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ABSTRACT

A tutoria ispresented of the subject of parameter estimation with particul ar referenceto examplesin heat transfer. Parameter estimation
isdifferentiated from function estimation, whichisclosely related . Parameter estimation is presented asonedealing with experimentsand analysis
with arelatively small number of parameters and as a consequenceis usualy not ill-posed. In contrast, function estimation usually has alarge
number of parameters and usualy isill-posed. Both linear and nonlinear estimation are covered. Of particular emphasis is the concept of
sequential estimation in a particular experiment (adding one measurement after another) and over experiments (using prior information).
Sequential analysis does provide a means to treat some aspects of ill-posed problems and is related to Tikhonov regularization. Sequential
parameter estimation also helps to provide insights in the adequacy of the mathematical models and accuracy of the parameter estimates.
Confidence intervals and regions are investigated, including the conservative Bonferroni method. A Monte Carlo study is given to demonstrate
the validity of the confidenceregions. Sensitivity coefficients are shown to appear in the estimation of parameters, determination of confidence
regions and design of optimal experiments.

1. INTRODUCTION

The purpose of this paper is to summarize some parameter estimation concepts. Some of these may be colored by applicationsin
experimental heat transfer. Parameter estimation provides an analytical means of estimating constantsin mathematica model s given appropriate
measurements, building mathematical models and giving insight into the design of experiments. Both linear and nonlinear estimation problems
exist, withthelatter being much moreimportant. However, the conceptsare easier to understand for linear cases. Many of the pointsgiven herein
are expanded in Beck and Arnold (1).

In the past three decades many papers and books have been written about parameter estimation in engineering. The name “ parameter
estimation” has not been universally used for the same process. Some other names, sometimes with dightly different connotations, are nonlinear
parameter estimation (Bard ( 2)), nonlinear estimation or regression (Seber and Wild (3); Ross (4)), identification , system identification
(Goodwin and Payne (5); Eykhoff (6); Ljung (7)), inverse problems (Alifanov (8); Alifanov, O.M., E.A. Artyukhin and S.V. Rumyantsev (9);
Trujillo and Busby (10); Hensel (11); Ozisik (12); Isakov (13); Tarantola (14); Kurpisz and Nowak (15)), dataanalysisor reduction (Bevington
(16)); Menke (17)), nonlinear least squares (Bjorck (18); Lawson and Hansen (19); Box and Draper (20)), mollification method (Murio (21)),
ill-posed problems(Beck, Blackwell and St. Clair (22); Murio (21); Tikhonov and Arsenin (23) and others. An engineering journal, Inverse
Problemsin Engineering , is devoted partly to parameter estimation in engineering.

An outline of the remainder of thissurvey isnow given. First, some distinctions between parameter and function estimation are given.
Then some common research paradigmsin heat transfer are given. Next the main mathematical formalism startswith adevel opment of sequentia
estimation over experiments for linear problems. This topic leads to a brief discussion of ill-posed problems and Tikhonov regularization.
Nonlinear estimation starts with amatrix of the Taylor series expansion and then the Gauss method of minimization. The survey ends with an
introduction to confidence regions and mention of optimal experiments.

2. PARAMETER VS. FUNCTION ESTIMATION

Inverse problems can be divided into two classes: parameter estimation and function estimation. | have found that distinction to be
helpful and will describewhy. Thedistinctionisnot awaysmade, partly because many problems can betreated as function estimation problems
and thusinclude parameter estimation problems. |n my mind parameter estimation hasasomewhat different connotation than function estimation
in heat transfer.

| will preface some of these remarks with the observation is that | am speaking as an engineer. Mathematicians have a somewhat
different view as indicated by Prof. P.K. Lamm (24), “Mathematicians generally think of "function estimation" as the determination of an
infinite-dimensiona function (not just afinite-dimensional discretization of afunction, even though the dimension may be quitelarge). But this
is a theoretical concept, and when one goes to implement the theory, one typically resorts to finite-dimensional approximations. This
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finite-dimensional approximation should converge to the infinite-dimensional function that is being sought.”

Some aspects are now given which, if not unique to parameter estimation, are emphasized more than in function estimation.

1. A limited number of parameters are estimated. In heat transfer the number can be as small as one and might be as large as half a
dozen and on occasion could even go even higher.

2. The problems are usually not ill-posed but are usually nonlinear even if the describing differential equationislinear.

3. The parameters frequently refer to a physical property, such as thermal conductivity for a specified material at a particular
temperature. These properties are hot subject to human adjustment, as for example, a heat flux functionis.

4. Parameter estimation analysisis not complete without giving an estimate of the confidence interval or region.

5. Model-building is an important part of parameter estimation; that is, we have aphysical process that we may not understand and we
wish to model it more perfectly.

6. Careful examination of residuals (measured val ues minus estimated val ues of measured variables) is done to check the adequacy of
themathematical model and to understand the measurement errorsmorefully. Theresidualsshould not haveacharacteristic signaturethat persists
experiment after experiment. Such a characteristic signature indicates a bias which affects the parameter estimates. This bias may give insight
into improvements in the model (model-building). If the bias cannot be removed, it is desirable to quantify the effects of this bias.

7. The chosen sum of squares or weighted sum of sgquares function should be selected based upon the measurement errors.

8. A powerful way to investigate the adequacy of the model and experiment isto estimate the parameters sequentially. These parameter
estimates should approach constant values rather than drifting upward or downward at the end of the analysisinterval.

9. Optimal experiment design is very important in obtaining the best accuracy of the estimates.

10. Insight is of primary concern while computational efficiency may not be.

In contrast to parameter estimation, function estimation usually has the following characteristics.

1. The number of parametersto describe afunction is usually large, maybe in the hundreds or even thousands.

2. The problems are usually ill-posed and might or might not be linear.

3. Computational efficiency is important. This may lead to avoiding calculation of the sensitivity coefficients. Insight into the
sensitivity of various componentsis not usually of interest.

4. Confidence intervals, model building, residual analysis, optimal experiment design, statistics, and sequential parameter estimates
arerarely considered.

3. COMMON RESEARCH PARADIGMSIN HEAT TRANSFER

Two types of paradigms, denoted A and B, in heat transfer research are commonly used. 1n these paradigms the emphasisis upon the
analytical operationsfor estimating the parameters or modeling aprocess. The paradigmsmay be used independently or simultaneously. A third
and less commonly used paradigm, Paradigm C, exploits the concepts of inverse problems including parameter and function estimation. This
paradigm has greater power for modeling and estimating parametersin heat transfer phenomena.

Although the two common research paradigms do not include al approaches, the distinctions help to provide insight. Paradigm A
involves determining asingle unknown. Paradigm B has the objective of verifying that a proposed mathematical model is satisfactory.

In Paradigm A, the experiment may or may not be complex. Infact, experimental complexity might be needed to simplify theanalysis.
The essence of this paradigm is that the analytical model for determining the unknown parameter is asimple algebraic expression for estimating
asingle parameter. For the Nusselt number, Nu, being the unknown parameter, the model might be

u-= __a
KT(0)-T.) @

where q is the measured surface heat flux, T(0) is the measured surface temperature, k is the fluid conductivity and T isthe measured fluid



temperature. Only one parameter is found for each experiment, such as finding the Nu value at a given Reynolds number (or fluid velocity).

In Paradigm A, the mathematical model is made as simple as possible in terms of the measurements. In some experiments, periodic
conditionsare used to obtain solutionsin terms of the amplitude and phase shift, which are simple functions of the desired parameters. Also some
experimentsmay be quasi-stateto simplify the solution. A primary emphasisisupon devel oping and using asimplealgebraic solution for asingle
parameter. Examination of the validity of model is not usually a part of this paradigm because residuals are not available.

In Paradigm B, an incompletely understood heat transfer process is investigated in two distinct and complementary ways: one uses
experiments and the other uses analytical or computer modeling. An experimental group produces temperatures or other quantities measured
as a function of time or position. The experimental group then in effect throws the data “over the wall” together with a description of the
experiment to the analytical group. Without using these experimental data (but possibly using information from handbooks or independent
Paradigm A experiments), analysts build a mathematical model, which may be a differential equation (or set of equations) and appropriate
boundary conditions, source terms and initial conditions. Usually finite differences or finite elements are used to incorporate the model in a
computer program. Then alarge computation is performed which includesrel evant physicsand mimicsthe experiment; finally, agraph of overall
resultsis produced. Characteristically, the comparison of the graphical resultsisjust visual and not quantitative. Instead the agreement almost
alwaysissimply said to be "satisfactory" or even "excellent", indicating that the model is al so satisfactory. Animportant point isthat the results
of the experiment and analysis are purposely kept apart until the last possible moment, and then compared only on the same plot. Usually the
resultsof the model are not used to modify or improve the experiment. Also the model may not be modified based on what islearned from the

experiment.

