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ABSTRACT

The paperpresents a brief review of currergsearch on
computationalapproach to invers@roblems in engineering
mechanics. Emphasis gaced orapplications of thdoundary
element method,and the paper reports onsome recent
applications of suclapproach to a fewelasses of the inverse
problems whiclare ofpractical importance.

INTRODUCTION

Computationalmethods of analysibased onthe finite
difference,finite element,and boundaryelement methods have
been sowell developedhat wecaneasily solve the initialand
boundary-valueproblems, whichare to be calledhe direct
problems. It hadveen increasingly attractirthe attention of
scientistsandengineers t@apply the computer analysssftware
well established for thelirect problems to thecorresponding
inverse problem§gl-5].

There aremany inverse problemaroundthe world, in
which we should estimate the reasons fronolteervedesults.

However, from the engineeringoint of view, the inverse
problemcan be stateduch that some information on the initial
and/or boundargonditions, domain shapes, mategahstants,
etc. are not known, and this lacking information should be
identified by using additional information which is usually
provided as measured data.

If we consider aystem which isnodeled as amitial- and
boundary-valueproblem, we may classify theorresponding
inverse problemsto the following:

1. Estimation of the initiand/or boundary conditions

2. Determination of domaishapes

3. Estimation okources

4. Estimation of material constants

5. Estimation of governindifferential equations
In this article, we shall first explaifundamentals ofthe
computationalapproach tothe solution ofinverse problems
using themethods of analysis for thdrect problems andthen
showseverainvestigations on the inverse problems by author's
group. Finally, thepaper isconcluded bysomeremarkstoward
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more fruitful and more successful analysis of the inverse
problems.

METHODS OF INVERSE ANALYSIS
The inverse problenunder consideration ismodeled as a
parameter identificatioproblem. In a computationapproach
to this inverse problem, we first assume the values of
parameters in an appropriate marsrgtthencarryout analysis
of the direct problem. The resultebtainedare comparedvith
the measured datg@iven asadditional information, and the
parametervaluesarethen modified sothat anappropriatecost
function is minimized in an iterative manner. The cost
function is usually defined as a squaresum of differences
betweerthe measured andomputed data. Wmay express the
cost function as follows:
W=W(z) @
where z is a vector of parameterand denoting byM the
number ofparameters whave

z={z 7, .. ZM}T @
wherethe superimposed T meatise transpose of a matrix. We
canapply thestandard procedures afptimization[6-8] for the
solution of theabove-modelednverse problems. The filter
theory can also be implementethstead ofthe optimization
procedure ashown in the next section of thésticle.

In the inverse problems of estimatidgfects,e.g.cracks or
cavities, which is the main subject of ND(fion-destructive
testing), we may select as thmarametersz the quantities
definingthe locationsandshapes of thelefects to be detected.
If the defect is modeled as aflipse or a sphere, the number of
parameters can beeducedandthen inverse analysisan be
easily carried out. Although we maychoose all thenodes
located orthe defectsurface ashe parameters, would usually
lead us to alarge amount of computation time for inverse
analysis and to unstable computation which vyields less
successfutesults. Hence, such inversanalysiscould not be
recommended. It istrue that the smaller the number of
parameterss, the more th@erformance onverse analysis is.

The finite element methodkave beenbest developed as
computationakoftware fordirect problems,and naturally there
aremany of such investigations on the inverse problems [1-5].
In optimal shape design, however, we haves¢archthe shape
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in an iterative mannegnd careful attention should beaid to
re-meshing atach iterative step of inverse analysis so that
accuracy ofcomputational results is neéduced by a deformed
finite-element mesh. Théoundary element methodge.g.,
9-11] canprovide amore convenientool for the problems of
shape optimization desighecause discretization blye method
is confinedwithin the boundary surface. In addition, it is
reportedhat the BEMcan give moreaccuratenumerical results
than the finite element or finitedifference methods, if
appropriatecare is taken for singular integrals[12,13]. This
advantage isery importantandmakes the BEM more attractive
than other methoddiecause irinverse analysis only a limited
number of measurementare available and hence the
computational results should be kept to &ecurate at each
iterative step. From thesesasons theboundary element
methods have been employed for inveasmlysesand many
successful resulisave beemeported inRefs.[1-5, 14].

