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ABSTRACT
The paper presents a brief review of current research on 

computational approach to inverse problems in engineering 

mechanics. Emphasis is placed on applications of the boundary 

element method, and the paper reports on some recent 

applications of such approach to a few classes of the inverse 

problems which are of practical importance.

INTRODUCTION
Computational methods of analysis based on the finite 

difference, finite element, and boundary element methods have 

been so well developed that we can easily solve the initial- and 

boundary-value problems, which are to be called the direct 

problems. It has been increasingly attracting the attention of 

scientists and engineers to apply the computer analysis software 

well established for the direct problems to the corresponding 

inverse problems [1-5].

There are many inverse problems around the world, in 

which we should estimate the reasons from the observed results. 

However, from the engineering point of view, the inverse 

problem can be stated such that some information on the initial 

and/or boundary conditions, domain shapes, material constants, 

etc. are not known, and this lacking information should be 

identified by using additional information which is usually 

provided as measured data.

If we consider a system which is modeled as an initial- and 

boundary-value problem, we may classify the corresponding 

inverse problems into the following:

1. Estimation of the initial and/or boundary conditions

2. Determination of domain shapes

3. Estimation of sources

4. Estimation of material constants

5. Estimation of governing differential equations

In this article, we shall first explain fundamentals of the 

computational approach to the solution of inverse problems 

using the methods of analysis for the direct problems, and then 

show several investigations on the inverse problems by author's 

group. Finally, the paper is concluded by some remarks toward 
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more fruitful and more successful analysis of the inverse 

problems.

METHODS OF INVERSE ANALYSIS
The inverse problem under consideration is modeled as a 

parameter identification problem. In a computational approach 

to this inverse problem, we first assume the values of 

parameters in an appropriate manner and then carry out analysis 

of the direct problem. The results obtained are compared with 

the measured data given as additional information, and the 

parameter values are then modified so that an appropriate cost 

function is minimized in an iterative manner. The cost 

function is usually defined as a square sum of differences 

between the measured and computed data. We may express the 

cost function as follows:

W W= ( )z (1)

where z is a vector of parameters, and denoting by M the 

number of parameters we have

z z z z= { }1 2 ... M
T (2)

where the superimposed T means the transpose of a matrix. We 

can apply the standard procedures of optimization[6-8] for the 

solution of the above-modeled inverse problems. The filter 

theory can also be implemented instead of the optimization 

procedure as shown in the next section of this article.

In the inverse problems of estimating defects, e.g. cracks or 

cavities, which is the main subject of NDT (non-destructive 

testing), we may select as the parametersz the quantities 

defining the locations and shapes of the defects to be detected. 

If the defect is modeled as an ellipse or a sphere, the number of 

parameters can be reduced and then inverse analysis can be 

easily carried out. Although we may choose all the nodes 

located on the defect surface as the parameters, it would usually 

lead us to a large amount of computation time for inverse 

analysis and to unstable computation which yields less 

successful results. Hence, such inverse analysis could not be 

recommended. It is true that the smaller the number of 

parameters is, the more the performance of inverse analysis is.

The finite element methods have been best developed as 

computational software for direct problems, and naturally there 

are many of such investigations on the inverse problems [1-5]. 

In optimal shape design, however, we have to search the shape 

in an iterative manner, and careful attention should be paid to 

re-meshing at each iterative step of inverse analysis so that 

accuracy of computational results is not reduced by a deformed 

finite-element mesh. The boundary element methods [e.g., 

9-11] can provide a more convenient tool for the problems of 

shape optimization design, because discretization by the method 

is confined within the boundary surface. In addition, it is 

reported that the BEM can give more accurate numerical results 

than the finite element or finite difference methods, if 

appropriate care is taken for singular integrals[12,13]. This 

advantage is very important and makes the BEM more attractive 

than other methods, because in inverse analysis only a limited 

number of measurements are available and hence the 

computational results should be kept to be accurate at each 

iterative step. From these reasons the boundary element 

methods have been employed for inverse analyses, and many 

successful results have been reported in Refs.[1-5, 14].