In Paradigm B theintent isto avoid any “knobs’ to turn to get agreement between the model and the measurements. Such an approach
is appropriate in areas where the fundamental model isknown. For cases when the solid or fluid changes undergoes transient and permanent
changes because of phase transformationsin metals, combustion, ablation or curing, Paradigm B isfrequently not powerful enough to determine
the appropriate model, parameters and/or functions.

Paradigm C utilizesthe power of inverse problems. The emphasisisupon combined experimentsand analysis. Theparadigmisdirected
toward understanding some physical heat transfer process which has some unknown aspects. Although the unknown aspects might be the
appropriate model (differential equations, initial and boundary conditions), it could also involve estimating several unknown parametersor even
afunction. A fundamental difference between paradigms A and C are that in paradigm A the model is a simple algebraic one for asingle
parameter whilein paradigm C, the model can be complex involving the solution of partia differential equations and more than one unknown.
An example of unknown parametersis the estimation of temperature dependent thermal conductivity and volumetric heat capacity of anew
composite material from transient temperature measurements. In this case both properties might be modeled for a moderate temperature range
as alinear function of temperature, resulting in four parameters with two for each. In experiments even as simple this example, the design of
the experiment is important and can greatly influence the accuracy of the estimated parameters. This then means that the experiments should
be carefully designed; selection of the basic geometry (plate or radial), size of specimen, type and time variation of boundary conditions, types
of sensors (temperature and/or heat flux) and location of sensors are al important considerations.

4. SEQUENTIAL ESTIMATION OVER EXPERIMENTSFOR LINEAR PROBLEMS

It is customary for experimentalists to analyze each experiment separately for parameters, even though the same set of parametersis
being estimated or overlap exists between estimated parametersin subsequent experiments. Another approach isto analyze the datafor all the
experiments at the sametime. In a series of experiments, one experiment may be performed at given conditions and at a given time; others are
performed, possibly days or weekslater. For example, thermal diffusivity isfound using thelaser flash method. Severa experimentsfor agiven
materia and temperaturelevel might be performed and each experiment isanalyzed separately for thethermal diffusivity. A better approach might
beto combineall the datato obtain the estimated diffusivity at that temperature. One can also simultaneously estimate for parameters describing
atemperature (or other) dependence.

Sequential estimation can be accomplished in the fairly straightforward approach described in this herein or using the more general
maximum a posteriori method, Beck and Arnold (1). An objective in this survey is to simplify the presentation by minimizing statistical
considerations, although they areimportant. Furthermore the beginning analysis considersthelinear problem, which islinear because the model



islinear in terms of the parameters.

Suppose experiment 1 has been performed yiel ding the measurement vector y, (dimensionsof n x 1) for conditionswhich are described
by the sensitivity matrix X,;. The subscript “1" denotes experiment 1. The matrix X,, which we shall call the sensitivity matrix, can be written
in detail as

Xy Xy, - Xp
Xy Xy o XP

X, = 2
X1 X - an

This matrix has dimensions of n x p, where n isthe number of measurements and p is the number of parameters. The corresponding model is
1. = X,B, where 3 isthe parameter vector with p components; in genera nismuch larger than p. For thefirst experiment, the measurementsand
the model are related by

Y =Mt € 3

wheree, isthemeasurement error vector for experiment 1. Another experiment isperformed and the measured vector isdenoted y, and the model
ism, = X,P. Noticethat the same parameter vector is present for both experiments.

The criterion chosen to estimate the parameters depends upon the nature of the measurement errors. We can minimize aweighted sum
of squares function for each experiment separately,

Sl = (yl - Xlﬁ)Twl(yl - X1B)! Sz = (y2 - XzB)Twz(yz - XzB) (4)

The weighting matrices, W, and W,, are selected based upon the statistical characteristics of the measurement errors. If these errors conform to
the statistical assumptions of having constant variance and being uncorrelated, the weighting matrices can be replaced by the identity matrix,
I, permitting the use of summation notation,

S =Z (yi ~ (X1 B+ X By +Xipﬁp))i o

n
i=1

The 1 subscript on the far right denotes that the measurement vector y and the sensitivity matrix X are for experiment one.

It isnot necessary that the experiments be similar. Different types of measurements can be obtained and different measurement devices
could be used in the two experiments. The weighting coefficients might be different, athough both ideally should be related to the inverse of
the covariance matrix of the measurement errors (Beck and Arnold (1)). Also each experiment might have a different number of measurements,
n, and n, where n, might be quite different from n,.

The conventional method of analysisisto estimate 3 from each sum of sguares function to get

bi=(XiTWixi)71XiTWiyi' i=1,2 ©



where b; is the estimated parameter vector for the ith experiment. (We pause here to point out that although an inverse isimplied here, this
equation isdisplayed in thisfashion only for our human understanding. Theactual computationsused in solving for the parametersrarely involve
inverses. If aprogram such asMatlab isused, the solution method has been optimized and we need not delveinto it. Weleaveit to the numerical
analysts. However, we prefer the sequential method of solution which is given below.)

A common practice to find the best results for two experiments for estimating the same parameter vector isto usethe average, (b, +
b,)/2. If the two experiments are equival ent in measurement accuracy, that would be areasonable procedure. If the two experiments had different
numbers of measurements or were intrinsically different, the simple average may not be appropriate.

Another estimation procedure is to estimate the parameters using all the data at once, that is, to minimize

SRS ™
The result is the estimator
b, =(XTWX) X Wy ®
where the components are
X=X1, =Wl 0' y:yl ©)
X, 0w, Y,

The extension of eqg. (9) to m experimentsis straightforward, simply having columns of m X; and y; values and adding terms along the diagonal
of W. The 1,2 subscript in eq. (8) means that the data from experiments 1 and 2 are used. More explicitly eq. (8) can be written as

T Ty - T T
by 5 = (X, WX, + X, WoXo) (X Wy, + X, Woy,) (10

which can be extended in adirect manner to more experiments. (Again we point out that the presence of the inverse notation does not mean that
the numerical computation for the estimate will actually use the inverse operation.)
Another method of deriving eg. (10) is now considered. Let

Vi =X W, X, (1)

and we minimize now the function

S, = (¥, = X,B) W, (y, - X,B) + (b, -B)V; (b, -B) (12)



Take the matrix derivative of eg. (12) with respect to 3 to get (Beck and Arnold (2), chap. 6)

V[isn == 2X2TW2(Yz -X,B) - 2Vil(b1 -B) )

Now replacing B by b, and setting eg. (13) equal to O then gives

(XWX, +V b, =X, W,y, +V; ', (14)

Eq. (14) can be re-written several ways. Oneisto solve directly for the estimator to get
b, =(XaW,X, +V;) (X, W,y, +V'b,) (15)

Another way to write isto use the definition of V, given by eg. (11) which yields

bb:(X;WZXZ+X1TW1X1)71(X;W2y2 +XIW1lel) (16)

Using eg. (6) for i = 1 givesan expression for b, that will reduce the right side of eg. (16) to exactly the same astheright side of eg. (10). Hence
b, isthesameasb,,. Conseguently if one experiment has been analyzed to obtain its estimated parameter vector b, the simultaneous analysis
of these two experiments together can be obtained by using eg. (15). Notice that eq. (15) requires only b; and V,;* = X,"W X,. These two
matrices contain all the needed information to combine the two experiments to obtain the new estimate. (More information might be needed to
calculate confidenceintervalsand regions.) It meansthat the n, measurementsfrom experiment 1 can bediscarded if the new combined parameter
vector isthe only one of interest.

