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ABSTRACT

A new method for obtaining the optimal experimen-

tal/measurement procedure for general estimation problems is
proposed. This approach is based on the framework of the
Kalman �lter technique. The eigen values of a posteriori es-

timate error covariance matrix depend on measurement condi-
tions, such as geometries of specimens, structure of experimental
sets, locations of measurements and types of measurements. The

optimal measurement condition is obtained by minimizing the
maximum eigen value of a posteriori estimate error covariance
matrix. Candidates of measurement condition are �rstly put up,

and combinational optimization method is carried out. Some
examples are presented to demonstrate that the present method
could be utilized e�ectively for designing estimation system.

INTRODUCTION

Inverse Problems can be found in many topics of engi-

neering. Generally speaking, solution of an inverse problem

entails determining unknown causes based on observation

of their e�ects. Many researches have been done to over-

come ill-conditioned problems (Trujillo,1997) (Engl,1996)

(Hensel,1991).

However, not many researches have been done on a

guideline how to collect measurement data to relieve ill-

condition. For example, let's consider an inverse problem

of the nondistructive void location detection(see Figure 1).

Following questions would be arise.

� What kind of physical phenomena is the best to ap-

ply? (elasto-dynamics, elasto-statics, electricity, ther-

mal transfer, etc.)

� What kind of physical quantity is the best to mea-

Ultra sonic?
Heat and Temp.?
Force and Disp.?
Electricity?

Where is the best location?

Void

Figure 1. VARIETY OF MEASUREMENT SETTINGS

sure? (displacement, strain, force, acceleration, poten-

tial, current, temperature, etc.)

� Where is the best location for measurement?

� When is the best timing for measurement?

In this paper, a new method for obtaining the optimal

measurement condition for general estimation problems

is proposed. Some examples are presented to demonstrate

that the present method could be utilized e�ectively for

designing estimation system.
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THEORETICAL GROUNDWORK

Generally, the discretized inverse problem can be rep-

resented as following formula,

y = h(x) +w (1)

where, y is the m dimensional observation vector, x is the

n dimensional vector to be estimated, h is the non-linear

m dimensional function which represents the problem. The

random variable w represent the measurement noise. It is

assumed to be independent, white, and with normal prob-

ability distribution

p(w) = N( �w;W ): (2)

We de�ne �x to be our a priori estimate before observing

any data, and x̂ to be our a posteriori estimate after given

measurement. We can then de�ne a priori and a posteriori

estimate errors as

�e � x� �x (3)

ê � x� x̂ (4)

The a priori estimate error covariance M is then

M = E[ �e �et]: (5)

The a priori probability density function of x is

p1(x) =
1p

(2�)3jM j
exp

n
�
1

2
(x� �x)tM�1(x� �x)

o
: (6)

The probability density function of w is

p2(w) =
1p

(2�)njW j
exp

n
�
1

2
(w � �w)tW�1(w � �w)

o
: (7)

The conditional probability of y given x is

p2(yjx) =
1p

(2�)njW j
�

exp

�
�1

2
(y � h(x)� �w)tW�1(y � h(x)� �w)

�
:(8)

The probability of y is

p3(y) =
1p

(2�)njW +HMHtj
�

exp

�
�1

2
(y � �y)t(W +HMH

t)�1(y � �y)

�
; (9)

where H is the Jacobian matrix of h() which is given as the

following(Arimoto,1992),

Hij =
@hi

@xj

���
x=~x

(10)

Applying the following Bayes theorem:

p(xjy) = p1(x)p2(yjx)
p3(y)

; (11)

the conditional probability of x given y is

p(xjy) =
1p

(2�)2jP j
exp

n
�
1

2
(x� x̂)tP�1(x� x̂)

o
; (12)

where P and x̂ are given as the following (Arimoto,1992)

x̂ = �x+ PH
t
W
�1(�y � h(~x)� �w) (13)

P = (M�1 +H
t
W
�1
H)�1 (14)

Therefore, the a posteriori estimate error covariance is

P � E[ ê êt] = (M�1 +H
t
W
�1
H)�1: (15)

OPTIMIZATION OF MEASUREMENT

In order to express the function h() depends on the

measurement condition explicitly, let's represent eqn.(1) as

the following,

y = hM(x) +wM (16)

where M is conceptual notation for the measurement con-

dition. Equation (15) also expressed with this notation.

PM � E[ êM êM
t] = (M�1 +H

t
MW

�1
M
HM)�1: (17)

where the subscript M denotes that the value depend on

the measurement condition.

