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Abstract

Usually when determining parameters with an inverse meth-
od, it is assumed that parameters or properties, other than
those being sought, are known exactly. When such known

parameters are uncertain, the inverse solution can be very
sensitive to the degree of uncertainty. The stochastic regu-
larization method can be modi�ed to reduce this sensitivity.
This paper presents such a modi�cation. In addition, the
relationship between Tikhonov-Phillips regularization and
stochastic regularization is described. Because of this rela-
tionship, it is possible to modify the usual Tikhonov-Phillips
regularization to account for such uncertainties.

Nomenclature

A discretized form of F(�)
b uncertain known parameters
E[] expected value
F (�) system model response
H discretized form of �(�)
I Identity matrix
K number of uncertain known parameters
L quantity to be minimized
M number of sought parameters
N number of data points
t time
V extended covariance matrix
W weighting matrix
x spatial location
z measurements
� regularizing parameter
� rms value of �
� stochastic variable
� standard deviation
� covariance matrix

� parameters
�̂ estimated parameter
�(�) penalty function

subscripts
T Tikhonov
P Phillips
sr stochastic regularization

Introduction

The usual determination of parameters by inverse analysis
assumes that the parameters are deterministic, that is that
they are unknown but constants. The Bayesian approach
to estimating parameters assumes that the parameters are
random and that some knowledge of their statistical prop-
erties is known via a prior probability density distribution.
Statistical regularization is the name given to a form of
Bayesian estimation which resembles the usual Tikhonov-
Phillips regularization method in which the regularization
parameter is related to the variance of the prior.

In both approaches, it is usual to assume that the only un-
knowns are the parameters sought and, with the exception
of noise or uncertainty in the measured data, that all other
parameters of the problem are known. In reality, boundary
conditions, initial conditions, or other properties may have
uncertainty. We will term the parameters other than those
sought as known parameters. In this paper we develop the
foundation of an extension to the usual identi�cation prob-
lem to consider uncertainty in these known parameters and
the inclusion of their uncertainties in the stochastic regu-
larization method.

Although details of Tikhonov-Phillips and statistical regu-
larization are available in very complete form in a variety of
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sources (Engl, Ho�man, Groetsch), it is worthwhile to recap
their development to emphasize their inter-relationships.
Because of this inter-relation- ship, it is possible to incor-
porate the extension developed for stochastic regularization
into the standard Tikhonov-Phillips regularization method.

Tikhonov Regularization

Consider a system whose response can be characterized by
z = F (x; t; �; b) where F (x; t; �; b) includes the parameters
sought, �, and the known parameters, b, both of which may
represent properties, boundary conditions or initial condi-
tions. Suppose that we make N measurements of the re-
sponse, z, which are contaminated with a stochastic vari-
able, �, which has a zero mean and a covariance of � �. �
may be interpreted as noise in the data or departures of
the data from the model predictions. From the measure-
ments we want to estimate the M parameters, �. The usual
approach is to minimize a weighted least square error, L,
where

L = (z � F )TW (z �F ) (1)

in which the superscript T indicates the transpose. For
many inverse problems, the error of the parameter estimate,
�̂, �rst decreases as the number of data points, N , increases
and then increases. Such behavior is characteristic of "ill-
posed" problems which are usually associated with deter-
mining the kernel of a Fredholm equation of the �rst kind
as encountered in inverse heat transfer, computerized to-
mography and many other situations. The usual approach
for estimating the parameters in this case is to modify the
function L to include a smoothing function, �(�)

L = (z � F )TW (z � F ) +��(�) (2)

where �(�) is sometimes referred to as a penalty, roughness
or stabilizing function. We will employ the term penalty

function because it better represents the action of the func-
tion. � is termed the regularizing parameter. This form
of a regularized solution is usually referred to as Tikhonov
regularization. A variety of such penalty functions can be
used. The most common functions are the minimum square
error of the estimator, �T �, the di�erential operators of the
1st and 2nd derivatives employed by Beck in solving the
inverse heat conduction problem, (� 0)T (�0) and (�00)T (�00)
where the primes denote di�erentiation, and the entropy
information/theoretic function described by Engl. Some-
times the penalty function is implicit as in the iterative ma-
trix solution methods for non-linear functions F (�) where
the iteration index plays the role of �. Depending upon
the application, more than one penalty function can be em-
ployed.