One might extend the “sequential over experiments’ concept to the analysis of many experiments, one combining the results of the
previous ones. In thisanalysisthe notation will be changed from that abovefor b and S. Now let b;, V; and S bethe valuesfor al the experiments
simultaneously considered, rather than b, , _;, for example. However, y.,;, Wi,; and X;,, refer just to the (i+1)* experiment as above. For
combining the results of the (i+1)st experiment with the previous 1, 2, . . ., i experiments, the sum of squares function is started with

S.1= Wit X0 BW, (Vi1 — X, 4B) + (b, -B)V (b, - B) 17

where V;* is given by

V= XWX+ XWX, + .+ XWX (18)

Taking the matrix derivative of eq. (17) with respect to B, replacing  with b;,; and setting equal to 0 gives



= 2X W,y ¥y = X300 -2V (b, -b,.) =0 (19)

Solving for b;,, gives

b, = (XiT+1Wi Xt Viil)il(xitlwiqyi i +V;1b i) (209)

Another way to write the estimator for b, isto add and subtract 2X,,," w,,,X;., b; to the left of eq. (19) to obtain

b, =b;+ (xiT+1Wi+1Xi+1 +Viil)7lxitlwi+l(yi+l -X;.4b) (20b)
A sequential expression for V; is
V;1 =Vi111 +XiT(°iXi (@

wherei=1,2,....and V' isap x p zero matrix. (However, as shown later it is sometimes convenient to set V™ equa to adiagona matrix with
“small” elements.)

The implication here is that the experiments are being sequentially analyzed over experiments, rather than sequentially over time.
However, it can also be interpreted as being over time.

It should not be inferred from the above equations that inverses should be used and be humerically evaluated or even that the normal
equations be solved. In our experienceit is very important to design the experiment carefully and then the method of solution is not as crucial.
Nevertheless, agood procedure isto use acomputer program such as Matlab to solve the least squares problems. The algorithmsin aprogram
such as Matlab have been developed by specialists in numerical computations. In Matlab, the operation b = X\y is recommended over b =
(X™X)\XTy, for example. Although the above procedure is efficient, more insight can be obtained using the sequential over time concept
considered next.

Sequential Over Time

The above formulation can be used to develop a sequential over time analysis. Let b; denote the estimated parameter vector for the
previousi measurements and let b, ; denote the estimated parameter vector for i + 1 measurements. We assume that the estimate b; isknown for
the previous measurementsy,, v,, - . ., y; and now the estimated parameter vector b, , isto be found for these measurements plus the measurement
V.1, Which isascalar. The sensitivity matrix for thetimei + 1 is denoted X;,;, a1 x p matrix. Following some notation used in the systems
literature, let

Pi+1 =(Pi71+xiT+1Wi+1Xi+1)71 (22)

Here the symbol P has been substituted for V. (Many times P denotes the covariance matrix of the parameter estimates.) The weighting term
Wi, isascalar and if known would be given the value of the inverse of the variance of v, ;, commonly denoted ., Using the above notation



for the parameter estimator then gives

b.,=b+P, +1XiT+1Wi+1(yi a7 X.40) (23

Some matrix identities are known for avoiding the p x pinverseimplied in P. These are

i+170 i

Pi+1:Pi_Pixi-l;l(xi+1PiXiT+l+\Ni?+ll)7lx' P (24a)

Pi+1XiT+1Wi o Pixi-l;l(xi +1F’iXiT+1 +Wi7+11)71 (24b)

Thefirst of these two equations is called the matrix inversion lemma (Beck and Arnold (1)). It isimportant to note that although Pisap x p
matrix, the term inside the parenthesesis ascalar. Hence, the problem of finding the inverse has now disappeared becausetheinverseis simply
thereciprocal. Theseidentities are now used to obtain a sequential-over-time a gorithm, where “time” can be physical time or any other quantity
to which the i subscript refers. If more than one measurement is made at each instant, the algorithm still can be used by renumbering the
measurements as though each is at a different “time.”

The agorithm can be given by the following set of equations, one used after the other,

p
Au,i W1 kZ; Xi+l,k Puk,i

P
2
Ai+l = 0}+1+sz; Xi+1,k Ak,i+l

K Au,i+1

u,i+1 =

[N

P
€.17 yi+1’kz:1 X1,

Byjia1 =y K8

Puv,i+1 = Puv,i - Ku,i+lAv,i+l’ V= 1‘2""’p

(259)
(25b)
(25¢)
(25d)
(25¢)

(25f)



whereu=1,2,. ..,p. Itisimportant to observe that there are no simultaneous equations to solve or nonscalar matricesto invert with this method.
Thisis asomewhat surprising result and it is true for any value of p> 1. This procedure does require starting values for b and P, however.

Starting Values

Two types of starting values for b and P can be given. Oneisfor the case of negligible prior information and the other caseis for
values from prior information. For negligible prior information, the choice of b, = 0 is usually made for linear problems and for P, a diagonal
matrix with the i™ term on the main diagonal being large compared to the square of the ith parameter value. For the case of prior information
(which could come from prior experiments or the literature), b, is set equal the value given in the prior information and P, might again be a
diagonal matrix with the ith diagonal term equal to the prior estimate of the variance of the ith parameter.

Example 1. Stedl is assumed to be made in different batches over along time period. Information is known about the average of a certain
parameter for these many batches. Now a new batch is made and several measurements are made at successive times (or temperatures or
whatever). For thisbatch of steel, the parameter isto be estimated. For the algebraic model for one parameter, 7, = X, estimatein asequential
manner the parameter in the three ways: a) using prior information and variances, b) no prior information but using variances and c) no prior
information and no variances used. The prior information comes from many prior batches which have amean p = 5 and variance of V = 0.25.
Measurements for the present batch of steel are..

N

[ X Yi g
1 1 3 1
2 2 12 4
3 3 16 4
4 4 17 9
5 10 47 16

For a) all the necessary quantities are given and the above algorithm isused. For b), no prior information issimulated by letting P, equal alarge
quantity such as 50 timestheinitial estimate squared. (Actually avery large range of possible values of P, can be used.) For c), thesamelarge
value of P, isused and the individual variances are set at the same constant value; unity is aconvenient value.

(In Beck and Arnold (1), case @) is called maximum a posteriori estimation; case b) is called maximum likelihood; and case c) is ordinary
least squares. Some additional statistical assumptions are necessary but are not discussed in this paper.) The estimated results are given below.

i B B B

1 4.6 3 3

2 4.8333 45 54

3 4.9697 49412 5.3571
4 4.8421 47373 4.7667
5 4.7875 47183 47154



Several observations can be made based on this example.

1. Thefirst estimates are the most affected by the prior information and the effects of this prior information diminish as more measurements
are used. This can be noted from a comparison of the first two cases.

2. Moreis learned about this particular batch as more measurements are used.

3. Case a) estimates are the least variable and case ¢) estimates the most variable.

4. Case @) estimates are higher than the case b) estimates at each step. Thisisaresult of the prior etimate, u =5, being larger than any of
the case b) estimates. Case @) estimates (that is, maximum a posteriori estimates)are "regressed toward the mean."

A Matlab program to obtain the results for this problemis given in Table 1.

Table 1 Matlab program for Example 1

%Program for Example 1

clear all; format short g

icase=2; %icase = 1 for case a@),= 2 for case b), = 3 for case C)
n=5; p=1,

if icase==

%a) Using prior information and variances

mu=5; Pz=0.25; %mu is the prior parameter estimate vector
sig=[ 122 34]; disp(‘cased), %sigissigma

elsaif icase ==

% b) Using variances, negligible prior information
mu=zeros(p,1); Pz=5000*25; sig=[ 1 2 2 3 4]; disp('case b")
else

% c) Constant variances, negligible prior information
mu=zeros(p,1); Pz=5000*25; sig=[ 12 2 3 4]; disp('case )
end

X=[123410]"; y=[312 16 17 47]"; %data

b=mu; P=Pz*eye(p,p); B=[ 0 mu7]; % Starting values

forii=1:n
A=P*X(ii,:)"; %eq. (25a)
Delta=sig(ii) 2+X(ii,:)*A;  %eq. (25b)
K=A/Delta; %eq. (25¢)
e=y(ii)-X(ii,:)*b; %eqg. (25d)
P=P-K*A" %eq. (256)
b=b+K*e; %eq. (25f)
B=[B; ii b7;

end

diso¢ i b(1)), B
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Example2. Experimentsare sometimesperformed at aseriesof different conditions, such asmeasurement of thermal conductivity at aseries
of temperature levels. This example simulates measurement of thermal conductivity as a function of temperature. Suppose the thermal
conductivity, k, of amaterial varies as

k=0, + Bt + IBStiZ (26)

wheret; isthe temperature, T, in °C divided by a which could be 20 or some other convenient value. Let §, =1, §,=0.1and ;= -0.005. Let
the simulated measurementsbeat t; = 1, 1.1, 1.2, . ., 2 for thefirst experiment; 5, 5.1, 5.2, . . ., 6 for the second; and 10, 10.1, 10.2, ..., 11 for
thethird experiment. Inthefirst experiment each of the eleven measurementsis assumed to have normal random errorsin the conductivity with
astandard deviation of 0.01 while the second and third experiments have values of 0.02 and 0.03, respectively. Estimate the parameters for the
appropriate 3 x 3 matrix X"WX; analyze in the following three ways:

Analysis1. Each experiment is analyzed separately for the three parameters and then after all have been analyzed the parameters are found by
averaging the results for each parameter.

