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ABSTRACT finite element method combined with the dynamic data system

In this work, the problems in the identification of the to identify the joint properties of machine tool. However, the
parameters of mechanical joint directly from the measured method required the mass, damping and stiffness matrices to

f f . FRF t th form the mathematical model of the whole structure. The
requency response functions ( s) of the structure were method proposed by Tsai and Chou (1988) used the measured

discussed. The problems include the problem of measurementrequency response functions (FRFs) of the substructures and
noise, the problem of using the least squares method and thevhole structure to extract the joint properties. The method is

problem due to the characteristics of the structure itself. The Very simple; however, it is too sensitive to measurement error or
causes of the problems and the associated solutions werdoise. There are many advantages to use the measured FRFs to

di d by th tical d . al | Th extract the joint parameters. However, if the measured FRFs
Iscussed by iheoretical an exper.lme.na exampgs. e.are used to extract the joint parameters, the unavoidable
results show that the measurement noise in the FRFs is the basig,easurement noise in the FRFs could be the biggest trouble,

problem in identification; however, the severity of the noise (Juang and Pappa, 1986; Ren and Beard, 1993; Wang and Liou,

problems is magnified by the other problems. 1990, 1991, 1993).
Although in the past some methods have beepgsed to
INTRODUCTION minimize the noise effect, it is found that, with the same noise

The most troublesome problem encountered in the level, the accuracy of the identified result is very structure
dynamic simulation of a real mechanical system is the difficulty dependent. In other words, in order to improve the accuracy of
of knowing the accurate system parameters. A real mechanicaidentification, one could not consider the noise effect only. In
system usually consists of many components which are this work, the problems and solutions in the identification of the
connected together through different joints. The dynamic joint parameters were discussed. The accuracy and feasibility of
properties of the joints generally are very difficult to know by the proposed solutions were verified theoretically and
theoretical methods. Therefore, the experimental identification experimentally.
method becomes an important approach to find the joint
properties. THEORETICAL FORMULATION

In the past, great efforts have been made in the field of A mechanical structure usually consists of many
parameter identification. Some of the identification methods components which are connected together by different joints.
were developed to identify the dynamic parameter of the whole Therefore, the whole structure can be divided into two
structure (Fritzen, 1986; Mottershead and Stanway, 1986; substructures from the joint to be identified. It is assumed that
Wang, 1988), some other methods were especially developedthe dynamic behavior of the joint can be modeled as linear
for the identification of joint parameters (Yoshimura, 1977, spring and damper elements, as shown in Fig.1. The objective
1979; Yuan and Wu, 1985; Tsai and Chou, 1988). Yoshimura Of the parameter identification is to extract the joint parameters
(1977, 1979) proposed an iterative method to identify the joint experimentally from the frequency response functions (FRFs) of
properties, but the method required considerable computer timethe whole structure and the substructures.
due to the iterative procedure. Yuan and Wu (1985) used the

1 Copyright © 1999 by ASME



With the definition of FRFs, the relation between the ki
displacement vectors and force vectors of substructures 1 and 2
(see Fig. 1), cab be expressed as,
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Fig.1 Two substructures connected by joint elements
where {X3} and {X,} represent the displacement vectors on the k andd.
1 [

joint interfaces of substructures 1 and 2 respectively, as shown
in Fig. 1; {Xg and {X.} represent the displacement vector on
all other regions except the joint interfaces of substructures 1

and 2. The vectors {J, and {R} represent the external force OAXJ 0 OH L [HLL[HG][HLMEY, O
vectors acting on the substructure 1, while the vectafs gnd %

{Fc}. represent the external force vectors acting on the HX }H Hae] [H ][Hab] [Hac] F }1H
substructure 2. The internal force vectors of the joint are b}D OH el [He ], [Hu LIH JEH Fo} o
represented by {F, and {F}, , and they are equal in

magnitude, but opposite in direction, i.e., axc}a ﬁHce],[Hca],[ch],[H ] FC}Z E

(5)
{Fi}a=-{Fj}2 ®3) o
From the method of substructure synthesis, it can be proved
The displ t t f the ioint interf lated to(Wang and Liou, 1990) that the_; FRFs of the whole structure in
e displacement vectors of the joint interfaces are relate Eq. (5) can be expressed in terms of the FRFs of the

the joint f by, . -~ .
© joint force by, substructures and the joint matrixJih Eq. (4). For instance,

