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ABSTRACT
        In this paper, new, effective approaches to solve third and
second order difference equations are introduced. These
approaches consist in the use of new computational tools
constructed by the authors of this paper during previous
investigations in a field of combinatorics and the Fibonacci
hyperbolic trigonometry. Particularly, to work out suitable
combinatorial algorithms the monic power 1-D and 2-D
polynomials generated by modified numerical triangles and the
hyperbolic Fibonacci functions defined by successive elements
of the Fibonacci sequence are used. The construction of
numerical algorithms is described and commented. The new
computational approaches can be effectively applied for studies
of various discrete-continuous systems that are occurred in
practice. Also the idea of combinatorial approach is used to
solve different inverse problems particularly identification
problems. Especially, the identification of field sources in 2-D
systems is studied very exactly. The elaborated algorithms were
tested with special benchmark functions and also the
experimental verification using measurement data was done. On
the basis of presented studies and results of computer
simulations, it can be found that the combinatorial method of
solving inverse problems is effective and easy to use. The
advantages of this method are recurrence equations defined

monic polynomials, a high accuracy of calculations, and ease to
an implementation in the MATLAB package

NOMENCLATURE
C : constant
CFh : cosine hyperbolic Fibonacci function
cFhQ(k) : generalized cFh function
fn, f(p) : element of the Fibonacci sequence
fm,n, f(m,n) : discrete value of sources' function f
f : field sources’ function
f : matrix of discrete values of function f
fp : sources’ function for inverse problem
fp : matrix of discrete values of function fp
f1(.,.) : benchmark sources’ function
F : matrix of Fourier series coefficients for f
∞  = 1 + ± : constant
MNT1,MNT2: modified numerical triangles
÷(.,.) : auxiliary function in body torsion problems
Pn(x) : polynomial generated by MNT2 triangle

± : golden ratio (
2

51Η
 = 1.618033 …)

qk : scalar parameter
q : constant sources’ function
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Q : parameter as complex matrix
SFh : sine hyperbolic Fibonacci function
sFhQ(k) : generalized sFh function
S : matrix of values of sine functions
U : potential function
Tn(x) : polynomial generated by MNT1 triangle
T(.,.) : temperature distribution function
T : matrix of discrete values of function u
um,n, u(m,n) : discrete values of function u
U : matrix of Fourier series coefficients for u

INTRODUCTION
Studies on problems described by the 2-D and 3-D models
have been intensively developed at many world scientific
centers in order to explain different phenomena encountered
not only in mathematics but also in electrical engineering,
mechanics, economics, biology, medicine, and even in social
sciences (Kaczorek, 1985, Groetsch, 1993, Anger, 1990,
Kurpisz, 1995, Tikhonov, 1995, Engl, 1996, Neittaanmaki,
1996).

Recently, it can be observed that the inverse problems
are of increasing interest both in scientific centers and industry.
The studies on inverse problems are carried out in two
directions. One is a development of the theory and numerical
methods and the second is a improvement of measurement
technology. Inverse problems exist in many branches of the
natural sciences and engineering such as mathematics (theory
and methods), statistics, geophysics, seismology, astrometry,
astrophysics, optics, and image restoration, plasma diagnostics,
electrodynamics, scattering in elementary particles physics,
medicine (medical imaging, impedance tomography,
electrocardiogram interpretation). The problem of modelling
the physical reality with suitable differential equations systems
is relatively uncomplicated in the finite dimensional setting but
becomes very difficult for various partial differential equations
such as wave, heat, electromagnetic ones.  When it is
impossible, or difficult, to obtain an exact solution of the
partial differential equations governing a continuous system,
the system is reduced to discrete form (John, 1978, Anger,
1990, Tikhonov, 1995).