Analysis 2. A single average value of the thermal conductivity is found for each experiment. In other words, the model isk = £, and three
different estimated values are obtained, one for each experiment. After these three values are available, the three parameters are found for eqg.
(26) by causing the curve to exactly pass through each of these estimated k values at the average t for each experiment.

Analysis3. Estimateall three parametersat atime starting with thefirst experiment and then using the procedurein this section to add information
from thefirst to get values for the first and second experiments. Then information from both is used with data from the third experiment to get
the final parameter estimates.

Solution The results for the three analyses are summarized in Table 2. Each analysisis now discussed.

Analysis 1. Ordinary least squares can be used for each experiment since the covariance of the errorsis diagonal with aconstant variance. The
estimates are obtained using eg. (6) with the X matrix having rows of [1t, t] for the leven valuesof t; = 1, 1.1, to 2 for the first experiment.
Theweighting matrix W is set equal to theidentity matrix |. The simulated measurementsarefound using y, =k + & where g isanormal random
number with standard deviation of 0.01 for thefirst experiment. The estimates of the parameters using the random number generator in Matlab
is given Table 2 for experiment 1 with the estimates being 0.9036, 0.2235 and -0.0429, which can be compared with the known values for
errorlessdataof 1, 0.1 and -0.005, respectively. Clearly the estimates are not accurate for the second parameter and even more so for the third.
This procedure is then repeated for the second experiment with t, =5, 5.1, to 6 and another set of random errors; the estimates are even less
accurate than for the first experiment. The estimates for the third experiment are till more inaccurate. This is consistent with the modified
sensitivity coefficients (for example, £,X,) becoming morecorrelated for increasingt. Alsothethird experiment isnear themaximumwhich Fig.1
shows to be a difficult region in which to estimate the parameters.

Thefinal estimates for the three parameters are found by averaging the values for a given parameter and the results are given at the bottom
of Table2inthe Anaysis1 column. Theseresultsare very poor (over 550% in error for the first parameter), even worse than those for the first
experiment. Notice the second two parameter estimates even have the wrong sign. Consequently this method of analysisis not recommended.

Analysis 2. Using the same set of random numbers and simulated y; values, estimates for each experiment are found by using the average of the

y; values for the given experiment. Then these three y, values are used for t; values of 1.5, 5.5 and 10.5; these t; values are the average values
for the three experiments. Finding such an averaget valuein other types of experimentsis not aways easy, dthough it isin thisexample. Then
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eg. (6) isused with the X matrix being 3 x 3, W =1, andthey, valuesarethe three averagevaluesin Table 2 (1.1381, etc.). Using thisprocedure
the parameter estimates at the bottom of the Analysis 2 column are found. Note that the estimates are very accurate, with less than one percent
error.

Analysis 3. The method of this paper is used in the solution but the answer for the first experiment is the same asfor Analysis 1; the estimated
parameter vector isdenoted b, and XWX is X,"W,X; for experiment 1. Both b, and X,"W,X; are needed to get the estimates for combining
thefirst two experiments; we can use eq. (15) or eg. (16) sinceV,* = X,;"W,X,. Thefirst two parameters are more accurate than for only thefirst
experiment, but thethird parameter isnot. When all three experimentsare considered in the sequential manner, we obtain 0.9968 and so on. These
values are within about 2% of the true parameter values. Actually these estimates are not as accurate as those given by Analysis 2 final results.
This one simulation does not conclusively demonstrate that Analysis 2 is better than Analysis 3 because other simulations do not give the same
relative results, but it does seem that Analysis 2 isvery competitive for this particular case. Further discussion of this comparison is given next.

It isworthwhileto examinethe underlying implications of thisexample. Analysis2issimpler and givesexcellent resultsin thiscase. Other
cases may not yield the same comparison. Analysis 3 isthe only onethat incorporates statistical information but thisinformation haslittle effect
in thisexample because theratio of the standard deviationsisonly three or less (whichisnot large) and the same number of measurementsisused
in each experiment. In some casesit is not apparent for a given experiment what the representativet (analogousto 1.5, 5.5 and 10.5) should be
used. Moreover, there are cases for which it is not possible to estimate just one parameter in a given experiment, since several might haveto be
simultaneously estimated The conclusion is that Analysis 3 is more robust than Analysis 2 to account for more conditions such as different
number of measurementsand variancesin thevarious experiments. However, Anaysis2issimpler and isthe one frequently used, often without
realizing other analysis methods are available.

Table2 Parameter Estimates for Three Methods of Analysis of the Three Experiments of Example 2

**xxx Eotimated Parameters * *****x

i o Analysis 1 Analysis2  Analysis3 XWX
1 0.01 0.9036 1.1381 0.9036 1 10000 165000 258500
0.2235 0.2235 165000 258500 420750
-0.0429 -0.0429 258500 420750 707330
2 002 -0.4631 1.4009 0.9706 137500 316250 1093100
0.6637 0.1176 316350 1093100 5041400
-0.0589 -0.0853 1093100 5041400 26371200
3 003 19.256 1.5048 0.9968
-3.364 0.1020
0.1592 -0.00512
Final results: 6.5655 0.9984 0.9968
-0.8256 0.1006 0.1020
0.0191 -0.00499 -0.00512
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The sequence of experiments can represent not only separate experiments but also asinglelarge experiment in which each new measurement
itself istreated as being another experiment. Hence we can use the same formul ation to represent not only sequentia over experiment analysis
but the sequential analysis of datain a given experiment. Thisis explained more completely below.

Example 3 Consider a problem for which the model isimperfect because a small heat lossis not modeled. A flat plate of thickness of L
=0.05 misheated at x = 0 with a constant heat flux of 50 kW/m? and has a convective heat transfer coefficient, h, of 0.1 kW/m*K. Thethermal
diffusivity, «, of the material is 50 x 10°m?s and the thermal conductivity, k, is 0.050 kW/m-K. The initial temperature, T,, and the fluid
temperature are both 20°C. The simulated measurements of the temperature are taken at one second time stepsto 100 s. Assuming negligible
errorsin the temperature as afunction of time, calculate sequentialy theinitial temperature and the surface heat flux using asamodel a constant
heat flux at x = 0 and an insulated boundary condition at x = L. Note that the model is incorrect because the heat loss at x = L is not modeled.

Solution The analytical model for the simulated temperature measurements and the model are needed. They are denoted X23B11T1 and
X22B10T1 using the notation of ref. (Beck, et al. (25)}. The solution for the X23B11T1 caseis

ot (y, +Bi?)cos(yxIL)
(yj +Bj? +B|)yj

Labf X
T(xt) =T, » 1 B| 2,21: exp(-¥ (27)

L

where the eigenvalues are the zeros of ¥, tan(y;) = hL/k = Bi, which is called the Biot number. For the given values, Bi = 0.1. The solution for
the X22B10T1 caseis

Llat 1 X at cos(mjx/L)
x,t) = +_q _+_7_+ E ex s 2 _— 2
D =To kiL?z 3 L 2 L P ) j? (28)

Thedimensionlesstimeof at/L?for one second is0.01 so that the maximum dimensionlesstimeis 1.0. Thesimulated measured temperatures
are obtained from the X23B11T1 equations using T, = 20°C, Bi = 0.1 and gL/k = (50 KW/ - 0.05 m)/0.05 kW/m-K = 50 K. The temperatures
for both cases are shown in Fig. 2 for the same given initial temperature and heat flux values. For our purposes, assume that a program has been
written to obtain these temperatures at both x = 0 and x = L, which will be simply loaded into our Matlab mfile or into whatever program s used.