) X =i KF 1 @ [Heel = [Heel1 ~[Mea 1l Hp] ™ Haels (62)
with [Haal =[Haali ~[HaalilHe] ' THaals (6b)
[H;1=[P]7" [Hpal =[Hppl2[Hp] THaal1 (6¢c)
0k, + .0, o o '
0K, e o £ with
: . [H]=[Haal1 +[ ool +[H)] ™
%) .............................. K, +jad, O

Equation (6) contains three different matrices, i.e., the FRFs of

C_ : substructures, FRFs of the whole structure, and the joint matrix
where j =v-1 and K, k, ...k, d, d;...dh are the spring and [H;]. Therefore, if the FRFs of the substructures and the whole
structure are known by experimental measurement, then the
only unknowns in Eq. (6) are the joint parameters ig. [H
Theoretically, the joint parameters inJidan easily be obtained
from Eq.(6), provided that the FRFs are known. In practice, it
is very difficult to obtain the correct parameters from Eq. (6)
because many inverse operations on the matrices should be
taken. A small error in the matrices can cause the result to be
faulty For instance, one can derived the unknown matsix [H
—[P] directly from Eq. (6¢) as (Tsai and Chou, 1988),

damping coefficients of the joint, as shown in Fig. 1.

If the whole structure is considered, the relation between the
displacement vector and the external force vector can be
expressed as,

[Pi1=[Haal "[Hpl[Haal ™ (8)
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with deflection between the joint interfaces “a” and “b” when an
external force is applied at joint interface “a”. This can be
[HD] = (([Haa]l _[Haa])—l explained by examining 'the relation in Eqg.(5). If only the
o il external force {g}, is applied to the whole structure, then from
—[Hali ((Haals +[He1)Ha]0) Eq.(5) one can obtain,

{Xa} =[Haal{ Fa}1 (10)
Although Eg.(8) is very complicated, if all the FRFs are exactly { Xp} =[Hpa{ Fa}1 (11)
correct, the joint parameters can exactly be obtained from Eq.
(8) because there is no approximation in deriving Eq.(8). In From Egs. (10) and (11) one can obtain
practice, the measured FRFs can't be free from noise or error.
A small noise in the FRFs may cause the identified results to {Xp} ={Xa} = (Hpal ~-[HaaD{Fa}1 (12)
deviate from the correct values drastically because there are too

many inverse operations on the FRF matrices. In the past, manyrrom Eq.(12) one can explain the reason why the accuracy of
efforts have been done by many researches in different ways inidentification by using Eq.(9) is structure dependent. Fig. 2
order to obtain the accurate parameters from Eq. (8) or othershows two different structures containing the same joint
similar equations. In order to reduce the number of inverse element. The first structure consists of two long and slender
operation on the matrices, Wang and Liou (1990) developed aheams while the second structure consists of two short beams.

new identification formula from Egs. (6b) and (6c) as, Assume that the stiffness of the joint, i.e., the “k” in Fig. 2, is
very high relative to the bending stiffness of the slender beams.
[P;]=-([Haal1 +[be]2)_l One can expect that the relative deflection between the joint
a4 C) interfaces , i.e., {{-{X 4, of structure 1 may be smaller than
([Haal1 +[Hpal ~[Haal) ([Hpal ~[Haal) that of structure 2 in most low frequency ranges. According to

the relation of Eq.(12), the difference [i}H[H ] may be very
It has been demonstrated that Eq. (9) is less sensitive to noisemall for structure 1. As a result, if the f§} and [H . of
than Eq. (8). However, our experiences show that the accuracystructure 1 are polluted by noise, then the differencg/{#l ]
of the identified result by using Eq. (9) is structure dependent. js dominated by noise. From the above discussion one can
In other words, noise is not the only consideration in improving expect that the joint parameter can be identified more accurately
the accuracy of identification. Some other problems in from structure 2 than from structure 1 provided that the absolute
identification should be considered, as discussed in whatnpjse level in the FRFs is the same for both structures. In the

follows. next section we will give an example to demonstrate that the
accuracy of identification can be improved by modifying the
PROBLEMS IN PARAMETER IDENTIFICATION test structure properly.

