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ABSTRACT
The development of several fluid mechanics applications

lead to inverse problems. Given a required distribution of flow
variables one has to find the corresponding geometry which
provides such distribution. Since the flow governing equations
do not allow explicit inversion, iterative methods are used. A
linear auxiliary equation, which is a simplified model of the
flow governing equations, can be used to develop a fixed point
iterative method. Such equation is used to compute the
geometrical correction required to minimize the difference
between the required and actual flow variable distributions. The
auxiliary inverse problem is coupled to a flow solver (from
potential flow to Navier-Stokes, the method is solver
independent) to iterate the correction until convergence. An
auxiliary equation method, the Modified Garabedian Mc-
Fadden, is analyzed. It involves a certain number of arbitrary
parameters whose choice affects the rate of convergence. The
present work describes how to find adequate parameters for
different families of airfoils in transonic flow. A 2D
Euler/Navier-Stokes flow solver will be used as an analysis tool
and a series of studies, which demonstrate the accuracy and
robustness of the technique, are presented.

NOMENCLATURE

A, B, C,  D - coefficients of the auxiliary equation
αy - changes in vertical coordinate
Q - magnitude of velocity
q - state vector of conserved properties
E, F - inviscid fluxes
R, S - viscous fluxes
Re - Reynolds Number

± - fluid density
u , v - cartesian components of velocity
e - total energy
T - temperature
p - pressure
Cv - specific heat at constant volume
• x , • y, ♣x ,♣y  - metrics terms
J - Jacobian of the transformation
U, V - contravarient components of velocity
≥ - viscous stress
χR , χS  - viscous dissipation terms
αt - time step
A , B - Jacobian matrices of the fluxes
≤ - difference operator
DI , DE - implicit and explicit dissipation
⁄I  , ⁄E - dissipation coefficients
M - freestream Mach number
C , R - residual

INTRODUCTION
Computational Fluid Dynamics (CFD) has been

proven an important analysis tool in a vast amount of
applications: from aircraft design to weather prediction. Its
ability to handle realistic flow conditions is an enormous
advantage when compared to other methods. On the other hand
the computational cost associated to the solution of the Navier-
Stokes equations still severely limits its application to design.
This issue has received the a lot of attention from researchers
over the years, especially in aerospace engineering(1-2).
Historically, a successful technique in airfoil design is the
inverse approach. Based on designer's experience to judge
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appropriate pressure distributions for typical flow conditions,
numerical methods are used to find out the shape which, under
the same flow conditions, would provide the prescribed
pressure distribution. The problem is ill-posed since there is no
guarantee that the prescribed pressure distribution is feasible. In
practice designers start from an initial geometry, analyze it,
numerical or experimentally, to obtain the pressure distribution,
and then propose some modification.

This paper is concerned on showing how a purely
geometrical approach to inverse design methods can be used
quite efficiently to airfoil design. Linear auxiliary equations,
based on compressible potential flow, can be used to construct a
fixed point algorithm. The flow solver computes the pressure
distribution which is compared to a target distribution. The
residual is an input to an inverse auxiliary equation which
provides the correction on the geometry. The profile is
corrected and the procedure is repeated until convergence is
reached. The Modified Garabedian Mc-Fadden method(3-4)  will
be used, to illustrate the main aspects of the auxiliary equation
technique, although the whole procedure can be extended to any
type of auxiliary equation.

An important issue is the choice of the control
parameters necessary to guarantee stability of the method. They
should allow fast convergence while maintaining stability in a
wide range of flow conditions. A short study will be presented
to provide the guidelines in the followed in the prescription of
such parameters. Using a least squares method for a family of
airfoils some guidelines for the relative values of each arbitrary
parameter were obtained(6). As the design cycles converge the
changes on the airfoil geometry are naturally reduced therefore
the arbitrary parameters should changed to compensate. Some
strategies are proposed and design test cases will be performed..

THE AUXILIARY EQUATION TECHNIQUE
The geometrical inverse design methods are based on residual
correction, in which the residuals are the difference between the
desired pressure distribution (or equivalent velocity
distribution) and the computed distribution.