The greatest differencesin the temperatures of the two modelsis at the end time and are-1.11 and -2.86 for x = 0 and L, respectively. The
differences between the two curvesfor agiven xin Fig. 2 are not random. Nevertheless “standard deviations’ for both |ocations are computed
to be 0.418 and 1.2756.

The sensitivity coefficients are found by taking the partial derivative of T with respect to T, and q for the X22B10T1 equation. Then the
sensitivity matrix X has two columns, the first of which is a vector of 100 ones and the second column has components obtained from the
expression inside the brackets of the X22B10T1 equation. The componentsin the brackets are found for x = O first and for 100 times; only the
bracketed term is needed because the sensitivity coefficient for g is L/k times the bracketed term and L/k is 1.0 KW-K/m?,

Figure 3 shows the sequential estimates of the parameters. Two cases are shown, one using the simulated measurements at x =0 and the
other at x= L. Estimatesat any particular timearethe valuesfound using thedatauntil that time. Theinitial temperatureislittle affected by using
theimperfect model but the estimates of the surface heat flux are noticeably affected, particularly for the measurementsat thex= L location. The
x = L estimates start at zero becausethe prior parameter estimates are set at zero and the sensitivity coefficient for g isnear zero at the small times.
(Sensitivity coefficients for q are proportional to the temperature rise, which for x = L is essentially zero until time5s.) Sequentia
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estimates at x = L for larger times decrease with time. The largest error in the estimated g (neglecting the initial times) is at the end time when
the error is about -6.6% for the x = L case. The important point isthat the q sequential estimates do not come to a constant in time but instead
continually change. Provided a sufficient number of measurements have been taken, adrifting downward or upward of parameter estimates after
thelast half of the experimental timeindicates animperfect model. If caused by animperfect model, thisdrifting behavior isfrequently confirmed
by characteristic signaturesin theresiduals. Characteristic signatures are repeated in successive experiments and are apparent with different sets
of random errors.

Figure 4 showstheresiduals for both thex =0 and x = L cases. The residuals happen to be nearly the same shape and magnitude. If small
random errors are present, the same characteristic shape of the residualsis observed. However, if the standard deviation of the simulated errors
is0.3°C (about the maximum residual in Fig. 4 ) or larger, the characteristic signature may be difficult to discern.

The variation of the heat flux in Fig. 3 suggests that the true heat flux isnot a constant but istime variable. Althoughiit isactually constant,
investigate a possible time variation. For simplicity, consider the case of four constant segments. For zero random error measurements at x =
L, the estimated heat fluxesfor theintervals of 0 to 25, 25 to 50, 50 to 75 and 75 to 100 s are 48.398, 46.502, 45.596 and 44.4, respectively. The
values for the correct model (X23) are al 50 KW/m? so that the error becomes as large as -11%, which magnitude is almost twice as large as for
the constant g analysis. An important observation isthat the use of an imperfect model can lead to the estimation of time-variable functionsthat
are less accurate than if the function is treated as a constant. It is possible that "more is not better than less'. In parameter estimation,
parsimonious models are sought, that is, ones with the minimum number of parameters.

The presence of drifting parameters estimates near the end of the estimation time interval coupled with residual signatures indicates an
imperfect model. Thisimperfection can bein the physics of the model, such as not modeling heat loss. It could be that the process needs more
or different parameters, including treatment of atime-variable process. Engineering judgement is clearly needed in making these distinctions.
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Figure 2 Transient temperatures at x = 0 and x = L for constant heat flux at x = 0 for insulated x = L surface (X22 case) and for convective heat
loss at back surface (X23 case with Biot number = 0.1).
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Figure3 Sequentially estimated initial temperature and surface heat flux for heat loss at back surfaceand no randomerrors. Two casesconsidered:
simulated temperaturesat x =0 and L surfaces. Biot number =0.1.
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Figure4 Residualsfor parameter estimates of initial temperature and surface heat flux for model which does not treat heat loss at back surface.
For simulated measured temperaturesat X =0 and L surfaces and no random errors. Biot number = 0.1.
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5.ILL-POSED PROBLEMS: TIKHONOV REGULARIZATION

Some physically important problems are ill-posed. Such problems are extremely sensitive to measurement errors. The use of prior
information, asin sequential over experiments, can stabilize these problems. 1n 1943 A.N. Tikhonov wrote a paper in Russian about the stability
of inverse problems (26) and in 1963 he published apaper on theregularization of ill-posed problems (27). Hismethodsarerelated to using prior
information. However, his methods were not implemented in a sequential manner, which is possible and has important implications. The
Tikhonov approach is emphasized below but it is related to the methods described above.

The sum of squares function that is minimized in the Tikhonov method is

Sr=(y-m)W(y-n) +of HHB (29)

where nisthemodel vector, aisthe Tikhonov regul arization parameter, and H depends upon the order of regul arization (whichisdiscussed more
below) . Notice that eq. (29) isthe same as eq. (12) if b, isO and V7' isset equal to «H™H. In general, if little prior information is available, V
is chosen to be diagona with large diagonal components and then the inverse would have small components on the diagonal. In Tikhonov
regularization, « ischosen to be small. More specifically, it is chosen such that the sum of squares given by

y-n'y-n) (30)

is reduced to the anticipated level, which is called in the Russian literature the discrepancy principle (8, 9). Seealso Osizik, (12), p. 607 and (22),
page 140. For the caseof constant variance, uncorrelated errors, the expected the sum of squaresisnd?. The Tikhonov parameter «isthen chosen
to be about equal to thisvalue.

One function estimation problem is the inverse heat conduction problem, which is the estimation of surface heat flux from interior
temperatures. This problem can be ill-posed when the time steps are small and there are about as many unknowns as measurements, or nisabout
equal to p. In these cases the sum of sgquares function can be reduced to almost zero. As that condition is approached, however, the solution
becomes extremely sensitive to measurement errors, even becoming unstable. By not forcing the sum of squaresto aminimum it is possible to
reduce oscillations and even stabilize the solution. In effect, one is introducing some bias to reduce the variance of the solution.

Thematrix H can be different expressions corresponding to what is called zeroth order, first order and higher order regularization. Each of
these corresponds to difference approximations of derivatives of various orders. The zeroth order regularization is the most common and its H
issimply the identity matrix |; the effect of zeroth regularization isto bias the parameter estimates toward zero. The first order regularization
corresponds to the first derivative with time, if the desired function is afunction of time. For first order regularization, H can be given by

(31)

ThisH biases the estimates toward a constant. For further discussion of H, see Beck, Blackwell and St. Clair, (22).
Minimizing eqg. (29) givesin matrix notation,
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bri = (XWX + aHTH) X Wy (32)

As mentioned above, the matrix inversein eg. (32) is shown for our understanding and not for computational purposes. This equation can aso
be implemented in a sequential manner to yield important insights.

Example4 A flat plate of thickness one unit thick issubjected at x = 0 to aconstant heat flux of 0.2. Theinitial temperatureiszero. Thethermal
conductivity and thermal diffusivity areboth unity. Ineach casetheunitsareconsistent. Except for the heat flux, the problem could be considered
in dimensionlessterms. The surface at x = 1 isinsulated. The temperature is measured at that surface a time steps of 0.06 and has uncorrelated
normal errorswith aconstant standard deviation of 0.0017. The standard statistical assumptionsarevalid. (The standard statistical assumptions
arelistedin (1) and include additive, zero mean, constant variance, uncorrelated and normal errors.) Theheat flux startsat time zero and continues
constant till the end of the period. Measurements are made at times-0.12, -0.06, 0.0, 0.06, . . ., 2.22 for atotal of 40 measurements. From these
measurements the surface heat flux isto be estimated for each of thetime stepsusing W =1 with zeroth order regularization. Thetrue heat flux
is zero until time zero and the constant value of 0.2 thereafter.