INVERSE ANALYSIS VIA BEM AND FILTER
THEORY

In the filter theory, it isassumedhat measured datencludes
errorswith a Gaussian distribution. There isthe following
relationshipbetweerthe observation vectay of measured data,
andthe state vectoz of the parameters corresponding ttoe
unknown information to belentified,that is,

Yk =h(z) + vy

©)

The nonlinear function igxpandednto a Taylorseries with
respect tahe state vectorand higher-ordetermsareneglected.

Thus, wecan obtain alinearizedrelation of equation (3) as
follows:

Mk = Y = N(Ze-1) + Hi Zey 4)
wherek denotesteration counterand
L g ®)
e = ZEI
g Zj g|<=Azk—1

This implies that the@ssumedralues of theparameters can be
modifiedusing the following relation:

2 =74+ Kk[yk - h(ik)] ©6)

where Z, is an estimatedet of theparametersz at thekth
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iteration, and Ky is the filter gain which is given for the
extendealman filter [15,16] by

-1
Ky = Pk/k—lHkT[Hk Pk/k—lHII + Ry )

andfor the projection filter [16,17] by

Kk :[HkTRk_l|'|k]_l|'|kTRk_l ®)
In the above expressiondk-1 is the covariance ofthe
estimationerrors of parameters éeration k-1, and R¢ the
covariance omeasurement errors iéération k.

In the inverse analysisising the filter theorymentioned
above, the sensitivity matrikly is computed byneans of the
finite differencemethod, so that thigoundaryelement method is
twice applied tocompute the physical quantities aach
iteration.

The main flow of theroposed inversanalysis is illustrated

in Fig.1. It is aneasy matter taeplacethe filter algorithm
shown in the figure with the standard optimization
technique[18].
Start
Read initial value Z, , Py
[
Read obsevation vector Y
and covariance of errors R
k+1- k

>
»|

Compute obsevation matrix using BEM

h(Z)

Computefilter gain

Case of Kalman filter
-1 _ -1 _

Ki = ReraHy HkPk/k—1H1<T+Rk] Kkz[HkTRlek] HR!

[
Renew state vector

4 =54+ Kk[yk - h(zk)]

Yes

End

Case of projection filter

Ll Zw =1 2%
Pk =1 Bk

Fig. 1 Mainflow of inverse analysis

DEFECT DETECTION AS
DYNAMIC PROBLEM

To evaluate safety aeliability of structural components, it
is important to estimatenon-destructivelythe location and
shape of an internal cavity erack. Here, weshall introduce
one of such investigations[18-21] using th@aundaryelement
method for steady-state elastodynamics.

For theelastodynamic inversgroblemunderconsideration,
we canuse themeasured data odisplacements, strains, or
naturalfrequencies as additionadformation. In the following,
an investigation[21,22] will be shown in which the
displacement respons@se measured analvailable for inverse
analysis.

It is assumedhatdisplacements atomeselectecboints on
the boundary are measuredhen the structural component is
subjected to aime-harmonic excitation. Using thesata as
additionalinformation we want taletecthe positionand shape
of an internal cavity. The cost function defined as a square
sum of thedifferencesbetweerthe measuredlisplacementsnd
computedones by theboundaryelement method. The inverse
problem is thensolved by minimizing the following cost
function:

INVERSE ELASTO-

(9)

where Uj is a displacementomponentand the superimposed
bar denotethe measureane.

There areinvestigation[18-20] of this problem using the
conjugategradient method obptimization. In the following,
however, we show another studging the Kalman filtetand
the BEM[21,22]. Todemonstratehe usefulness of the inverse
analysis method, numerical experimentriedout for a few
simple examples in two-dimensional problems. Ilassumed
that the shape of cavity is elliptend hencethe parameters to
be estimated can bexpressed inerms of five parameters as
follows:

z={x %, ab6}" (10)
where X; and X, arethe coordinates othe centerpoint of the
cavity, a and b arethe lengths of two principahxes of the
ellipse,and 6 the angle of the short axis with the axs

In Fig.2 is shown theumerical example with one elliptical
cavity in therectangulacomponent of horizontaide300[mm]
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x vertical side200[mm]. The component ifixed on the
bottom side and subjected to d@ime-harmonic excitatiorp at
point F1, andthe cavity to beestimated idocated ashown in
the figure with the parametersz={-70-20201045°%} .
Computation ofinverse analysis istarted byassuming the
cavity as acircle located athe centerpoint of the component.
The material constants of isotropic elasticignd other
computationatata areassumed afollows:

Young's modulug€=210[GPa]
Poisson's ratiov = 0.3
mass densityp = 7.85x10%[kg / m?]
time-harmonic excitatiorp = 0.15exp(i ct) [GPe]
angularfrequency ofexcitation

w =10,000[rad / 5| (J1,600[HZz]
covariance ofmeasurement errog? =1.0 x107°

It is further assumethat thedisplacementare measured dhe
six points on thdoundary ashown inFig.2.