~As mentioned, if the FRFs in Eq. (9) are exactly correct,  Another problem in using FRFs to identify the joint
the joint parameters can be exactly identified by Eq. (9) becauseparameter is caused by the order of magnitude of the FRFs. A
there is no approximation in deriving Eq. (9). However, typical FRF is shown in Fig. 3. One can find that the orders of

measurement noise is unavoidable in practice. A small noisemagnitude vary drastically with frequencies. Becaugki§Pa
level, for instance 2% random noise, may cause the error of thediagonal matrix, as derived in Appendix, Eq.(9) can be

identified result to be hlgher than 100% in some structures. As arranged as a set of linear equations as,

to the question why a small noise level may cause the result to

be drastically faulty? This question has been discussed by [Qlnxn{ P} rxt ={U} pt (13)
Wang and Liou (1991) from the mathematical point of view.

There are two inverse operations on the FRF matrices in Eq.\yhere {P} contains the joint parameters to be identified, i.e.,
(9), the FRF matrices may become ill-condition in some

frequency ranges. It is well known that a small perturbation on Oy + jeady O

an ill-conditioned matrix may cause the inverse matrix to Q<l+jadl§
deviate from the exact value drastically. The concept of {P}..4 =0 27 %2
condition number of a matrix has been proposed (Wang and O 3 a
Liou, 1993) to eliminate the FRF data in the ill-conditioned Ekn + jadn 5
matrices.  Although the concept of condition number can

improve the accuracy of identification, the experiences show

that the accuracy is structure dependent. That means the ill-

condition is not the only problem in using Eq. (9). The term

(Hed-Hal) in EQ.(9) represents physically the relative
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Note that the matrix [Q] and vector {U} are derived from the Freauencv (Hz)

FRFs matrices. So, [Q] and {U} are function of frequency. If

the joint parameters are frequency independent, then the joint

parameters can be obtained from Eq. (13) by direct matrix Fig.3 Atypical FRF of structure.

inversion. However, in practice, in order to reduce the effect of

random noise, the data of FRFs at many frequencies should be

used. For instance, if the FRFs are known at some discretemethod. This will be explained in what follows. As mentioned,
frequenciES,M, Wy W, then for each frequency one can the order of magnitude of the FRFs vary drastica”y with

have a set of n simultaneous equations like Eq. (13), i.e., frequencies, so are the matrix [Q] and vector {U} in Eq.(14).
In other words, the coefficients of the linear simultaneous
equations in Eq.(14) vary drastically with frequencies. The
() S 0 O U (a) O coefficients of some equations are very large while the
SQ(%)D %3% - %J(wz)a (14) coefficients of some other equations are very small. The
5 : 5 H a 0 0 following simultaneous equations are a typical example.
FRA(@Wn) By (@, B 90000 + 7000y = 76000 (17a)
. 0.1x+2y =-39 (17b)
or in compact form as,
0.3x+0.1y=1 (17¢c)
[Q] mnxn{p}nxl = {Q}rmxl (15) 72500x + 8500y = 555000 (17d)
- 2x-01y =22 (17e)
The overdetermined equations can then be solved by the least
squares method as, One can obtain the unknowns x, y by solving any two equations
as x=10, y=-20. If the coefficients are now perturbed by
T R random noise, and the least squares method is used to solve the
i] UE U (16) overdetermined equations. Then , one can find that the solution

is mainly determined by Egs.(17a) and (17d), the other

equations have very little effect on the solution. Eq.(14) has the
same problem.  The unknown parameters are actually
determined only by some equations with large coefficients. As

a result, the number of effective equations could be only

somewhat larger than the number of unknows. That is the
reason why the random noise can’t be smoothed by the least
squares method because from statistical point of view the
number of the effective equations is not enough. In order to

overcome this problem, a normalized procedure is proposed in
this work. Eq.(13) is normalized by a matrix [W\gs,

Theoretically, if the number of equations is larger than the
number of unknowns, i.e., mn>>n, then the least squares
method can effectively smooth the random noise in the
equations. For instance, the FRFs are generally measured by
spectrum analyzer with 800 lines resolution. In other words, the
number of min Eqg.(15) can be as large as 800. However, our
experiences by theoretical simulation show that the random
noise in the FRFs can't be effectively smoothed by using
Eq.(16) even though the number of equations is two orders
higher than the number of unknows. Some efforts have been
made to understand the reason why a random noise in the FRFs

