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ABSTRACT
In IHCP solving one has very often to use mathematical

models approximately describing the real processes. On the
one hand, it may be caused by absence of just an exact model;
on the other hand, by conscious employing an insufficiently
adequate model, however, more suitable from problem
solution viewpoint. As an example, a problem of determining a
heat flux applied to the structure member surface made of a
material, the thermal properties of which greatly depend on
temperature can be considered. A linear model of the process
in this case is not quite adequate, however, it allows to
construct fast-acting algorithms. But the change-over to a
linear model is justified only in the case when solution errors
caused by this change-over have an acceptable value.

The paper proposes an algorithm construction method
stable to description errors. The essense is in the following: a
description error is conventionally represented in the form of
expansion by a certain system of basic functions, the first
expansion components included into a set of unknown
parameters. In addition, some a priori restrictions are imposed
on these components, which results in the extended problem
statement of Tikhonov two-parameter functional optimum
control. It has been shown that this approach is more effective
in comparison with a generalized residual principle and some
relative methods. The results of numerical simulation are
presented.

INTRODUCTION
In solving inverse heat conduction problems (IHCP) one

has very often to use mathematical models approximately
describing real processes.  It may be caused either by absence
of an exact model or a conscious change-over to a model
insufficiently adequate but, however, more suitable in a certain
sense. The paper considers a problem of determining a heat
flux applied to the flat plate surface possessing nonlinear
thermal properties. From the viewpoint of computational

expenditure it is convenient to replace a non-linear model by a
linear one but there arise some mathematical description errors
at that. An algorithm construction method stable to description
errors is given below. The essense of this method is in the
following; a description error is conventionally represented in
the form of expansion by a certain system of basic functions,
the first expansion components included into a set of unknown
parameters. In addition, some a priori restrictions are imposed
on these components, which results in the extended problem
statement of optimum control for the Tikhonov two-parameter
functional.

NOMENCLATURE
τ - time
x   - coordinate
b   - plate thickness
dt  -  time interval

( )T xτ,  - temperature

( )C T   - volumetric heat capacity

( )λ T   - thermal conductivity
k   - sensor number
xk - temperature sensor location coordinates

( )fk
∗ τ - temperature measurements

( )ξ τk - sensor measurement error.

PROBLEM STATEMENT AND SOLUTION
Consider a problem of IHCP useful for practical

applications that can be referred to the boundary-retrospective
statements according to classification (Alifanov, 1994). The
problem is in recovering the body temperature field in a
particular space-and-time domain by the results of temperature
measurements at finite number of points inside the body.
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Consider the following IHCP statement for infinite plate at
time interval :
( ) ( )( ) [ ] [ )C T T T T x b dx x tτ λ τ− = ∈ ∈0 0 0, , , , ,           (1)

( ) ( )T x T x0 0, = , ( ) ( )T Tτ τ,0 1= , ( )( ) ( )λ τ τT b T bx, , = 0 ,

( )x b∈ 0, , ( )τ ∈ 0,dt ,

(2) ( ) ( ) ( ) ( )T x f k N dk k k tτ ξ τ τ τ, , , , ,+ = = ∈∗ 1 0 ,

(3) It is necessary to determine functions ( )T x0  and ( )T x1

using the measurement data  ( )f k
∗ τ .

One of the most universal methods of nonlinear IHCP
solution is considered in (Alifanov, 1994; Alifanov et al.
1988). The method is based on gradient algorithms of non-
linear IHCP extremum statement optimization together with
the iterational regularization principle. Each iteration should
include both the numerical temperature field calculation and
the adjoint problems solution to determine a goal functional
gradient. Consider an approximate method of nonlinear IHCP
Solution (1)-(3) allowing to avoid an iteration procedure and
construct a temperature field observation algorithm in real or
close to real time (Artyukhin & Gejadze, 1998; Alifanov et al.
1999).

As a result of some transformations and change-over to
non-dimensional variables the initial problem (1)-(3) can be
given (with previous notations remained) in the form

( )( ) [ ] [ )R R C R R x dxx tτ τρ τ− = − − ∈ ∈~ , , , ,1 0 1 0             (4)

( ) ( )R x R x0 0, = , ( ) ( )R Rτ τ,0 1= , ( )Rx τ,1 0= ,

( )x ∈ 0 1, , ( )τ ∈ 0,dt ,                                                      (5)

( ) ( ) ( )R R xk k k
∗ = +τ τ ζ τ, ,

(6) where

( ) ( )R T T dT
T

= +1
0

ν λ ,  ( ) ( )( ) ( )ζ τ νλ τ ξ τk k kf≅ ∗ ,

( ) ( ) ( )~C R C R R= λ , ν ρ, -  certain constants. It is necessary

to determine ( )R x0  and ( )R1 τ  using measurement data

( )Rk
∗ τ .