The Modified Garabedian Mc-Fadden method(3-4) is a
method of this type where an auxiliary equation is solved in
order to compute the correction in the geometry during each
design cycle. For an airfoil the MGM auxiliary equation is
given by:

A αy + B αyx + C αyxx = Q2 + DQx
2 (1)

Where A, B, C, and D are constants chosen to produce a stable
iterative process, and the residual:

 Q2 = Qt
2-Qc

2 (2)

is the difference between the target (Qt) and actual (Qc)
equivalent velocity distributions. As the residual decreases the
initial shape converges to the target.

The auxiliary equation combines results from
compressible linear theory, that is, the pressure (or equivalent
velocity) is dependent on the profile thickness, local slope and
curvature. Since this relation is not explicit the constants are
introduced. These constants become a set of arbitrary control
parameters. The MGM method uses four parameters controlling
thickness, slope, curvature and velocity slope respectively.
Other approaches like the DISC method(8-9) follow a different
approach but also presents a pair of parameters for the geometry
correction equation, and an extra one providing the blend from
a subsonic to a transonic formula.

Despite its efficiency in inverse design the rate of
convergence of the process can be strongly affected by the
choice of the coefficients. If the coefficients  are set too high the
changes on the shape (αy) can be too small and the rate of
convergence will decrease. In opposition if the coefficients are
too small large changes in shape may results in unfeasible
profiles requiring the addition of some geometry constraints.
Another issue is the balance between the change in the
coordinate y, its slope and curvature which is far from intuitive.

THE NAVIER-STOKES FLOW SOLVER
The flow phenomena of interest is modeled by the

Reynolds-averaged Navier-Stokes equations, here presented in a
two-dimensional body-fitted coordinate system:

⌡tq + ⌡•E + ⌡♣F = 1/Re (⌡•R + ⌡♣S) (3)

where q is vector of conserved quantities: mass, momentum in x
and y directions and energy.

q = 1/J { ± ,±u , ±v , ±e }T (4)

The energy is given by:

 e =± [ Cv T + (u2 + v2)/2 ] (5)

where T is the temperature and Cv the specific heat at constant
volume.

The vectors E and F are the inviscid fluxes of the conserved
quantities in • and ♣ directions:

E = 1/J { ±U, ±uU + p• x , ±vU+ p• y , U(e+p) }T

F = 1/J { ±V, ±uV + p♣x , ±vV+ p♣ y , V(e+p) }T

(6)
where U and V are the contravarient components of velocity:

U= u• x+ v• y ,  V = u♣x + v♣y (7)
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The vectors R and S are the viscous fluxes, respectively in •
and ♣ directions:

R = 1/J {0, ≥x•  , ≥y• 0, χR • x+ χS • y } T

S = 1/J {0, ≥x♣   , ≥y♣  , χR ♣ x+ χS ♣ y } T

(8)
and the stresses:

≥x• = ≥xx •x+ ≥xy • y

≥y• =≥xy •x+ ≥yy • y

≥x♣ = ≥xx ♣x+ ≥xy ♣ y

≥y♣ =≥xy ♣x+ ≥yy ♣ y

with the fluid being considered as Newtonian and χR  and χS
given as viscous dissipation terms(7).

The equations are numerically approximated by central
differences resulting in:

(I+αt J≤•An + ⁄IDI⁄ ) (I+αt J≤♣Bn + ⁄IDI♣){ αq} = {Cn-⁄EDE}
(9)

where A = ⌡E/⌡q and B= ⌡F/⌡q are the Jacobian matrices and
the residual:

 Cn  = -αt J (≤•E+≤♣F) + αt J/Re(≤•R+≤♣S) (10)

The terms DI and DE are artificial dissipation terms(10) required
to stabilize the numerical scheme. In addition to that, the
algebraic Baldwin-Lomax model is used, to take into account
turbulence effects. The problem is de-coupled in two penta-
diagonal problems and the computational code developed by
Sankar Huff and Wu(5) is used to obtain the solution. The
domain is discretized as shows Figure 1.