Our problem here is to �nd the best measurement con-

dition which gives the most accurate estimation in the in-

verse problem. The accuracy of the estimation can be in-

dicated with the error covariance PM. Figure 2 shows the

visible meaning of PM in two dimensional estimate space,

where �1 and �2 are the eigen values of PM. The smaller
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Figure 2. PROBABILITY DENSITY FUNCTION FOR ESTIMATES X

the eigen values �i become, the more accurate the estima-

tion becomes. Therefore, our problem reduced to solving

the following combinational/discrete optimization problem

min
arg=M

((�max(PM))2) (M� U) (18)

where �max(P ) is the maximum eigen value of P , U is the

universal set consists of all candidates of measurement con-

dition. Above optimization problem can be solved with

several method such as genetic algorithm, integer program-

ming.

APPLICATION FOR DYNAMIC SYSTEM

In this section, we consider the application for dynamic

data collection. In this case, present method is very suit-

able to Kalman �lter algorithm(Kalman,1960) (Gelb,1974).

Let us assume that our process has a state vector x and the

process is now governed by the stochastic di�erence equa-

tion

xk+1 = fk(xk) + vk: (19)

where the random variable vk represent the process noise.

The non-linear function f(�) relates the state at time step

k to the state at step k + 1.

The Kalman �lter estimates a process by using a form

of feedback control: the �lter estimates the process state at

some time and then obtains feedback in the form of (noisy)

measurements. As such, the equations for the Kalman �lter

fall into two groups: time update equations and measure-

ment update equations.

The time update equations are responsible for project-

ing forward (in time) the current state and error covariance

Time update
("Predict")

Measurement update
("Correct")

Figure 3. THE ONGOING DISCRETE KALMAN FILTER CYCLE

estimates to obtain the a priori estimates for the next time

step. The measurement update equations are responsible

for the feedback i.e. for incorporating a new measurement

into the a priori estimate to obtain an improved a posteriori

estimate.

The time update equations can also be thought of as

predictor equations, while the measurement update equa-

tions can be thought of as corrector equations. Indeed the

�nal estimation algorithm resembles that of a predictor-

corrector algorithm for solving numerical problems as shown

in Figure 3.

The speci�c equations for the time updates are pre-

sented below.

�xk+1 = fk(x̂k) + �v (20)

Mk+1 = FkPkF
t
k + Vk (21)

where Fk = @fk=@x . The speci�c equations for the mea-

surement updates are presented below.

Kk = MkH
t
k(HkMkH

t
k +Wk)

�1 (22)

Pk = (I �KkHk)Mk (23)

x̂k = �xk +Kk(yk � hk(�xk)) (24)

Again notice how the time update equations in eqn.(20) and

(21) project the state and covariance estimates from time

step k to step k+1.

The �rst task during the measurement update is to

compute the Kalman gain, Kk. The next step is to actually

measure the process to obtain yk , and then to generate an

a posteriori state estimate by incorporating the measure-

ment as in (24). The �nal step is to obtain an a posteriori

error covariance estimate via (23).

After each time and measurement update pair, the pro-

cess is repeated with the previous a posteriori estimates

used to project or predict the new a priori estimates. This

3 Copyright c
 1999 by ASME



Time update
("Predict")

Measurement update
("Correct")

Optimization of 
measurement
("Search")

Figure 4. IMPLEMENTATION OF MEASUREMENT OPTIMIZATION TO

KALMAN FILTER CYCLE

recursive nature is one of the very appealing features of the

Kalman �lter it makes practical implementations much fea-

sible.

In our aproach, we consider to optimize the measure-

ment condition for each time step k. Eqn. 22 and 23 can be

represent as the following to show that these matrix depend

on measurement condition:

KMk = MkH
t
Mk(HMkMkH

t
Mk +WMk)

�1 (25)

PMk = (I �KMkHMk)Mk (26)

Di�erent PMk will be calculated for each di�erent obeserva-

tion condition, and each PMk has di�erent values of eigen

values. In order to get the optimum measurement condi-

tion, the followinig optimization problem will be solved:

min
arg=M

((�max(PMk))
2) (M� U): (27)

After getting the optimum mesurement condition hOk(�) ,
where O is the supscript for optimum solution, the mea-

surement process to obtain yk is performed. The equation

to generate an a posteriori state estimate is:

x̂k = �xk +KOk(yOk � hOk(�xki)) (28)

The numerical algorithm which implements the optimiza-

tion of measurement condition can be shown as Figure 4

EXAMPLE ANALYSIS

Estimation of Gurson's material parameters

In this section, measurement for estimation of Gurson's

material parameters will be optimized. Gurson's constitu-

tive model has been widely used for studying ductile frac-

ture as well (Gurson,1977). Accurate determination of their

parameters is important since incorrect values will lead to

erroneous results in simulation analyses.(Aoki,1997)

The 
ow potential of this Gurson's material is expressed

as,

� =
�
2
e

�
2
+ 2fcosh

�
3�h

2�2

�
� (1 + f)2 = 0 (29)

Here �e is the e�ective stress, �h is the hydrostatic stress,

� is the current tensile 
ow stress of the matrix material,

f is the void volume fraction. The void volume fraction

f increases by void nucleation as well as void coalescence

or growth. The rate of increase can be decomposed as
_f = _fnucl + _fgrow. Here _( ) represents the time derivative.