Introduce the following function
( ) ( )( )Q x C R Rτ ρ τ, ~= −1

and rewrite (4) as
( )R R Q xxxτ τ− = − ,

(7) Adding equations (5)-(6) we receive a new IHCP
formulation where unknown functions are ( )R x0 , ( )R1 τ , as

well as ( )Q xτ, . These functions are to be determined using

observations ( )Rk
∗ τ . Thus on account of increasing a degree of

uncertainty the original inverse problem for the quasi-linear
heat conduction equation is reformulated into a problem for
homogeneous linear heat conduction equation with an extra

unknown value - distributed source. The idea of this
linearization is propoused by Boguslavsky (1994), when a
similar technique is used for linearization of equations of the
object and observation as applied to a dynamic system in a
state-space. Following the terminology (Boguslavsky, 1994),
regard ( )Q xτ,   as an uncertain perturbating function.

Since the original problem is ill-posed it should be solved
using some additional conditions. If to employ the
regularization method and impose some a priori restrictions on
the unknown functions, a set of quasi-solutions can be
obtained close to the unknown one in this or that sense, and
then among those quasi-solutions the best one in the meaning
of a desired criterion is to be chosen. Thus, for system (5)-(6),
(7) formulate the following optimum control problem:
functions ( )R x0 , ( )R1 τ , ( )Q xτ,  are to be found minimizing
the Tikhonov functional

( ) ( ) ( )( )
( ) ( ) ( )

J R x R d

R x R Q x

k k

dt

i

N

W W L

α θ τ τ τ

α τ θ τ

, ,

,

= − +

+ + +

∗

=
�

2

01

2
0

2
2

2
1

2
2

2 2
2

2
.

(8) With fixed values of  α  and θ  parameters there is the only
solution of the problem minimizing (8) (Tikhonov & Arsenin,
1977).

Reduce inverse problem (5)-(6), (7) to finite-dimensional
form. Temperature field ( )R xτ,  is a superposition of effects
of the boundary conditions and the right-hand side of equation
(7):
( ) ( )( ) ( )( ) ( )( )R x R x R x R x R R x Q xτ τ τ τ τ τ, ~ , , ~ , , ~ , , ,= + +1 0 2 1 3 .

Functions ( )( )~ , , ,R x f xi τ τ  represent a heat conduction

equation solution generated by one of functions ( )R x0 ,

( )R1 τ ,  ( )~ ,Q xτ  if the rest are equal to zero. Approximate the
unknown dependences by certain systems of basic functions:

( ) ( )R x xj j
j

n
0

1

1
=

=
β ϕ ,  ( ) ( )R j j

j

n
1

1

2
τ γ ψ τ=

=
,

( ) ( )Q x xj j
j

n
τ η φ τ, ,=

=1

3
,                                                     (9)

and also perform time discretization. The corresponding finite-
dimensional functional analog (8) can be written as

( )J Ap B z

Fp F

RmN

Rn n Rn

α θ η

α θ η

, � �
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= + − +
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2
1 2
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(10) where

i m= 1, ,  k N= 1, ,  [ ] [ ]� ,p n n T1 2+ = β γ ,  ( )z Ri k k i×
∗= τ ,
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( )( )
( )( )

A
R x x j n

R x n j n n
i k j

i k j

i k j
× =

≤ ≤

+ ≤ ≤ +
�

,

~ , , ,
~ , , ,

1
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1 1

1 1 1 2

τ ϕ

τ ψ τ
,

[ ]
[ ]F F

F

n n

n n= �
�

�
�

×

×
1

1 1

2
2 2
0

0
,

( )( )B R x x j ni k j i k j× = ≤ ≤,
~ , , , ,3 1 3τ φ τ ,

( ) ( ) ( )F F i j x xT
i j W1 1 1 1

2
2= =Φ Φ, , ,ϕ ϕ .

(11) Matrices F2  and F3  are defined in a similar way (11)
with the corresponding basic functions applied.

Compose a system of normal equations for problem (10)

( )
A A F F A B

B A B B F F
p A z

B z

T T T

T T T

T

T
+

+
�
�

�
�

�

�
�
�

�
�
�
=
�

�
�
�

�
�
�

α
αθ η

2

2
3 3

�

�
         (12)

and make use the lemma on inversion of block matrix. Since
vector η  is of auxiliary character, write an equation to
determine the basic solution component p :

( )( )Λ �p A z A B B B F F B zT T T T T= − +
−

αθ 2
3 3

1

(13) where matrix Λ   (the Schur complement) equals to

( )( )Λ = + − +
−

A A F F A B B B F F B AT T T T T Tα αθ2 2
3 3

1
.   (14)

Assume BF U S VB B B
T

3
1− =  to be a singular decomposition of

matrix BF3
1−  where U B , VB  are orthogonal matrices, and

{ }S diag sB B= . Taking this into account the equation (13)
becomes the following

( )Λ � ~ � ~p A U R U A F F p A U R U zT
B B

T T T
B B

T= + =2 2
1

2α           (15)

where

{ } ( ) ( )~ , ,
,

R diag R R s i n
Mn i n

i i B= = + ≤
≥ >�

αθ αθ 2 2 3
1 3

          (16)

Note that a system of normal equations (15) corresponds to
weighted problem of the least squares.
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ESTIMATION ERRORS AND NUMERICAL RESULTS
Now derive an expression for the estimation error. Let

ε = −�p p . With account of approximation (9) we have

z Ap B a= + + +η ζ ζ
(17) Here ζa  is an error emerging as a result of the series
truncation approximizing the boundary conditions and an
uncertain perturbating function. Assume  ζ ζa << . Substitute
(17) in (15). Then we can write the expression for error

( )A U R U A F F

F F p A U R U B A U R U

T
B B

T T

T T
B B

T T
B B

T

~

~ ~

2 2
1

2
1 1

2 2

+ =

= + +

α ε

α η ζ
.              (18)

Then make certain of those parameter values under which the
error ε  has an acceptable value. If can be seen that ε  consists
of three components: a bias error ε p , a random error εζ , and

an error εη  generated by uncertain perturbating vector η .