LEAST SQUARES ANALYSIS
In order to propose adequate choices of the control

parameters, a numerical study is proposed. A certain number of
airfoils is selected and a database of solutions is constructed
using the 2-D Navier-Stokes flow solver(5) for a fixed Mach
number, angle of attack and Reynolds number.

For the Modified Garabedian Mc-Fadden method, a
linear least squares problem can be constructed, by minimizing
a residual R for the n points which discretize each profile:

n
       R =  (Aαy + Bαyx + Cαyxx - Q2 - DQx

2)
i = 1

 (11)
Requiring the residual to be a minimum, we can write a system
of equations for A, B, C and D:

[M]{A, B, C, D}T = {b} T  (12)

The elements of the matrix [M] are given by:

M11 = α y2 , M12 = α yαyx

M12 = α yαyx , M13 = α yαyxx

M14 = - α yQx
2 , b1 = - α yQ2

M22 = α yx
2 , M23 = α yxαyxx

M24 = - α yxQx
2 , b2 = - α yxQ2

M33 = α yxx
2 , M34 = - α yxxQx

2

b3 = - α yxxQ2 , b3 = - α yxxQ2

M44 = -  Qx
4 , b4 = - Qx

2 Q2

M21 = M12  , M31 = M13   , M41 = - M14

M32 = M23  , M42 = M24   , M43 = - M34

-1 0 1

Figure 1 Body-Fitted Grid System for Navier-Stokes calculations

The solution of this least squares problem, for each
pair of profiles in the data base provides information on the
range of the parameters with respect to shape(6). Also the trends
with respect to the flow condition (M, ≠ , Re) can be evaluated.

NUMERICAL  STUDIES
Fixed Settings

To compute the arbitrary parameters of the auxiliary
equation 4 profiles were selected: RAE 2822 (p1), NACA 0012
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(p2), ONERA M-6 (p3) and NACA 64A210 (p4). To provide
the necessary velocity distributions for the least squares
problem all the profiles were analyzed for the flow condition:
M = 0.676, ≠ = 2.40� ,  Re = 5,700,000
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Figure 2a. RAE2822 Geometry and Pressure Distribution for M =
0.676, ∼∼∼∼ = 2.40 ,  Re = 5,700,000
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Figure 2b. NACA0012 Geometry and Pressure Distribution for M
= 0.676, ∼∼∼∼ = 2.40 ,  Re = 5,700,000

A 247 x 50 grid was used and all computations where
converged until the residual (eq. 10) reached 10-7. Each solution
is obtained after approximately 30  minutes of CPU time, in a
SUN UltraSparc machine, which in terms of turnaround time is
quite reasonable. Geometries and Pressure Distributions, for
each profile, are presented on figures 2a to 2d respectively.
Once the data was collected the least square problem could
solved for each pair of profiles, the results can be seen on
Tables I to III. The Tables are symmetric, at least to the second

digit, which indicates the accuracy of the study. For simplicity
the term on Qx was neglected.

One can observe also the clearly distinct value for each
of the coefficients, in all cases the parameter which controls the
change in coordinate y is on the unity level, the parameter
which control the slope in the 0.1 level and the parameter which
control the curvature in 0.0001 level. Based on that another
study is conducted.
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Figure 2c. ONERA M6 Geometry and Pressure Distribution for M
= 0.676, ∼∼∼∼ = 2.40 ,  Re = 5,700,000
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Figure 2d. NACA 64A210 Geometry and Pressure Distribution for
M = 0.676, ∼∼∼∼ = 2.40 ,  Re = 5,700,000

p1 p2 p3 p4
p1 - 2.12888 1.00077 2.60192
p2 2.12669 - 0.65828 2.54662
p3 0.99262 0.65939 - 1.45380
p4 2.60127 2.55319 1.45174 -
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Table I : Least Squares results for parameter A

p1 p2 p3 p4
p1 - 0.20309 0.21992 0.02517
p2 0.20248 - 0.06404 0.17031
p3 0.02110 0.06411 - 0.01855
p4 0.02517 0.17032 0.01850 -