X2
D A C
(-150,100) ¢ ® (150,100)
p
Target + Fl [«
N VAR IR il
y \\ /& Xl
! Assumed
(-150,-100) (150 -100)
."’"f A Unt m/
é Dy /

Fig.2 Rectangular componentith elliptical cavity

In the numerical experiment, theneasured data on
displacementsiregiven by the computational resultbtained
by the boundaryelement analysis using the target values of
parameterg ={-70 - 202010 45°} . Table 1 summarizes the
results obtained, which shows thafter 17 iterations a
satisfactory estimationan be obtained. It imteresting to point
out thatinverse analysis was sometimest successful when
the defectwas assumed asomedifferent positions. In such
cases, theso-calledmultiple excitationmethod[21,22] is very
useful to strengtheadditionalinformation for inverse analysis.
This method usemeasured databtainedunder sset ofdifferent
excitations for inverse analysis.

The aboveapproach isextended taletection of crackand it
is discussed in20-22] how to select themeasured data in
consideration okensitivities withrespect tothe parameters to
improve the robustness of inverse analysiswever, it should
be mentionedhat the electrical- potential methods of inverse
analysis[23faremost successfullgpplied to detection of cracks
in structural components efectricity-conducting materials.

Table 1 Estimated results

Parameters| Target values Estimated Iterations
X -70 -69.985
X2 -20 -19.978
a 20 20.007 17
2 10 9.994
45° 44.908°
ESTIMATION OF EROSION CURVE IN BLAST

FURNACE REFRACTORY

Now, we shall try toidentify the erosioncurve of the
refractory inthe blastfurnacehearth. From anacroscopigoint
of view, the problem of the blatirnace undeiconsideration
can bemodeled as ateady-state heat conductjroblem in an
axisymmetric body subject to theboundary conditions of
axisymmetric distributionWhenthe boundaryelement method
is applied tothis problem, theéboundaryintegral equation for
three-dimensional problems is transformed into the
two-dimensionaboundaryintegral equation orthe meridian of
the axisymmetric body. Thieoundaryelement methods have
beenalreadyestablished for the axisymmetric problems[24,25]

For the inverse problemnderconsideration, Yoshikawa et
al.[26] already reported on anverse analysis method in which
an optimal combination ofparameterswas found under a
limited number ofparametervalues. There can be amore
sophisticated approaethich uses a filter theory to takecount
of measurement errors ithe inverse analysis. The author
presents such an approach, in which bwndary element
methodwith quadraticinterpolationsand the filter theoryare
combined tause for the inverse analysis of the problem[27]. In
this article, only the outline of the investigation will be shown.
The two filter theories, Kalmaandprojection filters,are used
for inverse analysisNumerical experiment igarriedout, and
the resultsobtainedare discussedherebythe advantagesand
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the disadvantages dhe filter theoriesre revealed.
Analysis Model

Figure 3 shows the blagtrnacehearth which isassumed to
be rotationally symmetric about Z axis. The erostarve is
considered asthe isothermal curve of the solidification
temperature ofmolten metal (1150 °C ). We considerthe
steady-state heat conductiproblem subject to the Dirichlet
boundarycondition on the internadurface ofthe erosion curve.
The otheboundaryconditionsandconstants in hedtansferare
assumed alllows:

1) The heat conductioncoefficient of
A =13[W/mK].

2) Thesidewall is subject to eoundarycondition of heat
transfer inwhich the ambientemperature is30[°C] and
the heatransfer coefficient is7o[Wm?K].

3) The bottomsurface issubject to aoundarycondition of
heat transfer irwhich the ambientemperature is35[°C]
andthe heatransfer coefficient is7To[wm?K].

4) The uppersurface issubject to aradiabaticcondition in
which g=0.