-1 )
can't be effectively smoothed by the least squares W] TQI{ P} =[W] “{U} (18)
where
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W =(g% +q5 +...g2)"%,i=12,..n. Table 1 Geometry and material data of the simulation

example.
The normalized equation was then used to form Eq.(14). After
the normalization, the difference of the orders of magnitude of| {m | B(m) | h(m) | B(N/m?) jp(kgrne)| o | B | Noise Level
the coefficients between equations is reduced. Then, the leagt0.06 | 0.04 | 0.003 | 21x10™ | 7850 |0.03 | 4x10° 5%
squares solution (i.e., Eq. (16)) is meaningful from the
statistical point of view. In the next section, an example will be

given to demonstrate the proposed method. used only to generate the FRFs. If the joint parameters are
identified by experimental method, one does not need the
RESULTS OF NUMERICAL SIMULATION equation of maotion of the structure. The main purpose of this

Because measurement noise is always unavoidable inexample is to demonstrate that if the stiffness of the joints is
practice, in the following simulation, noise was added to the relaively higher than the bending stiffness of the beams, the
FRFs to simulate the practical situation. A random noise with properties of the joints can't be identified accurately by the
Gaussian distribution (zero mean, variam:fg) was added to method (Wang and Liou,_1990) without the p_re-normalization

of the FRFs. The maximum frequency of interest and the
frequency resolution were set to be 2000Hz and 5Hz,
respectively. The joint stiffness was assumed to be
k;=5x10°N/m, k= 1x10'N/m, which was very stiff relative to

the FRFs to simulate the measurement noise. jftyH
represents the FRF between ttteandjth degrees of freedom
of a structure, then the noise level E is defined as,

E2 = Uﬁ (19) the bending stiffness of the beam. According to Eq.(14), the
‘H-- (w)‘Z number of frequencies which can be used is 400=2000Hz/5Hz.,
! max i.e., m=400 in Eq.(14). Because there are only two complex

where |H;j(0W)|ma represents the maximum absolute value of parameters to be identified, i.e.;tkod;, and ktjwd,, the

Hi(w) in the frequency range of interest. If a noise level is number of equations is far higher than that of unknows. So, the
given, then a set of random number with Gaussian distribution least squares method (i.e., Eq.(16)) was used to smooth the
can be generated by a computer program. Note that the FRF isandom noise. The identified result is shown in Table 2. One
complex, the random noise should be added to the real andcan find that the result is very poor and unreasonable; for

imaginary parts of the FRF, respectively. instance the kvalue become negative. The reason for this
The first simulated structure consists of two beams unacceptable result is due to the fact that the value gf-[H
connected together by two linear joints, as shown in Fig. 4. The [H4] in Eqg.(9) is mainly dominated by noise because of the
whole structure was approximated by finite beam elements. high stiffness of the joints. If the joint stiffness is not too high
The geometry and material data of the structure is given in in comparison with the stiffness of the structure, the parameters

Table 1. Note that a structural damping with proportional form, can be identified accurately by using Eq.(16). An example is

D=aM+BK, was used to simulate the damping capability of the given in Table 3. In this example, the structure and noise level

beams. If the joint parameters k,, d;, and d are given, then are the same as that of Table 2 except that the stiffness and

the equation of motion of the whole structure and the damping of the joints are reduced to heck, = 5x10°N/m and

substructures can be known. Note that the equation of motion isd;=d,=75N's/m. One can see that the joint parameters can be
accurately identified even the FRFs are polluted with high noise
level, i.e., 5%.
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Table 2 Identified result by traditional method.

substructure 1 and the joints, and can be considered as rigid in
the frequency range of interest.