Without loss of generality, let us consider the case of a
discretized system and assume that F (x; t; �; b) can be ex-
pressed in linear form as A� where A is a NxM matrix,
that the expected values of � are zero, that the discretized
penalty function �(�) can be expressed as �TH�. The re-
sulting form of Eq. 2 is then the more common form of
Tikhonov regularization

LT = (z �A�)TW (z �A�) + ��TH� (3)

Although a non-linear F (�) can always be treated by lin-
earization and non-zero expected values of � can be ab-
sorbed into the equations easily and other weight functions
considered, all almost trivially accommodated in the formu-
lation of the equations, these e�ects may have very serious
consequences in the numerical solution and they should not
be treated cavalierly.

The solution to Eq. 3 can be expressed as

�̂T (�) =(A
TWA+ �H)�1ATWz (4a)

=H�1AT (AH�1AT + �W�1)�1z (4b)

where we have written �̂(�) to emphasize that the estimate
is a function of �. Eq. 4a is better suited for N � M and
Eq. 4b for N <M .

A full discussion of typical inverse problems, the di�er-
ent methods of regularization, the mathematical restrictions
placed upon the regularization method, and procedures for
the choice of � can be found in Engl and Groetsch. Since
the method is essentially an extension of the usual least
squares method of Gauss, it is common to impose the re-
striction that N � M , but cases where N < M can be
treated using SVD, as long as su�cient conditions are met
(Bjorck).

The regularization, Eqs. 3 or 4, can be viewed as a correc-
tion to the usual least squares method of estimating �. The
basic problem with Tikhonov regularization is the choice of
�. Too small a value and, although the results display �-
delity with the data, the erratic behavior of �̂ persists ; too
large a value and the in
uence of the data is minimized.
Probably the most common prescription for choosing � is
Morozov's discrepancy principle which states that � should
be such that the root mean square value of the residual
should equal the estimated error in the data, that is choose
� such that

(z �A�̂(�))T(z �A�̂(�)) � �T � (4c)

The role of � can be seen by examining the error in the
regularized solution, �̂(�) which for W = I is given by (Hof-
mann, pg. 114)

2



� � �̂T (�) =
rX

i=1

�
a

�2i + �
(�; u(i))u(i)

�
rX

i=1

�i
a

�2i +�
(�; v(i))u(i)

(5)

where we have neglected the error associated with the null
space components that may not be resolved by the data z.
In Eq. 5, r is the rank of A, u(i), v(i), are the column vectors
of the orthogonal matrices U and V , �2i are the diagonal
elements which arise from the SVD of A; = V SUT , and (,)
represents the dot product. The �rst term, which applies to
exact data, makes the e�ect of � for ill-posed problems very
clear: it provides a damping e�ect for singular values, �i
which are close to zero. For components of � associated with
large values of �i, there is little e�ect. Clearly one wants
to use as small a value of � as possible to reduce this error
term. The second term shows the e�ect of contaminated
data and we see that the larger � is, the more this e�ect
is damped. It is this tradeo� between the �rst and second
error terms which makes the choice of a "good" value of �
di�cult for treating ill-posed problems with noisy data.

Phillips' Regularization

A di�erent point of view was formulated by Phillips in a
paper which predated Tikhonov. Later work demonstrated
that Phillips' method, in which the penalty function was a
di�erential function of �, was a special subset of Tikhonov's
regularization (Groetsch, pg. 60). Subsequent to Phillips'
work, many others have used di�erential functions, particu-
larly in inverse heat conduction, but some care must be ex-
ercised to ensure satisfaction of all the conditions required
to yield unique and properly convergent regularized solu-
tions (Engl).