Write down equation for error εη :

( )Λε ηη = A U R U BT
B B

T~2 .

(19) Consider matrix U R U BB B
T~2 . With account of

BF U S VB B B
T

3
1− =  write

[ ]
[ ]U R U B U R S V FB B

T
B B

n n

Mn n B
T~ ~ ~

2 2
3 3

3 3
0

= �
�

�
�

×

−
.

With account of (16)
lim ~ , ~
θ

∂ ∂θ
→

= <
0

2 20 0U R U B U R U BB B
T

E B B
T

E
.

Therefore, with weighted parameter θ  decrease the norm
of right-hand side of problem (19) monotonously decreases
asymptotically tending to zero, i.e. uncertain perturbating
vector η  suppression occurs. But the other estimation error
components increase at that caused by Λ E  decrease. It is

true, first of all, for bias ε p , the value of which depends on θ

only via Λ−1 . The behaviour of random error εζ  is
determined by interaction of two opposite tendencies, namely:
the right-hand side norm decrease and Λ−1  operator norm
increase. Hence, it is possible to make a conclusion of this
approach acceptability in each particular case, first and
foremost, on the basis of numerical analysis of estimation error
components depending on α  and θ  parameters. Make similar
analysis for pure retrospective IHCP, i.e. such a problem
where the unknown is only the initial condition ( )R x0 . Take
eigenfunctions of operator Rxx  as  the basis:

( ) ( )R x p kxk
k

n
0

0
2=

=
cos π .

(20) Suppose interval dt  to be short and the uncertain
perturbating function depends mainly on the coordinate, i.e.
( ) ( )Q x Q xτ, ≈ . Then approximate ( )Q x  in the same basis,

i.e.

( ) ( )Q x kxk
k

n
=

=
2

0

3
η πcos .

(21) To make the results more instructive consider not ε p , εη
and ε p  which are vectors but some integral values. For



"Copyright (c) 1999 by ASME".4

example, for the bias characteristic caused by vector p  i-
component presence introduce coefficients K i1,  such as

( )2
00

1

1ε πp k
k

n
i ikx dx K p, ,cos

=
=

and for the estimation error component characteristic
generated by uncertain perturbating vector η  i-component
apply coefficients K i2,  such as

( )2
00

1

2ε π ηη, ,cosk
k

n
i ikx dx K

=
= .

For the random estimation error component characteristic use
coefficient K3  such as

( )2
1

3
0

1
ε π σζ, cosk

k

n

E

kx dx K
=

=

where

[ ]σ ζ ζ2 = M T .

The results of calculating coefficients lg ,K i1 , lg ,K i2 , K3
depending on lgθ  for different values of the regularization
parameter α  are shown in Fig.1,2,3. The j-curve corresponds
to value ( )lg .α = − + −4 0 1 3j . The observations were
supposed to take place at three points with coordinates

{ }xk = 0 2 0 6 10. , . , . , estimation interval dt = 0 08. ,
observation number within the interval m = 24 , approximation
orders n n= =3 8 .

Consider a specific example. Assume the unknown initial
distribution to contain only one expansion component (20)
with a number k = 1. Suppose α = 0 01. . This case
corresponds to curves in the charts indicated by number 7. As
seen in Fig.2, K3 1≅  i.e. the random estimation error
component has the order of instrumental error. With decrease
of weighted parameter θ  from 104  to 101  the bias increases
(Fig.1) twice as much, however, its absolute value does not

exceed a tenth portion of percent in the result. The effect of the
first four expansion components (21) of uncertain perturbating
function (Fig.3) decreases, approximately, in the following
proportion: 1/15, 1/9, 1/6. 1/3.

CONCLUSION
Thus, original IHCP (4)-(6) is nonlinear. We interprete it

as an inverse problem for a linear system having an extra input
( )Q xτ, . On account of including ( )Q xτ,  into the unknown

vector-function structure the estimation system is built, the
sensitivity of which for this input is controlled by parameter
θ . In a number of cases the ( )Q xτ,  effect upon the result can
be suppressed under the condition that the other estimation
error components are within the acceptable range.
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 Fig. 1. The gain factor K1 1,  (bias)  upon parameters
 θ  and α .

Fig.2. The gain factor K3  (random error)  upon
parameters θ  and α .
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Fig 3(a-d). The gain factors K2 0., , K2 1, , K2 2, , K2 3, (the error generated by uncertain perturbating vector) upon  the
parameters θ andα .