As the parameters to be identified, we tallee distance
between a fixegoint on the Z axisand apoint on the internal
boundarywhich lies on theay issued fronthe fixed point with
a given angle as shown Fig.3. The erosioncurve isdrawn
by the C-spline functions using thestimated values ofhe
parameters. It is assum#tht 61 thermocouplesre located on
the side wall and on the bottom surface and that these
measurements can hesedfor inverse analysis. In general,
however, inverse analysis is likely to be unstable or ill-posed,
when the number of measurementsedfor analysis istoo
small or too large. Famumerical analysis, we shall use only
the number of 7 among theseasured datayhich arechosen
in the order ofhigher sensitivity withrespect tothe parameter
values ateachiteration. That is, theseven measuringoints
which have largest absolute values seisitivity defined in
equation (5) by oh,/0z,| - Thesepoints are different at each
iteration, but in thijmumerical example nappreciatalifference
can be observed. Hencthe seven measuringoints are
selected agpoints having highest sensitivities withspect to
the initial parametewvalues, as shown in Fig.3 by smalfcles
on theboundary. In addition, we assurtieat themeasurement
error iswithin 10 % of the highesemperatureneasured athe
seven points mentioned aboveand that the covariance of
estimationerrors is1.0 x10™*.

refractory is

10.0

9.0
8.0
7.0
6.0
5.0
4.0-
3.0
2.0+
1.0+
0.0+

rOOT-0— T T T
00 10 20 30 40 50 60
R

Fig.3 Analysismodel ofblastfurnace hearth

In Fig.4 is shownone of the numerical resultsbtained
using the Kalman filter when thaitial values of parameters
arenot appropriately assumehd hencethe final estimation is
less satisfactory, in particulamearthe symmetrical axisvhere
the estimated erosioourve isnot fitted to the target geometry.
In this computation, calculation hagen terminated aftet00
iterations, although noonvergence is realized.tiie projection
filter is used inthe inverse analysisderthe same assumption
for theinitial values of parameters, worse resulise obtained
ratherthan thecase ofKalman filter. It mayimply that the
projection filter is rather sensitive for theinitial values of
parametersthan the Kalman filter. This propertwill be
investigated in théollowing.

Now, we shallcarryout inverse analysigsing the two filter
theories for the sake of comparison. \WWerform inverse
analysis with the initial valuedeviating from the target values
between -15%nd+15%. Two typical initial assumptions of
the erosioncurve with deviations 10%and +10% from the
target valuesreshown inFig.5.
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Fig.5 Initial guesses of erosiaurve

Table 2 Difference between anothnitial geometries

Difference to the target ] o
geometry [%] Kalmanfilter | Projectionfilter

s o (33) o (3)
+10 O o (4)
b 0 ° (7)
-5 o (8) o (3)
10 ° (30) o (7)
-11 o (38) x
-12 o (67) x
-13 O X
-14 0 <
-15 x N

The numerical resultare summarized iTable 2, in which
computation isterminated afterlO0 iterations. In this table,
the symbol O denotes convergence aftée iteration number
shown in parentheses, while th&mbol x does no
convergenceand the symbol A does no convergendeut
indicatespossibility of convergence after a larggumber of
iterations. FronTable 2, it can be se¢hat the Kalman filter
is rathertough than the projection filter: Even if the initial
guess ofparameters iot so good, Kalman filtecould still
give an approximatsolution of thenverse problem.

APPLICATION TO TEMPERATURE CONTROL
Study on Known Heat Input

Most of control problemsare formulatedinto the inverse
problems whichcan be solved by the method of inverapalysis
discussed irthis article. As one ofuchexamples, waow consider
the control oftemperature in a solidinder heat conduction.The
problem is stated as iRig.6: Wewant to control thetemperature
on part I, of the boundary asequired, bychangingthe temperature
or heat flux on the boundary parf. . The problem of this
temperatureontrol is thenformulatedinto such an inverse problem
that the optimal controllable heat load should bdound by
minimizing a cost function representindpe differences between
the required anctalculated temperatures on the boundary gart
For these activeontrol problemsthe boundary element method
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can be successfullysedtogether with theoptimization procedure temperature on EF afteptimally controlled.

or also the filter theory. In thefollowing, a couple of H 15J‘10 50 b c
investigationsalong this linearebriefly explained . S G F E S
ﬁergt)\:‘\mx /‘q Required response o 210 ) (010\769\
axt) up(xt) or gy(xt) ®l | Holel]" Hole2
$ ) e
heat |oad AL 35 30 B
o et et oad 10 it o
T Udxt) orgc(xt) BoundaryConditions
BC,HA: g=0
Fig.6 Schematidllustration oftemperatureontrol DEFG: h(t)=240W/n’°C,u,=f(t)