INVERSE ANALYSIS VIA BEM AND FILTER 
THEORY

In the filter theory, it is assumed that measured data includes 

errors with a Gaussian distribution. There is the following 

relationship between the observation vector y of measured data, 

and the state vector z of the parameters corresponding to the 

unknown information to be identified, that is,

y h z vk k k= +( ) (3)

The nonlinear function is expanded into a Taylor series with 

respect to the state vector, and higher-order terms are neglected. 

Thus, we can obtain a linearized relation of equation (3) as 

follows:

ηk k k k k= − +− −y h z H z(ˆ ) ˆ1 1 (4)

where k denotes iteration counter, and 

H
z

z z

k
i k

j

h

z
k k

=










 = −

∂
∂

( )

ˆ 1

(5)

This implies that the assumed values of the parameters can be 

modified using the following relation:

ˆ ˆ (ˆ )z z K y h zk k k k k= + −[ ]−1 (6)

where ẑk is an estimated set of the parameters z at the kth 

Copyright © 1999 by ASME

-2-



iteration, and Kk is the filter gain which is given for the 

extended Kalman filter [15,16] by

K P H H P H Rk k k k k k k k k= +[ ]− −
−

1 1

1T T (7)

and for the projection filter [16,17] by

K H R H H Rk k k k k k= [ ]− − −T T1 1 1 (8)

In the above expressions, Pk k −1 is the covariance of the 

estimation errors of parameters at iteration k − 1 , and Rk the 

covariance of measurement errors at iteration k .

In the inverse analysis using the filter theory mentioned 

above, the sensitivity matrix Hk is computed by means of the 

finite difference method, so that the boundary element method is 

twice applied to compute the physical quantities at each 

iteration.

The main flow of the proposed inverse analysis is illustrated 

in Fig.1. It is an easy matter to replace the filter algorithm 

shown in the figure with the standard optimization 

technique[18].
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ˆ ˆz I zk k+ =1

P I Pk k k k+ =1

Fig. 1 Main flow of inverse analysis

DEFECT DETECTION AS INVERSE ELASTO- 
DYNAMIC PROBLEM

To evaluate safety or reliability of structural components, it 

is important to estimate non-destructively the location and 

shape of an internal cavity or crack. Here, we shall introduce 

one of such investigations[18-21] using the boundary element 

method for steady-state elastodynamics.

For the elastodynamic inverse problem under consideration, 

we can use the measured data on displacements, strains, or 

natural frequencies as additional information. In the following, 

an investigation[21,22] will be shown in which the 

displacement responses are measured and available for inverse 

analysis.

It is assumed that displacements at some selected points on 

the boundary are measured when the structural component is 

subjected to a time-harmonic excitation. Using these data as 

additional information we want to detect the position and shape 

of an internal cavity. The cost function is defined as a square 

sum of the differences between the measured displacements and 

computed ones by the boundary element method. The inverse 

problem is then solved by minimizing the following cost 

function:

W u u u uj
n

j
n

j

d

n

M

j
n

j
n= −( ) −( )

==
∑∑

11
9( )

where uj is a displacement component, and the superimposed 

bar denotes the measured one.

There are investigation[18-20] of this problem using the 

conjugate gradient method of optimization. In the following, 

however, we show another study using the Kalman filter and 

the BEM[21,22]. To demonstrate the usefulness of the inverse 

analysis method, numerical experiment is carried out for a few 

simple examples in two-dimensional problems. It is assumed 

that the shape of cavity is elliptic and hence the parameters to 

be estimated can be expressed in terms of five parameters as 

follows:

z = { }x x a b1 2 10θ T
( )

where x1 and x2 are the coordinates of the center point of the 

cavity, a and b are the lengths of two principal axes of the 

ellipse, and θ the angle of the short axis with the axis x1 .

In Fig.2 is shown the numerical example with one elliptical 

cavity in the rectangular component of horizontal side 300[mm] 
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× vertical side 200[mm]. The component is fixed on the 

bottom side and subjected to a time-harmonic excitation p at 

point F1, and the cavity to be estimated is located as shown in 

the figure with the parameters z = − − °{ }70 20 20 10 45 . 

Computation of inverse analysis is started by assuming the 

cavity as a circle located at the center point of the component. 