However, the fundamental idea behind Phillips' develop-
ment di�ers from that of Tikhonov's. In Phillips' method
the idea is to minimize a penalty function, but to subject
the minimization to the requirement that the root mean
square error of the data be less than or equal to some pre-
scribed error magnitude, that is let the error in the signal
be de�ned by

�T � =N�2 (6a)

and choose � to minimize

LP =�(�) + �f�T �� �2g (6b)

=�TH� + �fz �A�)T(z �A�)� �2g (6c)

where � is a Lagrangian multiplier and we have substituted
�(�) = �TH�. Since �2 is constant, the quantity to be
minimized can be written as

LP =
1
a

�
�TH� + (z �A�)T (z �A�) (7)

and comparing Eqs. 3 and 7, we see that 1 =� is equivalent
to �. Although Eqs. 3 and 7 are identical, both minimizing
the sum of the least squares error and a penalty function,
there is a very fundamental di�erence in the underlying phi-
losophy of the two methods. Tikhonov's regularization is
based on reducing the ill-posedness of the least squares so-
lution by adding a penalty function and assigning a weight
of W to the errors and a weight of � to the penalty function.
Phillips' method calls for the minimization of the penalty
function with the mean square error of the data acting as
a constraint, the penalty function being weighted by unity
and the data by a weight of �. Because � is directly related
to � (i.e. specifying �2 de�nes the value of �), Phillips' ap-
proach leads automatically and rather straightforwardly to
Morozov's discrepancy principle (Engl, pg. 121).

(As an interesting aside, Phillips considered only the case
where N = M and minimized Eq. 6b with respect to �i,
not �, and assumed values of � and then determined the
resulting value of �2. He then investigated the e�ect of
di�erent values of � on both �2 and the behavior of �i. His
approach was in essence that of Tikhonov's in which � is
assumed.)

Twomey extended Phillips' approach to the over-deter- mined
case, generalized H to a range of penalty functions, and
considered an initial estimate of the parameter. If an initial
estimate of � is taken to be p, then �̂P is found from

�̂P =(H + �ATA)�1(�ATz +Hp) (8a)

=p+ �(H + �ATA)�1AT (z �Ap) (8b)

If no initial estimate is assumed, i.e. p = 0, and W = I,
Eq. 8 is identical to Eq. 4a with 1=� = �P . If u are
the eigenvectors of ATA and � are the eigenvalues, so that
� = 
u and �̂ = 
̂u, then the coe�cients are related by


̂k = (1 +
�P �k
a

�k
)�1
k (9)

where �k is a number equal to 1 if H = I, otherwise j�kj �
1 and depends upon H. From Eq. 9 it is clear that �P
has the greatest e�ect on the components corresponding to
the small eigenvalues (i.e. high frequency) and leaves the
components corresponding to large �k una�ected.

Phillips' approach lends itself naturally to the case when
we have several heterogeneous sets of data, with each set
representing di�erent physical phenomena and having very
di�erent orders of magnitude, dimensional characteristics,
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and importance. It is very easy to accommodate this case
by extending Eq. 6c to

LP = �(�) +
JX

j=1

�jf(z�Aj�)
T (z �Aj�)� �2j g (10)

where J represents the number of data sets and Aj is the
appropriate matrix for each data set.

Stochastic Regularization

Stochastic regularization is another name for the minimum
mean square estimator of a parameter which has a Gaus-
sian distribution when the data is also Gaussian distributed.
As such, this estimation process is unrelated to regular-
ization. However, it is interesting to observe how we can
develop the approach starting from regularization. Follow-
ing Phillips' model of minimizing a penalty function, let
us set the penalty function equal to the mean square error
E[(� � �̂)T (� � �̂)]. It is well known that the optimal esti-
mator is the conditional mean of the parameter (Sorensen)

�̂ = E[�jz] (11)

If both the parameters and the data have a normal distri-
bution and are uncorrelated, then we obtain

�̂ =PAT��1
� z (12a)

where P is the covariance of the error given by

P =[��1
� +AT��1

� A]�1 (12b)