Solution An expression for the temperatureisgiven by eg. (28) and T(1,t) isshown in Fig. 5 as+ signs. Random additive errors are not shown
in Fig. 5 but are so small (about 0.5% of the maximum temperature) that they would be hardly visible. The X matrix is formed from the same
equation with g = 1 with the first column having components of T(1,0.06), T(1,0.12) - T(1,0.06), T(1,0.18) - T(1,0.12), and so on. The second
column isthe same except it is shifted down one and last row omitted. The third column is shifted down two and so on. See Fig. 6 which shows
the first three sensitivity coefficients as a function of time; actually only the discrete values are given as suggested by the +'s for the second
sensitivity coefficient. The sensitivity coefficient for the heat flux component betweent =i At and (i-1) 4t is zero until just after i At and then about
0.5 later becomes the same constant as for the other sensitivities. Implications of these sensitivity coefficientsare 1) no information regarding the
i parameter is given by measurements before time i At and 2) the information after iAt + 0.5 is correlated with that for subsequent heat flux
components. Distinctive information about a given heat flux component is mainly present in the measurements for a short time period after the
heat flux isapplied. Note also that the sensitivities start at zero and are lagged with respect to the surface heat flux. Hence the last few heat flux
components will probably be difficult to estimate since their sensitivities are quite small.

The results of the estimation procedure for heat flux components are shown in Fig. 7. Since zeroth order regularization isused, theH =1.
The Tikhonov parameter « is found by making the sum of squares given by (30) about equal to the anticipated value, which is about na? = 40
x0.00172 = 0.000116. The value of « to bring the sum of squaresto about thisvalueis 0.001. The value varies from one set of random numbers
to another but it is not necessary to give aprecise value. Figure 7 depicts results for three different « values, or more precisely the magnitude of
the diagona components of P,. (Recall that for this case «isthereciprocal of the magnitude of these components.) The values correspond to «
=0.0067, 0.00067 and 0.000067. To make the results more apparent, the curves are offset from one to the other but the same set of random
numbersisused in each case. For thelargest «the smoothing of biasing toward zero isquite noticeabl e, particularly at theend of thetimeinterval,
whichisabout t = 2. Thetrueheat flux is0.2 at all timesfrom zero to 2.2 so the estimated heat flux near t = 2.2 areinaccurate for each « value.
Smoothing is aso noted near time zero. Less smoothing is present as the « values decrease; as a consequence theinitial and final time periods
change more abruptly but the results are more sensitive to the random errors as « is decreased.

It is not happenstance that each of the estimated heat flux histories in Fig. 7 ends nearly a zero. The reasons are that the sensitivity
coefficients are nearly zero for the last couple of components and the zeroth order regularization biases the results toward zero. First order
regularization produces different behavior at the end of the time period.
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Figure5 Temperatures at insulated surface for aplate heat with aconstant heat flux of 0.2, denoted with + symbols, and for atriangular heat flux,
denoted with x symbals.
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Example5 Repeat Example 4 for the simulated temperatures at x = 1 resulting from atriangular heat flux which is zero before time zero when
itincreaseslinearly to 0.6 at time 0.6. Attime 0.6 it decreaseslinearly to O at time 1.2, after which it remains at zero. Seethe straight linesin
Fig. 8. Asin the previous problem add random errors with a standard deviation of 0.0017 and estimate the heat flux components. Use sequential
estimation with W = | and display both the sequential results and final values.

Solution The simulated temperatures can be calculated using

Lty o cosling®
T ) =Tyr D) g ()t -+, )+ 23 e 17 Lo ) (333
k 2 T|34j=1 j4

92 92 93 +
01(X+)E__X++(x2) ’ 62(X+)E_i+(x P _(x)* (x)* (330)

1
3 45 6 6 24

wherex" = x/L and qy is the heat flux value at the Fourier number, at/L?, of unity. In this problem, theinitial temperatureis equal to zero and t
has steps of 0.06 but x, L, &, gy and karedl unity. Superposition isused to obtain thetriangular heat flux (22). Thetemperature history isshown
inFig. 5.

Shown asoin Fig. 8 isthe estimated heat flux using the sequential method with W = |. The values shown are the final estimates for each
parameter when the dataare al used. This curveisobtained using P, = 7651, which correspondsto « equal to 1/765 = 0.00131. Thetriangular
heat flux is reproduced quite well in Fig. 8, with the most noticeable deviations from the true curve at the regions of abrupt change; namely, at
t=0.0,0.6 and 1.2. Thisexampleisan easier one than the previous example for zeroth order regularization because the estimated heat flux at
both the early and late times approaches zero. Incidentally the sequential method and the use of Matlab simultaneous solution for al the
parameters give final parameter estimates that agree within six or more significant figures, except possibly for the last few components.

Figure 9 shows the sequential solutions of the heat flux components. Thefinal values, that is, those at about t = 2.2, are the ones plotted in
Fig. 8. For each component in Fig. 9 the sequential estimates are zero until just after the time associated the component, then increase quite
rapidly, possibly overshoot slightly and finally remain constant until thefinal time. The time period over which each component changes seems
to be about 0.5, which is the same time period that the sensitivity coefficients are different as shown by Fig. 6. Insight into the solution can be
obtained from the sequential results shown in Fig. 9. For example, another sequential algorithm could be devised for this problem which would
not calculate any heat flux components until their time and then only calculate values for atime window of about 0.5 because the estimates are
constant thereafter. Thisinsight cannot be obtained from an examination of Fig. 8 and gives afurther advantage of the sequential method. For
further discussion of the inverse heat conduction problem, see (22).

Further Commentson I1l-posed Problems

I11-posed problems may have very large numbers of parameters, 100's or even 10,000's. In such cases it may be appropriate to use some
iterative method of solution (such as givenin (8)) and avoid the computation of individual sensitivity coefficients. However, the emphasisin this
paper is upon the estimation of parameters rather than estimation of functions, which often givesrise to ill-posed problems. In many of these
parameter estimation cases, ten or fewer parameters are simultaneous estimated, in which case the sensitivity coefficients are then needed and
efficiently used. The boundary between parameter and function estimation is not aways clear, however.
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Figure8 Estimated heat flux using sequential estimation W =1 for thetriangular heat flux case, Example 5. Errorsare random and uncorrelated
and have o= 0.0017.
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6. MATRIX FORM OF TAYLOR SERIES EXPANSION

The emphasis now is shifted to nonlinear estimation. A Taylor series expansion isto be used. Let n be an n vector (possibly of time) and a
function of the p parametersin the p vector. Let n have continuous derivativesin the neighborhood of 3 = b. Then the Taylor series for a point
B near b begins with the terms

n(B)=n®) +[Vyn O] (B-b)+- (34)

WhereVﬂ isthe matrix derivative operator defined by

9
ap,
Ve=| (35)
9
ap,
A general sum of squares function, similar to that for linear estimation, is
S=ly -n@1"WIy -n(B)] + (M -B)"V 1 -B) (36)
For cases with m measurements at each time step, y can be partitioned as
y(1) Q)
2 y,(i)
y= y(. )| where y(i) =" (37)
y(n) Y0

where the y vector contains mn components. The m vector can be similarly defined and W is mn x mn. The B, «, and V matrices are unaffected.

7. GAUSSMETHOD OF MINIMIZATION FOR NONLINEAR ESTIMATION PROBLEMS

Derivation

One simple and effective method of minimizing the function Sfor nonlinear estimation problemsis variously called the Gauss, Gauss-Newton
or linearization method; we call it the Gauss method. It is attractive becauseit isrelatively simple and because it specifies direction and size of
the correctionsto the parameter vector. The method is effective in seeking minimathat are reasonably well-defined provided theinitia estimates
arein the general region of the minimum. It builds directly upon the methods for linear estimation. For difficult cases (i.e., those with indistinct
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minima) modificationsto the Gaussmethod may beneeded. Some of these modificati ons can beaccommodated using eg. (36) which caninclude
prior information and Tikhonov regularization.