The material constants of isotropic elasticity and other 

computational data are assumed as follows:

Young's modulus E=210[GPa]

Poisson's ratio ν = 0 3.

mass density ρ = ×7 85 103. [kg / m ]2

time-harmonic excitation p i t= ( )0 15. exp [GPa]ω
angular frequency of excitation 

ω = 10, 000[rad / s] 1,600[Hz]≅
covariance of measurement errors σ 2 = × −1 0 10 6.

It is further assumed that the displacements are measured at the 

six points on the boundary as shown in Fig.2.

B

D C

A

x1

p
F1

x2

(-150,100) (150,100)

(-150,-100) (150,-100)

Unit :  mm

Fig.2 Rectangular component with elliptical cavity

In the numerical experiment, the measured data on 

displacements are given by the computational results obtained 

by the boundary element analysis using the target values of 

parametersz = − − °{ }70 20 20 10 45 . Table 1 summarizes the 

results obtained, which shows that after 17 iterations a 

satisfactory estimation can be obtained. It is interesting to point 

out that inverse analysis was sometimes not successful when 

the defect was assumed at some different positions. In such 

cases, the so-called multiple excitation method[21,22] is very 

useful to strengthen additional information for inverse analysis. 

This method uses measured data obtained under a set of different 

excitations for inverse analysis.

The above approach is extended to detection of crack, and it 

is discussed in [20-22] how to select the measured data in 

consideration of sensitivities with respect to the parameters to 

improve the robustness of inverse analysis. However, it should 

be mentioned that the electrical- potential methods of inverse 

analysis[23] are most successfully applied to detection of cracks 

in structural components of electricity-conducting materials.

Table 1 Estimated results

ESTIMATION OF EROSION CURVE IN BLAST 
FURNACE REFRACTORY

Now, we shall try to identify the erosion curve of the 

refractory in the blast furnace hearth. From a macroscopic point 

of view, the problem of the blast furnace under consideration 

can be modeled as a steady-state heat conduction problem in an 

axisymmetric body subject to the boundary conditions of 

axisymmetric distribution. When the boundary element method 

is applied to this problem, the boundary integral equation for 

three-dimensional problems is transformed into the 

two-dimensional boundary integral equation on the meridian of 

the axisymmetric body. The boundary element methods have 

been already established for the axisymmetric problems[24,25]

For the inverse problem under consideration, Yoshikawa et 

al.[26] already reported on an inverse analysis method in which 

an optimal combination of parameters was found under a 

limited number of parameter values. There can be a more 

sophisticated approach which uses a filter theory to take account 

of measurement errors in the inverse analysis. The author 

presents such an approach, in which the boundary element 

method with quadratic interpolations and the filter theory are 

combined to use for the inverse analysis of the problem[27]. In 

this article, only the outline of the investigation will be shown. 

The two filter theories, Kalman and projection filters, are used 

for inverse analysis. Numerical experiment is carried out, and 

the results obtained are discussed whereby the advantages and 
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x1
x2

a

b
θ

-70

-20

20

10
45°

-69.985

-19.978

20.007

9.994
44.908°

17



the disadvantages of the filter theories are revealed.

Analysis Model
Figure 3 shows the blast furnace hearth which is assumed to 

be rotationally symmetric about Z axis. The erosion curve is 

considered as the isothermal curve of the solidification 

temperature of molten metal (1150 °C ). We consider the 

steady-state heat conduction problem subject to the Dirichlet 

boundary condition on the internal surface of the erosion curve. 

The other boundary conditions and constants in heat transfer are 

assumed as follows:

1) The heat conduction coefficient of refractory is 
λ = 13[W/mK].

2) The side wall is subject to a boundary condition of heat 

transfer in which the ambient temperature is 30[ C]° and 

the heat transfer coefficient is 70[Wm K]2 .

3) The bottom surface is subject to a boundary condition of 

heat transfer in which the ambient temperature is 35[ C]°
and the heat transfer coefficient is 70[Wm K]2 .

4) The upper surface is subject to an adiabatic condition in 

which q = 0 .