Comparing Eqs. 4a and 12b, we see that ��1
� plays the role

of �H and ��1
� that of W . If both covariances are constant

diagonal matrices, Eq. 12a can be written as

�̂sr = (
�2�
a

�2
�

I +ATA)�1ATz (13)

Comparing Eq. 13 with Eq. 4a, we see that Eq. 13 is a form
of generalized regularization and that �2�=�

2
� can be consid-

ered to be the equivalent regularization parameters, �sr .
Unfortunately in many cases, �� has o� diagonal elements
and this choice may not be optimal. Letting

a

� = E[�], �sr
minimizes

Lsr = (� �
a

�)T��1
�
(� �

a

�) + (z �A�)T��1
� (z �A�) (14)

Because of the similarity of Eq. 14 to the usual regular-
ization formulation, Eq. 3, and the relationship of �sr to
the statistical properties of the stochastic data and param-
eters, this subset of Bayesian estimation has been given the
misnomer of statistical regularization.

There is, however, a signi�cant di�erence between regu-
larization and statistical regularization. In the Tikhonov-
Phillips regularization, � is chosen to alleviate the instabil-
ity of an ill-posed problem, the ill-posedness existing irre-
spective of any noise in the data. In statistical regulariza-
tion, �sr is directly related to the ratio of the uncertainty
in the data to that in the parameter and as our uncertainty
of the parameter increases, i.e., as �� ! 1, �sr ! 0 and
the regularization term disappears. Since setting �� =1 is
equivalent to assuming that the parameter is deterministic,
but unknown (Sorensen), the disappearance of the regular-
ization term means that we must have some prior estimate
of � to use this approach. Statistical regularization has
been used extensively by Twomey, Strand and Westwater
and Turchin in determining the vertical temperature pro�le
in the earth's atmosphere. In this case, there are su�cient
data to provide reasonable estimates of �� to make the ap-
proach useful.

Extension to Uncertainty in the known Parameters

The only convenient way to incorporate uncertainty in the
known parameters is to extend statistical regularization. If
the sought after parameters, uncertain known parameters,
and � have Gaussian distributions, then the estimator sat-
is�es

�̂sre =��z�
�1
z z (15a)

where �z =E[�z�z
T ] (15b)

By linearizing we have

�z =
@F
a

@b
�b+

@F
a

@�
�� + �� (15c)

and evaluating ��z and �z we obtain (Fadale)

�̂sre =(�� +ATV �1A)ATV �1z (16a)

where the extended covariance matrix, V is

V =�� +
KX

k=1

@F
a

@bk
�bk

@F
a

@bk

T

(16b)

and we see that the e�ect of the uncertainty in b is to ex-
tend the de�nition of the variance of the measurement noise,
��. In most transient inverse heat transfer problems, it is
usual to consider �� to be constant in time. This is not
the case in this extended regularization because the sensi-
tivities, @F=@b, are invariably strong functions of time and
temperature, making V ,the e�ective noise, time dependent.
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Examples I

Consider an encapsulated microelectronic circuit (a die)
bonded to an alumina substrate with a contact resistance
Ro between the die and the substrate. A convective heat
transfer ho exists at the interface between the encapsulated
die and the ambient 
uid. When powered, the die gener-
ates heat which is conducted into the substrate or through
the cover to the ambient 
uid whose temperature remains
constant. We will determine Ro from the temperature mea-
sured at the surface of the die, T f . (The measured temper-
atures are simulated by adding uncorrelated, random noise,
with zero mean and a standard deviation of 1% of the max-
imum temperature of the chip)

We will examine two cases: 1) the lower surface of the sub-
strate is insulated; 2) the lower surface is maintained at the
ambient 
uid temperature. The properties of the di�erent
materials are taken from Pecht and Agarwal for an alumina
ceramic substrate (ks=25, �s=1.7 10 6) and a highly con-
ducting cover.