In this paper an effective method for computational
solutions of direct and inverse problems described by the 2-D
models is presented in relation to distributed parameter systems
using discrete spatial coordinates. This new approach named
combinatorial method consists in the use of new computational
tools developed by authors of this paper during previous
investigations in a field of combinatorics and the Fibonacci
trigonometry (Rydygier, 1997, Trzaska, 1993a, 1993b, Trzaska,
1996, Trzaska, 1997).

COMPUTATIONAL TOOLS
Presently, a growing interest is observed in development

of methods using a combinatorial analysis based on
conceptions and objects from modern combinatorics. The
combinatorial analysis is applied in the theory of

crystalograghy, cryptology or selected optimization problems
of decision making, scheduling and graph theory (Akgul,
1992). In this paper, it will be shown that in a field of
engineering problems, various structures of the so-called
numerical triangles and hyperbolic Fibonacci functions can be
used for modelling and numerical analysis of distributed
parameter systems (Bergum, 1994, Ross, 1996).

MODIFIED NUMERICAL TRIANGLES
Monic non-zero polynomials which generate the first

modified numerical triangle, MNT1, are defined by the
following recurrence (Trzaska, 1996)

Tn+2(x) =  (2 + x)Tn+1(x) - Tn(x),  n  = 0, 1, 2, … (1)

with T0(x) = 1  and  T1(x) = 1 + x  as initial elements. From the
above recurrence, the following polynomials can be calculated

T0(x) = 1
T1(x) = 1 + x
T2(x) = 1 + 3x + x2

T3(x) = 1 + 6x + 5x2 + x3

T4(x) = 1 + 10x + 15x2 + 7x3 + x4

T5(x) = 1 + 15x + 35x2 + 28x3 + 9x4 + x5

...       ...     ...       ...        ...        ...      ...

Thus, the polynomial Tn(x) can be written in the form

Tn(x) =  a xn k
k

k

n

,
Ζ0

,            n = 0, 1, 2, ... (2)

where the coefficients  an,k,  n = 0, 1, 2, ... ,   0  k n ,  fulfill
the relation

            an,k  =  2an -1,k  + an -1,k -1  -  an -2,k , (3)

with  a0,0 = 1  and  a1,0 = 1  as initial values.
Based on (3) the MNT1 can be constructed. It is presented in
Table1.
  ________________________________________________

n \ k | 0 1 2 3 4 5 6 .Sum of
coefficients

________________________________________________
0 | 1 1
1 | 1 1 2
2 | 1 3 1 5
3 | 1 6 5 1 13
4 | 1 10 15 7 1 34
5 | 1 15 35 28 9 1 89
6 | 1 21 70 84 45 11 1 233
... | ... ... ...     ...     ...    ...    ...        ...

Table 1. First modified numerical triangle, MNT1

To establish the second numerical triangle MNT1, the monic
non-zero power polynomials are defined by the recurrence

Pn +2(x) =  (2 + x)Pn +1(x) - Pn(x) ,    n = 0, 1, 2, ... (4)
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with P0(x) = 0  and P(x) = 1  as initial elements.
From (4) the following polynomials can be obtained

P0(x) = 0
P1(x) = 1
P2(x) = 2 + x
P3(x) = 3 + 4x + x2

P4(x) = 4 + 10x + 6x2 + x3

P5(x) = 5 + 20x + 21x2 + 8x3  + x4

...           ...       ...           ...             ...           ...

From the above expressions the polynomial Pn(x) can be written
in the form

Pn(x) = b xn r
r

r

n

,
Ζ0

,  n = 0, 1, 2, ... (5)

where the coefficients bn , r,  n = 0, 1, 2, ... ,  0  r n  are
defined by the recurrence

bn , r  = 2bn -1, r  + bn - 1, r - 1  -  bn -2, r  (6)

with b0,0  = 0 and b1,0  = 1 as initial values.
Then, based on (6) the MNT2 can be constructed. It is shown in
Table 2.