AB,CD,GH: h(t):2100W/n12°C,ua:30°C
We can treat the problem of temperatammtrol in such away

that after assuming theontrolling heat load on/ ., we compute Fig.7 Analysismodel ofinjection mold
the responses oh, by the boundary element methaddcalculate
the cost functiordefined by

W= S DDJ(XI’td)_ur(XI’td)DZ
I=ld=15 u, (%, tg)

where U(X,ty) denotes the temperature at evaluatpwint X, at
time ty, and U, (X,ty) the requiredtemperature on the boundary
part [, . Then, the parameter values of control hkemid are
modified by the standardptimization technique or by the inverse 1 \
analysismethod as shown ifFig.1. Inthe following, we shall | \
show some of the numerical results[28-30] obtained using the

boundary element method based on the Laplacesform.

Numericalsimulation on theéemperatureontrol in an injection 100
mold of plastics is presented. A two-dimensionatodel of
injection mold with two equalholes is considered as shown in
Fig.7. The sideDEFG is incontact with injectegblastics. Wewant
to keep the temperature on the surfaceuREormly distributed, by
changing the temperature of the twdioles. The required
temperature on EF is assumed as°@0 Seven evaluatiopoints
aretaken on the side ERnd 31points onthe time axis. It is
assumedhat the temperature on the surfaces of hates is uniform
during the whole timeand atthe beginning of inverse analysis it is

200

(12) ]

=
[
o

Temperature °C

0 10 20 30
Time s

Fig.8 Temperaturehange in injecteglastics

30°C. Thehistory oftemperature of molteplastics isassumed as
shown in Fig.8. Without anycontrol, the history of temperature
on EF can be calculated as showrFig.9.

The change of temperature on the hoksface isexpressed in
terms of B-spline functions, and their coefficients are the
parameters to be estimated by inveasalysis. In Fig.10 ishown
the optimized history of temperature on thecooling surface
obtained by inverse analysis.Figure 11 shows théistory of Fig.9 Temperaturdistory on EF withoutontrol
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Fig.12 Schematic illustration aemperatureontrol for unknown heanput

Study on Unknown Heat Input account ofthe temperaturecontrol for each of small time

It is interesting to note that the same inverse analysis intervals. The control hetdad is approximated anstant or
method can be applied tmorecomplicated cases iwhich the smooth by B-splinesduring the time interval, as shown in
input heatoad onthe boundarypart /', is not known[31]. Fig.13, andthen the inverse analysis mentioned in the previous

In Fig.12 isillustrated a schematic view of tlhemperature section iscarriedout. A few examplesare simulated by means
control for thecases ofunknown heatnput. Wehave to take of this procedure anthe resultobtainedarediscussed, whereby
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the usefulness of the inverse analysislésnonstratedBecause
of spacelimitation, theirdetails cannot be presented inthis
article. Those whaare interested irthis approach areindly
asked tcseethe originalpaper[31].

A

@ | 1| -

t

T, T T3 Ty

W T T

Fig.13 Approximation of contrademperatureia two ways

CONCLUDING REMARKS

The inverse analysipresented inthis article canalso be
successfully applied tenany inverse problems in engineering
mechanics. Basically, in the inverse analysis methodbawe
to calculatehe gradient of acost function or sensitivities of the
measured dataith respect tdhe parameters to bestimated. If
the values ofparameters ar@ssumed to be nedhe exact
values, inverse analysisan be very successfullgarriedout.
However, inverse analysigould beless successfudlifficult or
almost impossible,when the initial assumption of the
parameters iot suitable tgperform inverseanalysis. This
occurs frequently iranalyses of almost all inverse problems.
Therefore, it is inevitably required to accessthe parameter
values close to thexact ones before applying the inverse
analysis methodliscussedhere. Forthis purpose, wéave to
usea priori information as much as possible. wibuld also be
useful from the engineeringoint of view that we first try to
obtain an approximatsolution under rough assumptions or
constraints on theange of parameteralues. To thisend,
genetic algorithms or other methodmsed on knowledge
engineering seem to be vepyomising. Then, we apply the
present method of inverse analysis to getfmedsolution of
the inverse problem. Ifthis two-stepsolution procedure is
applied tothe inverse problems diand, we couldalmost
always obtain the satisfactosglutions.
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