In calculating the contact resistance R we assume that the
convective coe�cient h is not precisely known but has an
uncertainty �h. Thus we solve for R by assuming di�erent
values of h. Figure 1 illustrates the values of R predicted
for 3 di�erent contact resistances de�ned in relation to the
resistance across the substrate, Rs, for two di�erent thermal
boundary conditions at the lower surface of the substrate.
For an insulated substrate, we see that for Ro/Rs equal to
0.1 and 10 that the predicted value of R is unacceptably
sensitive to our estimate of h and if there is any uncertainty
about the value of h we will make a serious error in our
estimate of R.

The reason for this unacceptable sensitivity can be under-
stood by examining the relation for the surface temperature
Tf which is given by

Tf = Qf=h (17)

where Qf is the heat transferred through the front surface.
For the properties used in this example, little heat is stored
in the encapsulating cover so that Qf is essentially the dif-
ference between the heat generated in the die, Q d, and that
which 
ows through the attachment to the substrate. When
R is small compared to Rs, the heat 
ow into the substrate
is essentially independent of R and thus Qf is also insen-
sitive to R. From Eq. 17, Tf is very sensitive to h, which
must be known precisely to extract the correct value of R.
When R is large in comparison to Rs, essentially no heat

ows into the substrate, all 
owing into the ambient 
uid
and again there is no sensitivity to R but a high sensitivity
to h. When R and Rs are approximately the same, then
the sensitivity of Qf to R is relatively high compared to

the sensitivity to h and the prediction is better, but still
not su�ciently independent of h to be acceptable.

When the surface of the substrate is maintained at a �xed
temperature, the heat 
ow into the substrate is much more
sensitive to R and the estimation of R becomes essentially
independent of the value of h.

Figure 2 illustrates the computation of R using �� and V . It
is clear that the extended method has succeeded in reducing
the dependence of the estimated R on our estimate of h.

Example II

For the second example let us estimate the conductivity of
a homogenous material. This will be done by sampling the
temperature of a one dimensional slab. The slab is of thick-
enss L=0.04m, has conductivity k = 1.0 W/(m-C) and vol-
umetric heat capacity �c = 1.0x106 J/(m3 -C). It is initially
at 0 temperature, has a convective heat transfer coe�cient
of h0 = 5W/(m2 -C) at x=0 and hL = 20W/(m2 -C) at
x= L, and is immersed in a 
uid of temperature 1000 at
time zero. The temperature is measured at a �xed location
at 10 equally spaced times over the duration of the experi-
ment. The experimental temperatures are taken to be the
analytical temperatures based upon a conductivity of k= 1
W/(m-C), corrupted by a Gaussian noise with zero mean
and a standard deviation, �n of 1 degree, which corresponds
to 0.1% of the maximum temperature. The heat transfer
coe�cient at x=L is distributed about the mean value hL
= 20 with a standard deviation of �h.

Measuring the temperature at x=L would normally be the
best since it has the greatest sensitivity to k. However, it is
precisely at x=L that h also has its greatest e�ect and the
uncertainty in h seriously degrades the information available
there. Figure 3 illustrates the result of estimating k using
T(L) and the extended method has not had any e�ect. If
one examines the information available, as measured by the
Fisher information matrix (Emery), the e�ect of the uncer-
tainty in h is to move the point of maximum information
from x=L to x=0. Figure 4 illustrates the result of using
T(0) to estimate k and here the extended estimator has re-
duced the dependence upon h; in this case almost totally
eliminating its e�ect.

Summary

The extended theory has been shown to be able to account
successfully for uncertainties in surface heat transfer coef-
�cients when estimating the conductivity and the contact
resistance. Although results are presented only for varia-
tions in h, we have found similar results for variations in

uid temperature, sensor locations, and other properties.
We thus conclude that this extended theory is applicable
in all cases in which some of the prescribed parameters,
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whether they be properties or boundary conditions, are un-
certain. However, the success is achieved only when the
sensor is placed at the position which is de�ned as optimal
by the corresponding extended Fisher Information Matrix.