____________________________________________n \
r | 0 1 2 3 4 5 Sum of

coefficients
________________________________________

0 | 0 0
1 | 1 1
2 | 2 1 3
3 | 3 4 1 8
4 | 4 10 6 1 21
5 | 5 20 21 8 1 55
6 | 6 3556 36 10 1 144
... | ...     ...     ...     ...     ...      … ...

Table 2: Second modified numerical triangle, MNT2

Formally, both the MNT1 and the MNT2 are apparently similar
to the classical Pascal triangle (Ross, 1996), but their elements
cannot be evaluated directly by applying the rule corresponding
to the classical Pascal triangle (Trzaska, 1995). They must be
computed in accordance with recurrence (3) and (6),
respectively. The sum of all elements values in a row of MNT1
or MNT2 equals to f2n , n =  0, 1, 2, ... , or  f2n - 1 ,  n =  0, 1, 2, ...
, respectively, i. e. they are equal to successive elements of the
Fibonacci sequence with even or odd indices, respectively
(Bergum, 1994)

 fn + 2  =  fn + 1  +  fn , n = 0, 1, 2, ... (7)

with  f0  =  1  and  f1   =  1  as initial values.

Some of the most useful properties of monic power polynomials
are following

xPn + 1(x) = Tn(x) - Tn - 1(x), n = 0, 1, 2, … (8)

Pn(x)Tn  - 1(x) - Pn - 1Tn(x) = 1, n = 0, 1, 2, ... (9)

Properties of monic polynomials were described in detail in
Trzaska (1996), Trzaska (1997).

HYPERBOLIC FIBONACCI FUNCTIONS
Hyperbolic Fibonacci functions sFh(x) and cFh(x) are

defined as follows

sFh(x) =  
5

22 xx ϑ

ϑ∞∞ ,

cFh(x) = 
Ε Φ Ε Φ

∞ ∞
2 1 2 1

5

x xΗ ϑ Η

Η
(10)

where ∞  = 1 + ±  ]  2.618033 ... , and ±  denotes the golden
ratio (Trzaska, 1993a).

It is easy to demonstrate that when a discrete variable
k I is used then the functions sFh(k) and cFh(k) in terms of
corresponding elements of the Fibonacci sequence

f(p + 1) = f(p) + f(p - 1),  p =  ...-3, -2, -1, 0, 1, 2, 3, ...
(11)

with  f(0) = 0 and f(1) = 1 can be written in the formulas

sFh(k) = f(2k), cFh(k) = f(2k + 1) (12)

The generalized Fibonacci hyperbolic functions cFhQ(k)  and
sFhQ(k) can be regarded as generating functions for
polynomials Tk(Q) and  Pk(Q), k = 0, 1, 2, ... , respectively

cFhQ(k) = Q k Tk(Q), sFhQ(k) = Q k Pk(Q) (13)

where Q means complex matrix or scalar parameter.

For Q = 1 there are usual Fibonacci hyperbolic functions

cFhQ(k)|Q=1 = cFh(k), sFhQ(k)|Q=1 = sFh(k) (14)
Moreover, it is evident that Fibonacci hyperbolic functions and
modified numerical triangles above presented can be very
useful for practical problem studies.
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CONSTRUCTION OF ALGORITHMS
On the basis of the stationary 2-D space-continuous

system described by the Poisson equations with specified
boundary conditions, the computational algorithms are
elaborated for solving direct and inverse problems with special
regard to identification problems. This system is described by
the second order partial differential equation

 ),(),(),(
2

2

2

2
yxf

y
yxu

x
yxu

ΖΗ

⌡

⌡

⌡

⌡ (15)

where u(x, y) is the potential function and f(x, y) is the function
of field sources distribution.