Properties| Parameters | Exact Value Identified  |Error(%)
Values
Stiffness ki 5,000,000 “edpee ~1005 Table 4 Identified accuracy is improved by the proposed
(N/m) k, 10,000,000 43957 -99.6 pre-normalization method. (in comparison with
Damping d, 200 0.05 -99.9 Table 2)
(N-s/m) d, 300 022 ~100.1
Properties | Parameters | Exact value Identified  |Error(%)
- L . Values
Table 3 Identified accuracy is improved by reducing Stiffness K 5.000.000 16717 597
the relative stiffness of the joints. (N/m) K 70,000,000 S9TLTT 106
Properties| Parameters | Exact value Identified  |Error(%) Damping 9 200 289 4.3
Values (N-s/m) d, 300 366 221
Stiffness k 500,000 466400 -6.7
(N/m) k, 500,000 488580 23
Damping a ¥6) 7.8 3.7
(N-s/m) d, 7 726 32 | |

As discussed, the problem caused by too low relative deflection
between the joint interfaces can be overcome by modifying the
structure and by the method of pre-normalization of the FRFs.
In the following example, the proposed normalization method is
used to improve the accuracy of identification. The structure,
joint parameters and noise level are the same as that of Table
The [Q] matrix in Eg.(13) was first normalized according

Eq.(18), and then the normalized [Q] was used to form the
overdetermined set of equations. The overdetermined equations
were then solved by Eq.(16). The number of discrete
frequencies i.e., m, in EQ.(14) is 400=2000Hz/5Hz. The
identified result is shown in Table 4. The accuracy of the result
is significantly improved in comparison with that of Table 2.

Note that the normalization process can only increase the
number of “effective” equations in the set of Eqg. (14), and as a
result, improve the effectiveness of the least squares method

izati ' the fact that the matrix . S . : . .
The normalization can't change the fac a ° ma interfaces of Fig.4 is immersed in the noise while that of Fig. 5

difference [Hg]- [Hal is still dominated by noise. This is the . .
reason why the result of Table 4 still has significant error. We is only perturbed by noise. Th? rgsult demonstra'tes' Fhat the
accuracy of parameter identification can be significantly

believe that if the condition of the test structure is not modified, . d b ; v modifvina the dvnamic conditions
the joint parameters can not be identified with reasonable Improve y properly modifying the dy

accuracy no matter what kind of identification algorithm is (includes the boundary condition, the stiffness, the mass, et. al.)

applied.  Therefore, in the following example, we will of the structure.

demonstrate that the accuracy of identification can be improved The regults of the 5|r'nulat'e.d e'xamples clearly |nqllqate the
by properly modifying the structure. The purpose of the problems in parameter identification of mechanical joints by

modification is to increase the relative deflection between the tUS'tr;]g the ?Otl)Teer-r::gnﬁirrt]r:gargiitlzszlzﬁoini;h:xasesrm:lear:tesl Z)?;Jrgores
joint interfaces in the frequency range of interest so that the 0 these pro » L ' P P
difference, [HJ- [Ha], would not be dominated by noise. The will be given to verify the feasibility of the proposed methods.

general rule to achieve this aim is to increase the stiffness of the
structure. Therefore, the simplest way to modify the structure
of Fig. 4 is to fix the substructure 2 completely. The modified
model is shown in Fig. 5. Although, in practice, it is impossible
to fix a structure completely, the model of Fig. 5 means that the
stiffness of the substructure 2 is very high in comparison with

il

2Fig.5 Model of Fig.4 with completely fixed
' substructure 2.

The result of identification with the model of Fig.5 is shown

in Table 5. Note that the normalization process was also
applied in the identification process. One can see that the result
is improved significantly in comparison with the result of Table
4. The reason for this improvement is that the information of
the deformation at the joint interfaces can be “observed” more
clearly by the FRFs so that the effect of noise can be reduced.
n other words, the information of the deformation at the joint

EXPERIMENTAL RESULTS AND DISCUSSIONS
Test Sructure

In this section, the test structure will be described first, and
then the experimental result will be discussed. Because the data
need by the proposed method are the FRFs, the measurement
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instrumentation is very simple. It includes the vibration measurement. In this example, a simple method was used,

sensors, impact hammer and a FFT analyzer. namely, a point mass was added to the substructure 2, near to
the joint, to increase the deflection of joint interfaces. The
parameters of the joint was identified from the new FRFs of