A necessary condition at the minimum of S isthat the matrix derivative of S with respect to  be equal to zero. For this reason operate
upon Sto get

V,S=2[ -V ®)IWIy -n(B)] +2[ 1]V (-p) (39)
Let us use the notation X (B) for the sensitivity matrix,
X(B)=[V,n )] (39)
so that eq. (38) set equal to zero at B =P becomes
XTBWIy -n(@)] +V (1 -p)=0 (40)

For nonlinear parameter estimation problems, we cannot directly solve for the estimator B since fi appears implicitly in n and X aswell as
appearing explicitly. (Animportant observation is that if X is afunction of the parameters, the problem is a nonlinear estimation problem.)
Suppose that we have an estimate of fﬁ denoted b and that n has continuous first derivativesin 3 and bounded higher derivatives near b. Two
approximations are now used in eqg. (40). First, replace X(ﬁ) by X(b) and second, use the first two terms of a Taylor series for n(B) about b.
Then eg. (40) becomes

XT(b)W [y -1 (b) -X (b) (B -b)] +V 2 (u-b) -V (B -b)~0 (41)

Note that this equation is linear in fﬁ If &) n isnot too far from being linear in B in aregion about the solution to eq. (40) and if b) thisregion
includes b, the value of ﬁ satisfying eg. (41) will be abetter approximation to the solution eq. (40) than that provided by b. Assuming these two
conditionsto be true, eg. (41) is set equal to the zero vector. Indicate an iterative procedure by

b®=b, b*D=p, q®=qb), X©=X(b) (42)

Using this notation in eq. (41) yields p equations in matrix form for b®*) |

b®+ D =p® + POXTRW (y - q®) + V1 (- b®)] (43a)

PR = xTR\WX® £\-L (43b)
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hich is the Gauss linearization equation. Iteration on Kk is required for nonlinear models. For linear-in-the-parameters model no iterations are
required.

With this vector 1@ and X© can be calculated, which, in turn, are used in eq. (43a) to obtain the improved estimate vector b®. This
completesthefirst iteration. Then n® and X areevauated so that b® can befound. Theiterative procedure continues until thereis negligible
change in any component of b; one criterion to indicate thisis

b -p®)
_ <

\b.(k)\ o) fori=12,..p (44)

where 8 isasmall number such as 10™*. When good initial estimates of the parametersare avail able and the experiment iswell-designed, eq. (44)
isfrequently satisfied by thefifthiteration. (Thefact that eq. (44) issatisfied doesnot guaranteethat thelast b®*? minimizesS, particularly when
the minimum isill-defined.)

As indicated above, the use of the matrix inverse isintended for our insight and not for computation. For well-designed experimentsin
parameter estimation, the number of unknownsisnot large and the solution at each step isnot difficult. However, asequentia method of solution
is recommended in which the iterations are first performed until convergence. Then a final iteration is performed in the sequential manner
discussed above; it involves linearizing about the converged parameter values and shows parameter estimates as one measurement after another
isadded. If desired, iterations beforethefinal one can also be performed in a sequential manner but the detailed results are usually not displayed.

Sensitivity Matrix

Consider the sensitivity matrix as defined by eq. (39); without showing the dependence on b® | it can be written as

X11 le a_ﬁl a_ﬁl a_ﬁp

X=| : cl=l ] [7]1 ”n] = : : (45)
an an i a”n a”n
aﬂp _aﬁl aﬁp

Hence theij element of X¥ is

(46)

on,
® i
Xi = —
[ aﬂi]

This definition of X is consistent with the linear model. A smple exampleis n;, =B, X;, +B,X, where X; hasthe same meaning asin eq. (5). A

X0

model, nonlinear in its parameters, is

i =/31exp (ﬂzti) +ﬂ3

Its sensitivity coefficients are
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_ ani _ _ aﬂi B _
Xilfa_ﬂl ~exp(Bt). XiZ’a_ﬂz’ﬁltiexD(ﬁzti)l Xiz=1 (47)

When one or more sensitivity coefficients are functions of the parameters, the estimation problem isnonlinear. This providesapowerful means
of determining if the problemis nonlinear. Note that only one sensitivity coefficient need be afunction of the parameters to make the problem
nonlinear; even though X in the above exampleis not afunction of any parameter (and hence the model islinear in terms of 3,), the estimation
problem is still nonlinear.

Example 6 For aflat plate of thickness L = 1 and for a constant heat flux g of one at x = 0 and insulated at x = 1, the temperature is measured
at x =1 with time steps of 0.05. (Consistent units or dimensionless quantitiesare used.) Thethermal conductivity k and volumetric heat capacity
C are to be estimated using the simulated temperature measurements which are constructed for the exact temperatures for k= 1 and C = 1 with
additive errors with errors that have a standard deviation of o= 0.0001. Another caseis considered with o= 0.01. First show the temperature
history and the modified sensitivity coefficients

KX —kaT‘ CcX —caTi
1Tk T Tac! (48)

which both have the units of temperature.

Solution The temperature solution is given by eg. (28) with the observation that & =k/C. Taking the derivative first with respect to k and then
with respect to C then give the modified sensitivity coefficients,

aT gL at _qL|, at v 2.2 4 2
k—=-T+T +212=— T =212—Y% exp(-n<mat/L ?)cos(nmx/L
~ ST LGz:; p( )cos(nmx/L) (49)
oT _ — qL at
c%_ T, Tz (50)

Notice that the sum of these two equations is the negative of the temperature rise. These modified sensitivity coefficients and the temperature
for both x = 0 and 1 (for an initial temperature of zero) are shown in Fig. 10.

The sensitivity coefficients for x = 0 are nearly equal for time t less than 0.25; this |eads to the conclusion that it isimpossible to estimate
simultaneously both k and C if only the surface temperature is measured until t = 0.25 or less. It is possible to estimate the product of k and C
for such measurements. Both modified sensitivity coefficientsfor x = 1 are negligible below the time of 0.1 and again the time must not be too
short to estimate both properties. For large times, the C sensitivities decrease linearly with time but those for k reach constant values. Asa
consequence for very large times, the thermal conductivity will be inaccurately estimated compared to C. This suggests the need of optimal
experimentswhich would indicate an appropriatefinal time. SeeBeck and Arnold, (1), Chap. 8. From acomparison of the sensitivity coefficients
for x=0and 1, it is noted that the former would be a better experiment because the magnitude of the sensitivity coefficients are greater at x =0,
resulting in fewer iterations and smaller confidence regions on the average.
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Using measurements at the insulated surface and with the standard deviations of 0.0001 and 0.01 (about 1% of the maximum temperature)
givesfina conductivity and heat capacity estimates of 1.0003 and 1.0000 for o= 0.0001 and for = 0.01 the estimates of 1.0323 and 1.0037.
For initial estimates for the iteration process, the wide range from one-half to double the true valuesis possible. For initial values of 2 for both
properties, nine iterations are needed.

After theresults are converged, afinal iteration is performed to illustrate the effects of adding one measurement after another. See Figures
11 and 12. Some observations are now given.

1. Initial parameter estimates are needed and the path of the parameter values during the iterations depends upon the initial estimates.

2. This problem is not ill-posed.

3. The same final parameter estimates are found and are thus independent of the initial valuesin the range of at least .5to 2.

4. The sequential estimates tend to constant values for the last half of the times shown. Thisis very important because it gives some
information about the adequacy of the model and an indication of the confidence region.

5. Considerable variationsin the estimates are found at the earliest times, which isaresult of the small sensitivity coefficients at thosetimes.

6. Asthe standard deviations increase by afactor of 100, the error in the final estimates also increase by about the same factor.
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Figure 10 Temperature and modified sensitivity coefficients at heated and insulated surfaces for a plate heated with a constant heat flux
(X22B10TO)
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Figure 11 Sequential analysisfor k and C for X22B10TO0 case, measurements at insulated surface and o= 0.0001
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Figure12 Sequential analysisfor k and C for X22B10TO case, measurements at insulated surface and o= 0.01
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8. CONFIDENCE REGIONS

Confidence regions can be found using the sensitivity coefficients. The expression depends upon the statistical assumptions that are
applicable. One set of assumptions is that the measurement errors in temperature, for example, are additive, zero mean, constant variance,
uncorrelated and normal. For these assumptions, confidence regions can be given using the diagonal s on the main diagonal of covariance matrix
of the measurement errors,

cov(b) = (X TX)1s? (51)

where sisthe estimated standard deviation of the errors. For theith parameter its confidence region can be given by

b, -db, <p;<b; +8b, b, ~t,_,,(n-p)(C;)**s

where the group C;§ is the estimated ith diagonal component of eq. (51) and t,_,,(n-p) is the student’ st distribution for probability of 1-& and
n-p degrees of freedom. A common value of «is0.05 which isfor a 95% probability. If thejoint probability confidence region isfound, an
ellipse for two parametersis obtained and an ellipsoid for more parameters. However, ellipses or ellipsoids are difficult to use even though they
aremoreaccurate than rectangular regions. Conservativejoint confidenceregionsfor rectangular regionsgiven by the Bonferroni approximation
(3). TheBonferroni joint confidence regions are calculated using

b, - 8b,<pB,<b;+8b, b, =t, , (N-P)(C,)¥%s

with & = 0.05 for 95% probability and p is the number of parameters and n is the number of measurements (25 in the example). Noticethepin
the denominator of /2p. For n-p and for 95% probability, t; o es2,(=) is2.0687 and 2.3979, for p=1and 2, respectively.