At first a direct problem will be solved. This problem
consists in finding a solution of equation (15) which is the
potential function u for known function f and for given
boundary conditions. To solve this problem a discretization
using the finite difference method (Dahlquist, 1974) and an
expanding the function f with a use of the Fourier series (Potter,
1973), for parameter n = 1, 2, ... , N - 1 are done. The boundary
conditions for function f are in the form

fm,0 = fm,N  = 0. (16)

The discrete values of a field sources function can be calculated
from following formula

fm,n = 
ϑ

Ζ

1

1

sin)(2
M

k
m M

nk
kF

↓

,  m = 1, 2, ... , M – 1. (17)

In the same way a solution for the potential function u can be
represented as follows

um,n= 2
1

1

U k k n
Mm

k

M

( ) sin ↓

Ζ

ϑ

. (18)

After modification with use some trigonometric identities, the
second order difference equation can be established

)())()
2

sin4()()(2)((1 2
112

kFkU
N

kkUkUkU
h mmmmm Ζ

�
�
�

�
ΩΥΩ

ϑΗ

↓

(19)

where m = 1, 2, ... , M - 1, values M and N define the limits of
the space.
To complete equation (19), the boundary conditions are
formulated as follows

U0(k) = 0 and UM(k) = Ck (20)
where constants Ck (values of UM(k)) are calculated from
condition uM,n = 0 ,   n = 1, ... , N.

For the new parameter q k
Nk Ζ 4

2
2sin ↓  and on the basis of

equation (4) generating Pn(q) polynomials, the solution of
equation (19) is obtained in the form

ϑ

Ζ

ϑ
ΜΖ

1

1

2
1 )()()()()(

m

l
lklmkmm kFhqPkUqPkU ,

m = 2, 3, ... , M - 1. (21)

From (21) the values Um(k) can be found in all nodes of
discretization. The values U1 (k) in the equation (21) are
calculated from the boundary conditions

u0,n = 0 and uM,n = 0, n = 0, 1, ... , N. (22)

When N = M and n = 1, the second equation shown above is
appeared as follows

0 = uM,1 = 
ϑ

Ζ

1

1

sin)(2
M

k
M M

k
kU

↓
. (23)

Doing similarly for n = 2, ... , M - 1, the system of M - 1
equations can be obtained to calculate a set of coefficients
UM(k), k = 1, 2, ... , M - 1.

Then after a substitution of these coefficients to the
equation  (21) for m = M, a set of coefficients U1 (k), k = 1, 2,
... , M - 1 can be found. Next, on the basis of equation (18),
(21) the solution of equation (15) can be calculated as a set of
potential function values at nodes of discretization.

The above algorithm of calculation was implemented in
the form of a computer program to analyse the system
described by Poisson equation (15). The results of calculations
are presented as graphs of potential function for different steps
of discretization. Also the analytical solution if exists can be
given on the input. It is used to calculate an error’s distribution
served for the comparison between the calculated and exact
solution.

After some modifications of the above algorithm, another
algorithm was constructed to solve inverse problem of the
system described by equation (15). The task consists in the
calculation of unknown field sources function f for known the
potential function u and given boundary conditions described
by equations (16), (22). The solution is calculated using
elaborated algorithm in two stages. Within the first stage, the
task consists in calculation of the matrix of Fourier series
coefficients for discrete values of potential function um,n  in
accordance with equation (18). For example, when m=1 the
connection between coefficients U1 (k) in demand and values
u1,n   can be presented in the matrix equation

U1 = 
1
2

S-1 T1, (24)

where U1  is a vector which consists of coefficients U1 (k) for k
= 1, 2, ... , N - 1, the vector T1  consists of values of potential
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function u1,n  for n = 1, 2, ... , N - 1, and the matrix S is defined
by suitable values of  the sine function.
During the second stage of calculations, the matrix F of Fourier
series coefficients is determined for the field sources function
development. Values of elements in rows 1 to M - 2 can be
calculated from following formula

Fl(k)=
2

1

1

1

2
1111

))((

)())(()())(()(

hkqP

kFhkqPkUkqPkU
l

i
iilil

ϑ

Ζ

ϑΗΗΗ
ϑϑ

(25)

Whereas the calculations M-1 row of matrix F are done on the
basis of boundary conditions (22).

