogously. If the
vertical hydrophone array is spanning the entire waveguide,
and the number m is sufficiently large, i.e., good sampling
of the mode shapes is performed, then the matrix A is ex-
pected to be quasi-unitary, so that A=' = A*, where A*
is a Hermitian matrix. However, real vertical hydrophone
arrays do not span the entire waveguide, and they sam-
ple poorly the mode shapes. As a result, the matrix A
is no longer quasi—unitary, and it is, generally speaking,
ill-conditioned. To demonstrate the effectiveness of RFC,
we simulated shallow water mode filtering. Specifically, in
our simulation the Pekeris model of waveguide was used, in
which the water channel depth was 80 m, and source depth
and range were 30 m and 1000 m, respectively. The simu-
lation used 50 Hz as the propagation frequency. We used
the following noise model: A*Ax = A*p+ &, £ = A*N,
where the noise vector N was modelled as a complex Gaus-
sian random vector, so that the random vector was also
a complex Gaussian vector with zero mean and correla-
tion matrix Re. Since 62 = E||¢||? = trR¢, it was nat-
ural to use diagR¢ for estimating the spectral error men-
tioned above. The noise level was expressed in terms of

SNR, i.e., SNR = 10log “E%”;. Figures 1 and 2 plot the
performance of the conventional pseudo—inverse algorithm,
the Tikhonov’s scheme of regularisation and RFC(initial ap-
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proaximation) for vertical arrays whose apertures span 0.75
and 0.5 of the channel depth, respectively.
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Figure 1. Comparison of total squared errors: the pseudo—inverse (dash—dot),
the Tikhonov's scheme of regularisation (dotted) and RFC (solid).

Mode Error(dB)

o
o

20 30 40
SNR(4B)
Figure 2. Comparison of total squared errors: the Tikhonov's scheme of
regularisation (dotted) and RFC (solid).

As expected, the pseudo—inverse algorithm does not
work well even for the 20— and 40-dB SNR cases for both
good (Figure 1) and poor (Figure 2) spanning. The filters
based on the Tikhonov’s scheme of regularisation and RFC
provide reasonably good performance for the interval 20—40
dB SNR when the array spans more than 0.75 of the water
column. However, the RFC filter provides the slightly bet-
ter results. This is qualitatively true for the poorly spanned
water column, but the mode error increases dramatically for
all SNR cases and mode filters.

THE INTEGRAL EQUATION METHOD

Many boundary value problems can be reduced to the
integral equations using the Green’s theorems. This feature
allows the computationally effective formulations of many
complex applied problems that are of particular interest to
engineering. As an example, we indicate below inverse scat-
tering. Specifically, we show how RFC can be exploited
within the framework of the integral equation method.

Integral Equations of Convolution Type of the First Kind
Let us consider an integral equation of convolution type
of the first kind

Az = /_00 Kt —7m)x(r)dr =y(t), —co <t <oo (14)

In this case, the spectral measure F 4 () can be calculate via
the Fourier transform. It is therefore sufficient to define the
d—approximating functions fs(A) in the frequency domain.
In particular, we can consider the rational d—approximating
functions in the form f5 = K(=M\[|K(\)|> + ¢5]~', where
K (\) is the Fourier transform of the kernel K (t) of Eq. (14).
The spectral error can be incorporated as |ys(A) — y(A)] <
o(A), where [%_o2(X)dA = 62. After this, the specific func-
tions gs can be derived as before. Figure 3 shows the results
of numerical experiment demonstrating the computational
effectiveness of RFC(initial approximation).

Time
L B B B B

Ol v b b b b by

o

0.0
Amplitude

Figure 3.  Comparison of numerical experiment: the exact solution(solid), the
Tikhonov's scheme of regularisation(dash—dot) and RFC(dotted). The kernel
has the form K (t) = exp[—100(t — 0.5)2}. The level of errors corresponds
to 3% of the maximum of the exact right-hand side of Eq. (14).

Inverse Scattering In Ocean Acoustics
The scattering by obstacles submerged in an oceanic
waveguide or buried in the near—seafloor sediments and by

Copyright (© 1999 by ASME



the volume inhomogeneities is usually considered separately.
Meanwhile, the real ocean contains the volume inhomo-
geneities, such as bubble clouds, rough interfaces, internal
waves, etc. Although the specific mathematical model of an
ocean waveguide depends on the specific applied problem,
we consider, for brevity, the three layer model that can be
of particular interest to acoustic remote sensing. The up-
per and lower layers of this model are the homogeneous air
and bottom background. The middle layer represents the
arbitrarily inhomogeneous seawater and the near—seafloor
sediments that may include several obstacles. The mathe-
matical model can be represented in terms of the Cauchy
problem for the Chernov’s wave equation with the variable
mass density p(r) and sound speed ¢(r)

2

p(r)div(p~ (r)gradp(r,t)) — c~2(r) 5 (r, 1)
=—f(r,1) (15)
p(r,t) = 0,22(r,t) = 0,¢ < 0. (16)