Table II : Least Squares results for parameter B

p1 p2 p3 p4
p1 - 0.00062 0.00010 0.00010
p2 0.00062 - 0.00038 0.00051
p3 0.00010 0.00038 - 0.00031
p4 0.00010 0.00051 0.00031 -

Table III : Least Squares results for parameter C
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Figure 3a. Design History - Constant Parameters   A=B=C=1;  M =
0.676, ∼∼∼∼ = 2.40 ,  Re = 5,700,000

As a basis of comparison the first line and column
were proposed as design problems. That is the RAE2822 is
chosen as an initial geometry and the corresponding solution,
for the other three profiles, as target distributions. The reverse
was also tested.

 Initially the control parameters A = B = C were set to
unity and the results can seen in Figures 3a and 3b.  One can
observe a slow decreased in the average αCp after 20 design
cycles. On Figure 3a the RAE2822 was used as an initial
profile, on Figure 3b the pressure distribution for RAE2822 is
given as a target, the design process proved to be fully
reversible, although still not very accurate below a certain
tolerance.
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Figure 3b. Design History - A = B = C = 1;  M = 0.676, ∼∼∼∼ = 2.40 ,
Re = 5,700,000
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Figure 4a. Design History - A = 1, B = C = 0.1 ;  M = 0.676, ∼∼∼∼ =
2.40 ,  Re = 5,700,000

A first trial was made using A = 1 , B = 0.1 and C =
0.0001, as indicated by the previous least square study. This
choice proved to lead to instability due to extremely large αy.
That is mostly due to the influence of curvature. Therefore the
parameter C was increased to 0.1. Added to that a maximum
1% change in thickness was allowed in order to limit the change
of shape. The design test cases were re-computed  and the rate
of convergence compared. The results are found on Figures 4a
and 4b. One can notice now a much higher rate of convergence
due to the better capture of curvature effects. The average level
has dropped to a half than on the constant parameter cases.
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Figure 4b. Design History - A = 1, B = C = 0.1 ;  M = 0.676, ∼∼∼∼ =
2.40 ,  Re = 5,700,000

For all design studies the grid was reduced to 157 X 40
and in the intermediate design steps, since the changes between
each inverse cycle are small, the solution was restarted in order
to reduce the overall computational time. Each design run (20
cycles) took an average 40 minutes of CPU in a 6 processors
SUN  Ultra Sparc machine.

Figures 5a  to 5b present corresponding geometries of
Figures 4a,  the initial profile is the RAE2822 and
corresponding pressure distributions of the other three profiles
are set as target.
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Figure 5a.  Initial Profile RAE2822;  Dashed Line: Designed
Profile ; Solid Line: NACA0012 ;  Inverse Design After 20 cycles;
A = 1, B = C = 0.1;  M = 0.676, ∼∼∼∼ = 2.40 ,  Re = 5,700,000
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Figure 5b.  Initial Profile RAE2822;  Dashed Line: Designed
Profile; Solid Line: ONERA M6; Inverse Design After 20 cycles; A
= 1, B = C = 0.1;  M = 0.676, ∼∼∼∼ = 2.40 ,  Re = 5,700,000
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Figure 5c.  Initial Profile RAE2822;  Dashed Line: Designed
Profile; Solid Line: NACA 64A210;  Inverse Design After 20
cycles; A = 1, B = C = 0.1;  M = 0.676, ∼∼∼∼ = 2.40 ,  Re = 5,700,000
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Figure 6a.  Initial Profile NACA0012;  Dashed Line:  Designed
Profile; Solid Line: RAE2822; Inverse Design After 20 cycles; A =
1, B = C = 0.1;  M = 0.676, ∼∼∼∼ = 2.40 ,  Re = 5,700,000
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Figure 6b.  Initial Profile ONERA M6;  Dashed Line: Designed
Profile; Solid Line: RAE2822; Inverse Design After 20 cycles; A =
1, B = C = 0.1;  M = 0.676, ∼∼∼∼ = 2.40 ,  Re = 5,700,000