As the parameters to be identified, we take the distance 

between a fixed point on the Z axis and a point on the internal 

boundary which lies on the ray issued from the fixed point with 

a given angle as shown in Fig.3. The erosion curve is drawn 

by the C-spline functions using the estimated values of the 

parameters. It is assumed that 61 thermocouples are located on 

the side wall and on the bottom surface and that these 

measurements can be used for inverse analysis. In general, 

however, inverse analysis is likely to be unstable or ill-posed, 

when the number of measurements used for analysis is too 

small or too large. For numerical analysis, we shall use only 

the number of 7 among these measured data, which are chosen 

in the order of higher sensitivity with respect to the parameter 

values at each iteration. That is, the seven measuring points 

which have largest absolute values of sensitivity defined in 

equation (5) by ∂ ∂h zj i/ . These points are different at each 

iteration, but in this numerical example no appreciate difference 

can be observed. Hence, the seven measuring points are 

selected as points having highest sensitivities with respect to 

the initial parameter values, as shown in Fig.3 by small circles 

on the boundary. In addition, we assume that the measurement 

error is within 10 % of the highest temperature measured at the 

seven points mentioned above, and that the covariance of 

estimation errors is 1 0 10 4. × − .
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x2

x3

x4x5x6x7

Fig.3 Analysis model of blast furnace hearth

In Fig.4 is shown one of the numerical results obtained 

using the Kalman filter when the initial values of parameters 

are not appropriately assumed and hence the final estimation is 

less satisfactory, in particular, near the symmetrical axis where 

the estimated erosion curve is not fitted to the target geometry. 

In this computation, calculation has been terminated after 100 

iterations, although no convergence is realized. If the projection 

filter is used in the inverse analysis under the same assumption 

for the initial values of parameters, worse results are obtained 

rather than the case of Kalman filter. It may imply that the 

projection filter is rather sensitive for the initial values of 

parameters than the Kalman filter. This property will be 

investigated in the following.

Now, we shall carry out inverse analysis using the two filter 

theories for the sake of comparison. We perform inverse 

analysis with the initial values deviating from the target values 

between -15% and +15%. Two typical initial assumptions of 

the erosion curve with deviations 10% and +10% from the 

target values are shown in Fig.5.
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Fig.4 Typical example of estimated results
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Fig.5 Initial guesses of erosion curve

Table 2 Difference between another initial geometries

-5 ○ (8) ○ (3)

-10 ○ (30) ○ (7)

-11 ○ (38) ×

-12 ○ (67) ×

-13 △ ×

-14 △ ×

-15 × ×

Difference to the target 
geometry [%] Kalman filter Projection filter

+5 ○ (33) ○ (3)

+10 △ ○ (4)

+15 △ ○ (7)

The numerical results are summarized in Table 2, in which 

computation is terminated after 100 iterations. In this table, 

the symbol O denotes convergence after the iteration number 

shown in parentheses, while the symbol × does no 

convergence and the symbol ∆ does no convergence but 

indicates possibility of convergence after a large number of 

iterations. From Table 2, it can be seen that the Kalman filter 

is rather tough than the projection filter: Even if the initial 

guess of parameters is not so good, Kalman filter could still 

give an approximate solution of the inverse problem.

APPLICATION TO TEMPERATURE CONTROL

Study on Known Heat Input

Most of control problems are formulated into the inverse 

problems which can be solved by the method of inverse analysis 

discussed in this article. As one of such examples, we now consider 

the control of temperature in a solid under heat conduction. The 

problem is stated as in Fig.6: We want to control the temperature 

on part Γr of the boundary as required, by changing the temperature 

or heat flux on the boundary part Γc . The problem of this 

temperature control is then formulated into such an inverse problem 

that the optimal controllable heat load should be found by 

minimizing a cost function representing the differences between 

the required and calculated temperatures on the boundary part Γr . 

For these active control problems, the boundary element method 

Copyright © 1999 by ASME

-6-



can be successfully used together with the optimization procedure 

or also the filter theory. In the following, a couple of 

investigations along this line are briefly explained .