Example 7 For the same heat conduction example as in Example 6, investigate the confidence regions for additive, zero mean, uncorrelated,
normal errors with a standard deviation of o= 0.01, which happens to be about 1% of the maximum temperature rise. Plot the estimates for a
Monte Carlo study for 1000 trials, that is, analyze for 1000 different sets of random errors. Also compare results for different numbers of trias
from 100 to 50,000, showing a comparison of the confidence intervals and regions for k and C with both the student’s t distribution and the
Bonferroni method.

Solution Results of the estimates of 1000 simulations are shown in Fig. 13. Some observations are given next. The confidence region appears
to be dliptical in shape. It is not aligned along the major axes of k and C; consequently, when the estimated k or C is high or low, the other
parameter tends to be high or low. Also note that the plot does not have the same increments on both axes, so that the ellipseis distorted. The
average Bonferroni confidence region is also plotted; it looks square but to scale it would be more elongated in the horizontal axis. Thisregion
indicates the region that should contain the true parameter estimates, (k=1 and C = 1 in this example), for at least 95% of similar cases.

A summary of results of the Monte Carlo study isgivenin Table 3. Notethat the student’ st distribution results for the confidence intervals
(for asingle parameter) tend to be more accurate, but less conservative, than the Bonferroni results. However, the confidence region predicted
by the Bonferroni method isdefinitely more accurate than using the student’ st distribution. The Bonferroni confidenceregionisalso conservative
sinceitisawayslessin Table 3 than the ideal values. The Bonferroni confidence region is rectangular in shape, not elliptical, soitiseasier to
use but it includes large regions which are not very probable. See the northwest and southeast regionsinside the rectangle of Fig. 13. Based on
this study, the Bonferroni confidence region is conservative and is easier to apply than the more rigorous elliptical confidence region implied by
Fig. 13. See (1) for atreatment of the ellipsoidal confidence region.
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Figure 13 Monte Carlo study of estimated thermal conductivity and volumetric heat capacity for 1000 trialsand o= 0.01. Case X22B10TOwith
sensor at x= 1.
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Table 3 Results of Monte Carlo study for the student’ st and Bonferroni confidence intervals and regions for Example 7.
Values given are the number outside the estimated confidence intervals/regions. The left column is the number of trials and the next column
contains ideal number for an infinite number of trials.

No. Ideal kstud. Cstud. Tot. Stud. kBonf. CBonf. Tot. Bonf.
100 5 6 5 7 3 2 3
500 25 36 37 a4 18 18 23
1000 50 60 60 73 31 35 43
5000 250 287 299 379 150 157 209
50000 2500 3145 3062 3993 1659 1617 2165

Example 8 Investigate the parameter estimates of k and C for the above examples assuming heat losses are actually present (heat loss from x =
1 surface with Bi = 0.1) but are not modeled. (Using the conduction notation , the true model is X23B10T0 whileit ismodeled as X22B10TO0.)

Solution The sequential estimated parameter estimates are shown by Fig. 14, where the fina estimates are noted to be quite inaccurate. An
indication that the model isimperfect is that the sequential estimates tend to increase after the time of 0.5. The random errorsfor o= 0.01 are
used but thefinal estimatesare mainly affected by theimperfect model inthiscase. It isimportant to note the sequential resultsin Fig. 14 indicate
that the model isimperfect while, we shall see, the residuals may not reveal amodeling error unless the ¢is made much smaller.

To examine the effects of the modeling error, see Table 4, third row. Notice that the parameter estimates for the Bonferroni confidence

region,

1.2371<k<1.3093 and 1.0947 <C<1.1063

arewell away from the true values of 1.0 and 1.0. Thisinaccurate confidence region is caused by the unmodeled heat losses. In this particular
example the parameter estimates are greatly affected by the modeling error but little affected by the simulated measurements errors, since o=
0.01 and 0.0001 gave nearly the same parameter estimates. Table 4 also shows that the number of iterations is about 7 while it is 9 for no
modeling errors, for the initial estimates having the large values of 2 for all these calculations. It is aso noteworthy that the estimated standard
deviation, s, for the 0=0.0001, Bi = 0.1 casein Table 4 ismuch larger (by afactor of 27) than the true value of 0.0001. Hence, for this case the
use of the discrepancy principle to improve the parameter estimates would not be appropriate since it would suggest that the properties would
be afunction of time or temperature, neither of which is actually true in this example.

Consider now theresidualsfor thesetwo ovalues. SeeFig. 15. For o=0.0001, the residuas (indicated by the circles) are mainly affected
by the modeling error. We have a characteristic signature that would be repeated again and again for other sets of random errors with the same
o. Note that the maximum amplitude occurs at the final time and is negative. That would be expected from the heat loss. See Fig. 4 which is
for arelated case and hasthe same characteristic. Examining Fig. 15 revealsthat the smulated errorsfor o= 0.01 are so large that the underlying
characteristic signature is virtually invisible. However, it would become more apparent if many more cases (with ¢ =0.01) were run and the
residualsaveraged. Careful examination of theresidualsisavery powerful tool to investigate the model and character of the measurement errors.
It is highly recommended.

It should be noted that in addition to heat loss modeling errors, it is probable that inaccuracies will be present in the measurement of the
initial temperature distribution, surface heat flux, plate thickness and location of the temperature sensor. These will also make the correct
confidence region larger than given above.
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Table 4 Parameter estimates for correct (Bi = 0) and incorrect models (Bi = 0.1) and for two different error standard deviations. Bonferroni
confidence region is given.

Confidence Region

g S Bi Est. k Est.C k C No. Iter.
0.0001 0.000097 O 1.0003 1.0000 0.00096 0.00019 9
0.01 0.0091 0 1.0323 1.0037 0.0930 0.0176 9
0.0001 0.0027 01 12732 1.1005 0.0361 0.0058 7
0.01 0.0092 0.1 12759 1.1026 0.1285 0.0196 7
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Figure 14 Estimated thermal conductivity and volumetric heat capacity using data with heat loss (Bi = 0.1) and ¢ = 0.01.

40



0025 T T T T T T

0.02 |

0.015

T

0.01

0.005 |o =0.0001

Residuals

-0.005

-0.01 +

-0.015

-0.02 1 1 1 1 1 1

Time

Figure 15 Residualsfor estimation of thermal conductivity and volumetric heat capacity using datafrom aBi = 0.1 model. Heat losses are not
modeled. Two cases are treated: ¢ = 0.0001 and 0.01.

9. OPTIMAL EXPERIMENTS

Another important topic isthe optimal design of experiments. Space does not permit much discussion. Thegoal isto design an experiment
to have aminimum volume of the confidence region. One criterion to accomplish thisfor the standard statistical assumptions of additive, zero
mean, constant variance and uncorrelated errorsisto minimize the determinant of the X ™X matrix subject to some constraints such asafixed large
number of measurements and maximum range of the dependent variable (such as temperature). See (1).

10. SUMMARY

A survey of parameter estimation isgiven with examplesfrom heat transfer. Both linear and nonlinear estimation arecovered. Theemphasis
isupon arelatively small number of parametersand casesthat arenot ill-posed, although Tikhonov regularization and the use of prior information
isincluded. Of particular emphasisis the concept of sequential estimation in a particular experiment (adding one measurement after another)
and over experiments(using prior information). Confidenceinterval sand regionsareinvestigated, including the conservative Bonferroni method.
A Monte Carlo study is given to demonstrate the validity of the confidence regions. Sensitivity coefficients are shown are to appear in the
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estimation of parameters, determination of confidence regions and design of optimal experiments.
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