The second term in the RHS of the above equation repre-

sents the increase of the void volume fraction due to plastic

deformation and it can be derived as _fgrow = (1 � f)D
p

kk
,

where D
p

kk
denotes the plastic part of the rate of defor-

mation tensor relating to dilatational change of the porous

medium. The rate of void volume increase due to nucleation

is also estimated as

_fnucleation = A _"pm (30)

where

A =
fN

sN

p
2�

exp

�
� ("pm � "N )

2

2s2N

�
: (31)

In the procedure, we assign x � (fN ; "N ; SN )
t to be the

vector containing the unknown parameters.

Following items are considered for the measurement

condition.

� Specimen geometry: smooth bar type or notched bar

type.

� Types of measurements: strain, load or displacements.

� Location of measurement

� Timing of measurement: initial state or latter state (See

Figure 7).

For the specimen models, smooth bar type and notched

bar type, as shown in Figure 5, are considered. In our

method, the required quantities are the matrix relating to

the measurement error WM the initial estimate �x, the ini-

tial covariant matrix M , and the calculated derivative HM
for all candidates of measurement condition. FEM Analysis

was performed to get HM as the following:

HMij �
@hMi

@xj

���
x=�x

� hMi(�x+�x)� hMi(�x)

�xj
(32)
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specimen A specimen B

12mm

1.5mm 6mm 6mmf φ

φ

Figure 5. GEOMETRY OF SPECIMEN

where, �x = (fn; "N ; SN ) = (0:05; 0:1; 0:1) and �x1 =

�fn = 0:005, �x2 = �"N = 0:01, �x2 = �xN = 0:01.

The material constants are chosen as E = 207[GPa] and

� = 0:333 in the constitutive equation.

The FEM mesh is shown in Figure 6 with candidates

of measurement locations on. The number of possible mea-

surements is 224 which are combinations of geometory of

specimen, measurement type, location and timing. Note

that the number of elements in U in eqn.(18) is 224Cm,

where m is the number of allowed measurement.

Measurement errors which relate to WM are set as the

following:

Displacement: � = 5[�m]

Strain: � = 1% of actual value

Load: � = 10[kg]
where � is the standard deviation of the error. The optimum

condition was obtained by making a thorough search for this

example.

Figure 8 shows the estimation error for each allowed

number of measurement. The dashed line is a result using

only specimen A (notched bar), chained line is a result using

only specimen B (smooth bar) and solid line is a result

using both specimens. It is seen that the estimation error

decreased as many measurements are allowd. In order to

achieve an error less than 5%, more than 10 measurements

are required.

Table 1 shows the best ranking of selected measure-

ments, where A,B,C and D on the location column indi-

cates the location of measurements which is shown in Fig-

ure 9. For example, if only 4 measurements are allowed, the

combination of top 4 measurements on this table give the

minimun estimation error.

Figure 6. FEM MESH AND MEASUREMENT LOCATIONS
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Figure 7. TWO KINDS OF LOAD CONDITION
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Figure 9. OPTIMIZED MEASUREMENT LOCATION (NOTCHED BAR
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Table 1. BEST RANKING OF MEASUREMENTS

Ranking Type Load Specimen Location

1 "� 15.5KN smooth C

2 "� 15.0KN smooth C

3 "z 12.0KN(2nd) notched B

4 "z 15.0KN smooth C

5 "� 12.0KN(2nd) notched B

6 "� 12.0KN(1st) notched B

7 "z 15.5KN smooth C

8 "z 12.0KN(1st) notched B

9 uz 12.0KN(2st) notched B

10 uz 15.0KN smooth D

11 uz 15.5KN smooth D

12 ur 12.0KN(1st) notched A

13 uz 12.0KN(1st) notched B

14 ur 15.0KN smooth C

15 ur 15.5KN smooth C

16 ur 12.0KN(2nd) notched A

17 ur 12.0KN(2nd) notched B

18 ur 12.0KN(1st) notched B

CONCLUSION

In this paper a new method for obtaining the optimal

experimental/measurement procedure for general estima-

tion problems is proposed. This approach is based on a

framework of the Kalman �lter technique. The eigen values

of a posteriori estimate error covariance matrix depend on

measurement conditions, such as geometries of specimens,

structure of experimental sets, locations of measurements

and types of measurements. The optimal measurement con-

dition is obtained by minimizing the maximum eigen value

of a posteriori estimate error covariance matrix. Candidates

of measurement condition are �rstly put up, and combina-

tional optimization method is carried out. Some examples

are presented to demonstrate that the present method could

be utilized e�ectively for designing estimation system.
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