The last operation is a determination the matrix fp which
corresponds with the matrix f in the algorithm for a direct
problem. For calculated elements of matrix F, the elements of
matrix fp can be constructed on the basis of following equation

fp(m,n)= 
ϑ

Ζ

1

1

sin)(2
M

k
m M

nk
kF

↓

(26)

where m, n means succeeding row and column respectively.
The elaborated algorithms were established in the MATLAB
language for PC computer. In order to test an accuracy of
calculations, the computer simulations were carried out with
special functions called the benchmark functions in the form

f1(x, y) = 100 (y2 - y + x2 - x),

f2(x, y) = 300xy(x2 + y2 - 2),

f3(x, y) = - 2cosxsiny,

for different steps of discretization.

Some examples of benchmark functions are shown in Fig. 1 and
Fig.2.

 

Fig. 1. Benchmark source function f1

Fig. 2. Benchmark source function f3

The corresponding potential functions illustrated exact
solutions of the Poisson equation (15) are presented in Fig. 3
and Fig. 4.
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Fig. 3.  Analytical solution of Poisson equation for f1

Fig. 4. Analytical solution of Poisson equation for f3

Calculated potential functions were obtained for different steps
of discretization. For example, results of computer simulations
for benchmark f1 are shown in Fig 5 (M=10) and in Fig 6
(M=20) to illustrate an effect of increase knots number of a
discretization grid.
The analytical solutions agree quite well with ones obtained by
using the elaborated algorithms of numerical calculations. This
proves the efficiency of the established method in the practical
use.

Fig. 5. Calculated potential function for M = 10

Fig. 6. Calculated potential function for M = 20

The detailed calculations are done in Rydygier, 1998b.

IDENTIFICATION OF FIELD SOURCES
The elaborated algorithms for solving inverse problems

were tested using the experimental data to verify numerical
calculations. These experimental data were obtained from
measurements of potential distribution on the thin conductive
plate or thin conductive layer placed on a plate of perfect
insulator (Trzaska and Rydygier, 1998).
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Fig. 7. Experimental data for two sources

Fig. 8. Experimental data for three sources

In investigated systems, the point current constraints are sources
of potential field. For example several sets of experimental data
are shown in Fig. 7 (for two sources), in Fig. 8 (for three
sources). The input data were treated like given values of
potential function at nodes of discretization within the
investigated domain.

The values of boundary conditions were placed inside the
program. The calculated field sources’ functions are shown in
Fig. 9 and in Fig. 10.

Fig. 9. Identification of two sources

Fig. 10. Identification of three sources

A set of values determining discrete spatial distribution of
field sources function is obtained as a result of calculations with
the combinatorial method. A location of field sources was
defined on the basis of points placed inside the domain which
correspond to the maxima of field sources function. Next, the
maximum values of calculated functions were used to estimate
intensities of sources.

During experimental verification, some detailed problems
have been solved. These problems are connected with a data
treatment like a two-dimensional interpolation and a smoothing
of scattered data as well as an approximation of function



8 Copyright © 1999 by ASME

circumscribed the field sources distribution. These
approximation procedures were used in order to stabilize the
results as a form of regularization method (Engl, 1996).

Together with the estimation limits of a step of
discretization, the different approximation procedures were
used special methods leading to the self-regularization
(Kurpisz, 1995). The correct results were obtained for
approximation procedure elaborated on the basis of an inverse
distance method named also the Shepard’s method (Allasia,
1992, Gordon, 1978). Exemplary results of self-regularization
method are the graphs of approximated field sources function
presented in Fig 9 and Fig. 10. These graphs correspond to the
sets of experimental data presented above. After the
experimental verification, it should be noted that for solving
inverse problems the algorithm using the combinatorial method
allows to determine both localization and intensities of field
sources with good accuracy.

Detailed calculations are presented in Rydygier (1998b.)