An extended method cannot be developed starting from the
usual Tikhonov- Phillips regularization. However, since,
under the restrictions of linear estimators with Gaussian
distributions of noise and parameters, the stoch -astic and
Tikhonov-Phillips regularizations satisfy the same equations,
it is clear how to incorporate uncertainty in known param-
eters into the usual regularization by replacing �� by V.

References

Beck, J. V., Blackwell, B., St. Clair, C. R., Inverse Heat

Conduction, Wiley-Interscience Publ. New York, 1985

Bjorck, A., "Least Squares Methods," in Handbook of Nu-

merical Analysis,, (Ciarlet, P. G. and Lions, J. L., eds.)
Elsevier Science Publ., New York, 1990

Emery, A. F. and Fadale, T. D., "Design of Experiments
using Uncertainty Information," J. Heat Transfer, Trans.

of ASME, Vol 118, pp 532-538, 1996

Engl, H. W., Hanke, M., and Neubauer, A., Regularization
of Inverse Problems, Kluwer Academic Publishers, Norwell,
MA, 1996

Fadale, T. D., Nenarokomov, A. V. and Emery, A. F., 1995,
"Uncertainties in Parameter Estimation: The Inverse Prob-
lem," The International Journal of Heat and Mass Transfer,
38,(3), pp.511-518

Groetsch, C. W., The Theory of Tikhonov Regularization

for Fredholm Equations of the First Kind, Pitman, Boston,
1984

Hofmann, B., Regularization for Applied Inverse Ill-Posed

Problems, Teubner-Texte zur Mathematik, Band 85, 1985

Phillips, D. L., "A Technique for the Numerical Solution
of Certain Integral Equations of the First Kind," J. Assoc.
Comput. Mach., Vol. 9, pp 84- 97, 1962

Sorensen, H. W., Parameter Estimation: Principles and

Problems, Marcel Dekker, Inc. New York, 1980

Strand, O. N. and Westwater, E. R., "Statistical Estimation
of the Numerical Solution of a Fredholm Integral Equation
of the First Kind," J. Assoc. Comp. Mach., Vol. 15, pp
100-115, 1968

Twomey, S., "On the Numerical Solution of Fredholm In-
tegral Equations of the First Kind by the Inversion of the
Linear System Produced by Quadrature," J. Assoc. Comp.
Mach., Vol. 10, pp 97-101, 1963

Twomey, S., "The Application of Numerical Filtering to
the Solution of Integral Equations Encountered in Indirect
Sensing Measurement," J. Franklin Institute,, Vol. 279, pp
95-109, 1965

Twomey, S. and Howell, H. B., "A Discussion of Indirect
Sounding Methods," Monthly Weather Review,, Vol. 91, pp
659-664, 1963

Turchin, V. F. and Nozik, V. Z., "Statistical Regulariza-
tion of the Solution of Incorrectly Posed Problems,", Izv.,
Atmospheric and Oceanic Physics, Vol. 5, pp 29-38, 1969

Turchin, V. F., Malkevich, M. S., and Gorchakova, I. A.,
"The Use of Statistical Regularization in Determining the
Vertical Atmospheric Temperature Pro�le," Izv., Atmospheric

and Oceanic Physics, Vol. 5, pp 449-456 1969

Wark, D. Q., and Fleming, H. E., "Indirect Measurements
of Atmospheric Temperature Pro�les From Satellites, I. In-
troduction,"Monthly Weather Review, Vol. 94, pp 351-362,
1966

6



Figure 1: Estimated values of R based on 20
samples of Tf equally spaced in time over the
period 0:35 � Fo � 3:5 using ��

Figure 2: Estimated Values of R using �� and V
1% noise and 10% Uncertainty in h

Figure 3: Estimated Conductivity for a sensor at
x = L, for a Total Experiment Time (Fo) of 0.625),
0.1% noise and 10% Uncertainty in hL

Figure 4: Estimated Conductivity using for a sensor
at the Optimal Location, x = 0, for a Total Experiment
Time (Fo) of 0.625, 0.1% noise, 10% Uncertainty in hL

7