We assume that the conjugation conditions are satisfied at
the air—water and water—sediments interfaces, and the Som-
merfeld radiation condition satisfies at infinity. We also as-
sume that there is a bounded region D containing a rigid
body, so that the Neumann condition is satisfied on its
boundary D. Although it is impossible to obtain the ana-
lytical solution of the Cauchy problem, this problem can be
reduced to the integral equation using the Green’s theorems.
Indeed, applying the Fourier transform to Egs. (15)—(16),
we arrive to the boundary value problem for the Helmholtz
equation for every fixed frequency w. Introducing then
a substitution u(r,w) = p(r,w)/\/p(r) and applying the
Green’s theorems to the Helmholtz equation, we obtain the
integral representation of the boundary value problem

u(r,w) = [, o(r,w)G(r,r',w)dr +
Jy Ur,w)G(r, v/, w)u(r’ ,w)dr’ + (17)

Jop u(t’,w)8& (r, 1", w)ds

where V' C R3\D, ¢(r,w) = f(r,w)/\/p(r), and U(r,w) is
the potential that is the known function of the mass density
and sound speed. Note that the Green’s function G(r,r’, w)
satisfies the equation (V2 + w?¢ 2(2))G = —§(r — r'), the
conjugation conditions at the air—seawater and seawater—
bottom interfaces, and the radiation condition at infin-
ity.  The Green’s function can be represented via the
Sommerfeld—Weil integral. It is easy to see that the integral
terms in the right—hand side of Eq. (17) represent the inci-
dent field, the scattered field from the inhomogeneity, and
the scattered field from the rigid body. The impedance or
Kirchhoff conditions can also be considered.

The integral representation (17) is the basis for the con-
struction of mathematical models for both forward and in-
verse 3—D modelling. However, the properties of the inte-
gral operators generated by this representation depend es-
sentially on the position of the vector r. As a result, in the
case of a forward problem, we obtain the system of linear
integral equations. However, any inverse problem becomes
nonlinear because of the unknown coordinates of a source,
the shape of a scatterer, etc., and the acoustic field u(r,w)
inside the inhomogeneity and on the surface of the reflector.
In this case, after discretisation of this system we arrive to a
system of nonlinear equations with respect to the unknowns
indicated above. This system can be approximatively solved
by the iteratively regularised Newton’s methods if there is
the Fréchet derivative of the operator generated by the sys-
tem of integral equations.

In certain cases, it is possible to linearise an inverse
problem. As an example, we consider one scheme of acous-
tic sounding based on synthetic aperture sonar technique.
For brevity, let us assume that a scatterer is situated in
a homogeneous waveguide with the constant mass density
and sound speed c¢. We assume, however, that the surface
of the scatterer is diffusive. In this case, one can formally
define the apparent reflection coefficient x(r) on the sur-
face of the diffusive scatterer and consider the generalised
Kirchhoff conditions in the form

use(r, Ry w) = 6(r)x(r, R)u;(r,w)

Gae(r, Ryw) = —r(r)x(r, R) G2

where R is the radius vector connecting the sonar and an
arbitrary point r belonging to the surface of the scatterer,
x(r,R) is the characteristic function of the exposed area of
the surface 0D. The physical sense of the apparent reflec-
tion coefficient x(r) is that it is the reflection coefficient of a
plane wave from the elementary plane tangential to the dif-
fusive surface of the scatterer at the point r € 0D. In many
cases of particular interest to remote sensing, it is natural
to formulate the inverse problem in terms of recovering the
function &(r) from measurements of the scattered field in
the far—field zone. Then, using the generalised Kirchhoff
conditions, one can obtain from Eq. (17) the linear integral
equation of the first kind with respect to «(r). This integral
equation can be written as follows

use(R,w) = # fooo exp(2ur/c)r—2 -

Sz () Plas Biw)r(x)x(r, R) sin 2(R — r “n)di(r) (18)

where L, (R) = {r : r € 0D,|R — r| = r} is a spatial
curve on the surface 9D, and P(a, §;w) is the far—field pat-
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tern that is determined from the asymptotic form of the
solution u(r,w) = m’T“’—TEZP(oz,ﬂ;f.u) +O0(r2),r — co.
The curve L is a section of the surface 0D by the front
of the incident wave that moves along the vector R. It is
clear that Eq. (18) is the typical equation of integral geome-
try allowing the tomographic interpretation of the synthetic
aperture sonar technique. In particular, if the scatterer is
quasi—plane, then this equation can be transformed to one of
the basic equations of linear computer tomography, e.g., the
inverse Radon transform, that can be approximately solved
via RFC (Tikhonov et al., 1987). As an example, we indi-
cate Figure 4 illustrating the effectiveness of this approach.

Figure 4. Acoustic image of a skin diver obtained from the data of a real-life
acoustic experiment using the Kirchhoff approximation (Timonov, 1990).

CONCLUSION

This paper presents RFC as the practical numerical
technique for solving linear inverse problems of particular
interest to engineering. The RFC are shown to be a gen-
eralisation of the spectral interpretation of the Tikhonov’s
scheme of regularisation. Roughly speaking, the RFC pro-
vide the spectral local regularisation of the problem, i.e.,
each spectral component of the solution is filtrated by the
corresponding value of the variable regularisation parame-
ter. This form of regularisation is well-suited to the differ-
ent types of a priori information about the problem to be
solved. It is demonstrated that the RFC provide the com-
putationally effective solutions to the least squares problem
as well as to the integral equations of the first kind.
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