PRACTICAL INVERSE PROBLEMS
After the experimental verification, the elaborated

combinatorial method was tested for detailed problems.
Especially, the heat transfer problem was examined for a
resistance sintering of a tungsten rod. It corresponds to a
tungsten rod manufacturing that is widely used in the practice.
The investigated system is described by the Poisson equation

q
y

yxT
x

yxT
ΖΜ 2

2

2

2 ),(),(
⌡

⌡

⌡

⌡ (27)

where q = const, T(x, y) means temperature distribution on a
rectangular  plane of cross-section of a rod.
The equation (27) is completed with zero-value boundary
conditions. In the resistance sintering problem, heat is generated
by an electrical current.

The exemplary temperature data is shown in Fig. 11 for a
rod of 0.011 ⌠ 0.011 ⌠ 0.446 m sizes.  This is a distribution of
temperature refer to a plane of cross-section at z = 0.2355 m
(the z axis is putted along the length of a rod). The inverse
problem for the system described by equation (27) consists in a
calculation a field sources function q. Calculations were done
using square net of 15 ⌠ 15 nodes for discretization. As a result
of calculations, the constant field sources function was
obtained.

The calculated function q is shown in Fig. 12.

Fig. 11. Temperature data for a tungsten rod

Fig. 12. Calculated sources function

The conclusion on the investigated above problem is that
an estimation of field sources distribution can’t be done only on
the basis of experimental data of potential function. The reliable
identification of field sources can be realized on the basis of
field sources function obtained as a suitable inverse problem
solution.

Another detailed problem is a use of combinatorial method
for 2-D systems that have a complicated shape. The problem
from elastostatics is considered for torsion of a metal I-bar. The
2-D system taken from the practice is described by the Poisson
equation
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q
y

yx
x

yx
ΖΗ 2

2

2

2 ),(),(
⌡

÷⌡

⌡

÷⌡

(28)

where ÷(x, y) means an auxiliary function connected with a
torsion angle on a cross-section plane of a bar, q is a constant
function.

The equation (28) is completed with zero-value boundary
conditions.  The input data on a cross-section plane of the I-bar
of 16’’ ⌠ 6’’ sizes are shown in Fig. 13. The calculated field
sources function q is shown in Fig. 14. Calculations are done
using a net of 19 ⌠ 19 nodes for discretization.

The application of a combinatorial method to 2-D systems
with complicated shapes consists on a substitution zero-values
for the nodes placed beyond the limits of a cross-section
domain. Then calculations were made like for square domain of
discretization.

It should be noted that the proposed approach of
calculations for complicated shapes is simple and effective.  In
the event of disturbances, the additional calculations with a use
of smoothing and approximation procedures must be done.

Fig. 13. Input data for a torsion of the I-bar

Fig. 14. Field sources function for a torsion of the I-bar

CONCLUSIONS
The new approach to solve inverse problems is named the
combinatorial method. Numerical algorithms are constructed
using monic power polynomials generated by modified
numerical triangles. After a comparison of the combinatorial
method with another numerical methods used to solve different
inverse problems (Anger, 1990, Botkin, 1995, Flis, 1996,
Huang, 1992, Isaacs, 1996, Malyshev, 1989, Rydygier, 1998a,
1998b), it can be found that this new method is effective and
easy to use. The advantages of combinatorial method are
simplicity of calculations on account of a use of recurrence
equations defining monic polynomials, a high accuracy of
calculations, and ease to implement the numerical algorithms in
the MATLAB package.

The elaborated combinatorial method can be applied to
determine inverse heat sources which are solutions of different
practical heat transfer problems (Malyshev, 1989, Matrin,
1996) and to locate corrosion domains on iron and carbon steel
surfaces (Inglese, 1997, Isaacs, 1996). Results of presented
research can be utilized to improve usable properties of metal
plates in production process in the industry. Also the results of
this work can be used to build integrated computer systems for
identification of thin layers properties in particular the
heterogeneous spots in their structure.
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