Table 5 Identified accuracy is improved by the Table 6 Experimental result of a single bolted joint
modification of the dynamic condition only by pre-normalization.
of structure.
k(N/m) d(N-s/m)
Properties| Paramelers | Exact value | Identified | Error(%) Result 50,859,352 -3,817
Values
Stiffness k 5,000,000 5363750 7.3
(N/m) k, 10,000,000 93135436 -6.9 the modified structure. The result is shown in Table. 7. As
Damping ] 200 29 55 mentioned, it Iggks another reliable me’ghod to know the exact
value of the joint parameters, there is no exact value for
(N=s/m) , 300 336 12 comparison. In order to know the accuracy of the identified

result, the identified parameters were used with the measured

The test structure Consists of two Cant"ever beams FRFs Of the SUbStrUCtUreS to Synthesize the FRFs Of the tOtal
connected together by a single bolted joint. The specification Structure. One of the synthesized FRF is shown in Fig. 6 in
of the bolt is M&1, and the applied torque is 15gh. The comparison with the measured one. Note that the measured
bolted joint was modeled as linear spring and damping elementsFRFS of the substructure was more or less contaminated by
with stiffness and damping coefficients k and d to be identified. Noise so that the synthesized FRF would not exactly match with

The measured frequency range of the FRFs280DHz, and the measured one even if the exact values of the parameters
the frequency resolution is 2.5Hz. In other words, there are 8ooWere used. Therefore, the difference between the synthesized

data in each spectrum. and the measured FRF in Fig.6 is not all due to the error of the
joint parameters. Although so far we don’t know exactly the
Results and Discussions error of the identified result, it is sure that the result of Table 7

Because the number of joint to be identified is only one, the 1S better than that of Table 6. It should be pointed out that it
number “n” in Eq.(13) is equal to one. The parameters were lacks a ge'neral, reliable method to vgrlfy .t'he .|dent|f|ed
first identified by using Eq.(16) directly without pre- parameters is also a problem in parameter identification.
normalization of the FRFs. As mentioned, there are 800 data in
each spectrum, the number “m” in Eq.(14) is 800. In other CONC'—US|ONS_ . ) .
words, we use 800 equations to solve onlenown by the least The dynamic behavior of a mechanical structure is
squares method. The identified result is not shown here strongly aﬁ_ected by the properties of mechanical joints. There
because the result is nonrepeatable and unreasonable, i.e., the @ré many different methods using the measured FRFs directly or
value of stifiness is negative. This result is expected because indirectly to identify the joint parameters; however, most of the
the test structure was so designed that the stifiness of the joint Methods suffer seriously from the problem of unavoidable
was far higher than the bending stifiness of the beams in the ~ Measurement noise. Although the previous works (Wang and
measured frequency rang@000Hz. To improve the result, the ~ Liou, 1990, 1991, 1993) have proposed some methods to
proposed normalization procedure was applied. The resultis Minimize the effect .of noise, a further |.nvest|_gat|9n.|nd|ca.tes
shown in Table 6. Because it lacks another reliable method to that noise problem is not the only consideration in improving

identify the exact property of the bolted joint, there is no exact the accuracy of identification. In this work, the causes of some
value for comparison in Table 6. However, one believes that ~ Other problems and the associated solutions were discussed.

the result of Table 6 is not reliable because the value of The theoretical and experimental results demonstrate that the
damping is negative. The above results indicate that the proposed normalization procedure can improve the
proposed normalization procedure can only partially improve effectiveness of the least squares mgthod to smooth_the random
the accuracy of identification by increasing the effectiveness of N0iS€. The results also show that if the structure is properly

the least squares method; however, it can’t change the fact that Modified to increase the relative deflection of the joint
the measureH ,,] -[H ,.] are immersed in noise. Besides interfaces in the frequency range of interest, the accuracy of
a aa "

the improvement of the measurement method, the only method \dentification can be significantly improved.
to improve the signal to noise ratio is to modify the dynamic
conditions of structure, as discussed in theoretical example.
There are many different possibilities to modify the test
structure; however, the basic principle is to increase the relative
deflection between the joint interfaces in the frequency range of
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or

(@41 Py Oy Poseveenns Oy P, O = (U, Upp yeeenn, Uy, O
%121 P11 0o Posevee 1020 Pa = %le, Usysennnne 'Uan
(A-5)
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Eqg. (A-5) can be rearranged as

(O3 Oy seeeeees O S 0p, U by, +up, o +u,, O

%‘211 S P IR ' an sz B _[Hy FUy, +o +U,,

G D - D D
D D O
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or in a compact form as

[Qlnxn{ P}nx1 ={U}nx1 (A-6)
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