Γu

Γq

Γc

Γr

u(x,t)

Known
heat load

ur(x,t )  or qr(x,t )
Required response

Unknown
controllable heat load

uc(x,t )  or qc(x,t )

Ω

Known
heat flux

q(x,t )

Fig.6 Schematic illustration of temperature control

We can treat the problem of temperature control in such a way 

that after assuming the controlling heat load on Γc , we compute 

the responses on Γr by the boundary element method and calculate 

the cost function defined by

W
u x t u x t

u x t
l d r l d

r l dd

D

l

L
= −



==

∑∑ ( , ) ( , )

( , )
( )

11

2

11

where u x tl d( , ) denotes the temperature at evaluation point xl at 

time td , and u x tr l d( , ) the required temperature on the boundary 

part Γr . Then, the parameter values of control heat load are 

modified by the standard optimization technique or by the inverse 

analysis method as shown in Fig.1. In the following, we shall 

show some of the numerical results[28-30] obtained using the 

boundary element method based on the Laplace transform. 

Numerical simulation on the temperature control in an injection 

mold of plastics is presented. A two-dimensional model of 

injection mold with two equal holes is considered as shown in 

Fig.7. The side DEFG is in contact with injected plastics. We want 

to keep the temperature on the surface FE uniformly distributed, by 

changing the temperature of the two holes. The required 

temperature on EF is assumed as 30°C . Seven evaluation points 

are taken on the side EF, and 31 points on the time axis. It is 

assumed that the temperature on the surfaces of two holes is uniform 

during the whole time and at the beginning of inverse analysis it is 

30°C . The history of temperature of molten plastics is assumed as 

shown in Fig.8. Without any control, the history of temperature 

on EF can be calculated as shown in Fig.9.

The change of temperature on the holes surface is expressed in 

terms of B-spline functions, and their coefficients are the 

parameters to be estimated by inverse analysis. In Fig.10 is shown 

the optimized history of temperature on the cooling surface 

obtained by inverse analysis. Figure 11 shows the history of 

temperature on EF after optimally controlled.
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Fig.7 Analysis model of injection mold
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Fig.9 Temperature history on EF without control
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for optimal control

30

35

0
5

10 15 20 25 30

E

D

T
e
m

p
e
ra

tu
re

  
°C

Time  s Space 

Fig.11 Optimally controlled temperature on EF
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heat flux

q(x,t)

Identify by
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Fig.12 Schematic illustration of temperature control for unknown heat input

Study on Unknown Heat Input
It is interesting to note that the same inverse analysis 

method can be applied to more complicated cases in which the 

input heat load on the boundary part Γu is not known[31].

In Fig.12 is illustrated a schematic view of the temperature 

control for the cases of unknown heat input. We have to take 

account of the temperature control for each of small time 

intervals. The control heat load is approximated as constant or 

smooth by B-splines during the time interval, as shown in 

Fig.13, and then the inverse analysis mentioned in the previous 

section is carried out. A few examples are simulated by means 

of this procedure and the results obtained are discussed, whereby 
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the usefulness of the inverse analysis is demonstrated. Because 

of space limitation, their details can not be presented in this 

article. Those who are interested in this approach are kindly 

asked to see the original paper[31].

Step

tT1 T4T3T2

u

( )a

t

u

T1 T4T3T2

( )b
Smooth
  curve

Fig.13 Approximation of control temperature via two ways

CONCLUDING REMARKS
The inverse analysis presented in this article can also be 

successfully applied to many inverse problems in engineering 

mechanics. Basically, in the inverse analysis methods, we have 

to calculate the gradient of a cost function or sensitivities of the 

measured data with respect to the parameters to be estimated. If 

the values of parameters are assumed to be near the exact 

values, inverse analysis can be very successfully carried out. 

However, inverse analysis would be less successful, difficult or 

almost impossible, when the initial assumption of the 

parameters is not suitable to perform inverse analysis. This 

occurs frequently in analyses of almost all inverse problems. 

Therefore, it is inevitably required to access the parameter 

values close to the exact ones before applying the inverse 

analysis method discussed here. For this purpose, we have to 

use a priori information as much as possible. It would also be 

useful from the engineering point of view that we first try to 

obtain an approximate solution under rough assumptions or 

constraints on the range of parameter values. To this end, 

genetic algorithms or other methods based on knowledge 

engineering seem to be very promising. Then, we apply the 

present method of inverse analysis to get a refined solution of 

the inverse problem. If this two-stepsolution procedure is 

applied to the inverse problems at hand, we could almost 

always obtain the satisfactory solutions.
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