Figures 6a  to 6b present corresponding geometries of Figures
4b,  the target pressure distribution corresponds to the solution
for the RAE2822 and the other three profiles are used as initial
geometries. As one can see, in both cases,  the match is
accurate.
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Figure 6c.  Initial Profile NACA 64A210;  Dashed Line:
Designed Profile; Solid Line: RAE2822;  Inverse Design
After 20 cycles; A = 1, B = C = 0.1;  M = 0.676, ∼∼∼∼ = 2.40 ,
Re = 5,700,000

Dynamical Adjustment
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To study the impact on convergence and accuracy some
alternatives will be studied(7). In all experiments the conditions
were similar:  A = 1, B = C = 0.1;  M = 0.676, ≠ = 2.40� ,Re =
5,700,000. The initial profile is the NACA 0012 and the target
pressure distribution corresponds to the pressure distribution for
the NACA 64A210 at the same flow conditions. Therefore the
design geometry will be compared to the NACA 64A210.

The first experiment was to vary the limitation on the
maximum change αy to verify its impact on convergence. At
each design step the maximum change is limited to a certain
value (0.5%, 1% and 2% in the experiments) and all the
changes are re-scaled to preserve the overall shape. Figure 7
shows that the effect is minimal, which leads us to believe that
the application of this constraint does not interfere in
convergence or accuracy.
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Figure 7. Design History - Constraint in ααααY, solid line
(target) , dashed (r=20%), dash-dot (r=50%), dotted
(r=95%)

Figures from 8 to 10 show that the only parameter
whose influence is noticeable is C, which is related to curvature.
On figure 10a the variation of the parameter C along the chord
provided some capture of the profile curvature along the whole
chord.  On figure 10b it is verified that the decrease of the
parameter C in successive design cycles introduces undesirable
fluctuations.
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Figure 8a. Design History - Variation of A along the chord,
solid line (target) , dashed (r=20%), dash-dot (r=50%),
dotted (r=95%)
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Figure 8b. Design History - Variation of A along the design
cycles, solid line (target) , dashed (r=20%), dash-dot
(r=50%), dotted (r=95%)

The second set of tests was to vary each of the control
parameters independently. For each one the value was reduced
first as the design cycles progress, to increase the value of the
changes in  αy along the design iterations (a) , and second by a
parabolic distribution along to chord, in order to increase the
changes αy at the edge where the method is less accurate (b).
An additional parameter r was used to  control the rate of decay
in each design cycle, in case (a) and the rate of decay along the
chord, in case (b).
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Figure 9a. Design History - Variation of B along the chord,
solid line (target) , dashed (r=20%), dash-dot (r=50%),
dotted (r=95%)
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Figure 9b. Design History - Variation of B along the design
cycles, solid line (target) , dashed (r=20%), dash-dot
(r=50%), dotted (r=95%)
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Figure 10a. Design History - Variation of C along the chord,
solid line (target) , dashed (r=50%), dash-dot (r=95%),

dotted (r=99%)
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Figure 10b. Design History - Variation of C along the design
cycles, solid line (target) , dashed (r=50%), dash-dot

(r=95%), dotted (r=99%)

CONCLUDING REMARKS
This study indicates how the choice of the arbitrary

parameters necessary for auxiliary equation inverse design
methods can affect the rate of convergence of the design. The
modeling of curvature is of utmost important but due to its high
sensitivity it requires additional damping ( a higher parameter)
coupled to a constraint in the maximum αy. An additional set of
experiments lead to the conclusion  that the only  parameter in
which some dynamic adjustment can have an effect on the
convergence is the one related to curvature. The other
parameters are somewhat inert. Based on that, research will be
conducted in order to develop a new algorithm with a better
curvature capture, especially in the leading edge region.
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