Sequential Function Estimation -"Beck's Method"

Keith A. Woodbury Mechanical Engineering Department The University of Alabama

Overview

- Function Estimation vs. Parameter Estimation
- Function *Specification* reduces function to collection of parameters
- Ill-posedness: Future times regularization
- Becks_method.exe simple program

Parameter Estimation

Given a system model with one or more unknown parameters, adjust these parameters so that the model reproduces the observed behavior of the system.

• Simple heat conduction

Either α or q_0 could be unknown.

A suitable observation of the system's behavior (set of data) must be available

• Suppose q_0 is unknown

• "Match" the observed data *Y* with the model-computed values *T* in a least squares sense

• Minimize
$$S = \sum_{i=1}^{n} (Y_i - T_i)^2 = (\mathbf{Y} - \mathbf{T})^T (\mathbf{Y} - \mathbf{T})$$

• Note the solution T(x,t) for constant q_o is

$$T(x,t) = \frac{q_0 L}{k} \left[\frac{\alpha t}{L^2} + \frac{1}{3} - \frac{x}{L} + \frac{1}{2} \left(\frac{x}{L} \right)^2 - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-\frac{n^2 \pi^2 \alpha t}{L^2} \right) \cos\left(\frac{n\pi x}{L} \right) \right] + T_0$$

• To minimize the sum squared error S, force the derivative of S with respect to q_0 to zero

$$\frac{dS}{dq_0} = 2\sum_{i=1}^n (Y_i - T_i \left(\frac{\partial T_i}{\partial q_0} \right) = 0$$

Sensitivity of T_i
with respect to
parameter q_0

• Note the solution T(x,t) for constant q_o is

$$T(x,t) = \frac{q_0 L}{k} \left[\frac{\alpha t}{L^2} + \frac{1}{3} - \frac{x}{L} + \frac{1}{2} \left(\frac{x}{L} \right)^2 - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-\frac{n^2 \pi^2 \alpha t}{L^2} \right) \cos\left(\frac{n \pi x}{L} \right) \right] + T_0$$

which can be written compactly as

$$T(x,t) = \frac{q_0 L}{k} [f_1(t) + f_2(x) + g(x,t)] + T_0$$

so the sensitivity function is

$$X_{q}(x,t) \equiv \frac{\partial T}{\partial q_{0}} = \frac{L}{k} \left[f_{1}(t) + f_{2}(x) + g(x,t) \right]$$

• Substituting

$$\begin{split} \sum_{i=1}^{n} (Y_i - T_i) X_{qi} &= 0 \\ \sum_{i=1}^{n} \left(Y_i - \left(\frac{q_0 L}{k} \left[f_1(t_i) + f_2(x^*) + g(x^*, t_i) \right] + T_0 \right) \right) \times \\ & \frac{L}{k} \left[f_1(t_i) + f_2(x^*) + g(x^*, t_i) \right] = 0 \end{split}$$

• The circled terms are equal to X_{ai}

• So $\sum_{i=1}^{n} (Y_i - q_0 X_{qi} + T_0) X_{qi} = 0$

which can be solved for $q_0!$

Function Estimation

• How does function estimation differ from parameter estimation?

Instead of a single (or finite) group of unknowns, there is a continuous function to be determined.

Function Estimation

Function Estimation

 Basic Idea: Reduce the continuous function to a set of parameters by specifying an underlying nature of the function.
Possibilities:

constant, linear, quadratic, etc - these are all *global* or *whole domain* functions piecewise constant, piecewise linear, etc - these are all *local* or *sequential* functions

Function Estimation Approach

• Use superposition for this linear problem to transform the original problem into a sequence of parameter estimation problems

- Denote the solution to Problem 1 with q(t)=1 and $T_0=0$ as $\mathbf{j}(x,t)$.
- Then the solution to Problem 1 with $q(t)=q_1=$ const is

$$T(x,t) = q_1 \varphi(x,t)$$

• and the solution for a pulse of magnitude q_1 of duration **D**t is

$$T(x,t) = q_1 \big(\varphi(x,t) - \varphi(x,t - \Delta t) \big)$$

The solution to Problem 1, up to some time t_M, with q(t) as a sequence of pulses of width Dt is the sum of the responses for all the pulses:

$$T(x,t_M) = q_1 (\varphi(x,t_M) - \varphi(x,t_M - \Delta t)) + q_2 (\varphi(x,t_M - \Delta t) - \varphi(x,t_M - 2\Delta t)) + q_3 (\varphi(x,t_M - 2\Delta t) - \varphi(x,t_M - 3\Delta t)) \vdots + q_3 (\varphi(x,t_M - (M - 1)\Delta t) - \varphi(x,t_M - M\Delta t))$$

$$+ q_M \left(\varphi(x, t_M - (M - 1)\Delta t) - \varphi(x, t_M - M\Delta t) \right)$$

June 13-18, 1999 3rd Int. Conf Inverse Problems in Engineering

• If the initial temperature is T_0 , then $T(x,t_M) = T_0 + \sum_{n=1}^{m} q_n (\varphi(x,t_M - (n-1)\Delta t) - \varphi(x,t_M - n\Delta t))$ $= T_0 + \sum_{m=1}^{M} q_n (\varphi(x, t_{M-n+1}) - \varphi(x, t_{M-n}))$ n=1 $= T_0 + \sum_{n=1}^M q_n \Delta \varphi_{M-n}$ Where $\Delta \varphi_i \equiv \varphi(x, t_{i+1}) - \varphi(x, t_i)$

• Matrix form

$$+\begin{bmatrix} T_0 & T_0 & \cdots & T_0 & \cdots & T_0 \end{bmatrix}^T$$

Stoltz Method

- In matrix notation $\{\mathbf{T}\} = [\mathbf{X}]\{\mathbf{q}\} + \{\mathbf{T}_0\}$
- If the calculated values **T** are matched exactly to the observations **Y**, then **q** could be solved directly $\{\mathbf{q}\} = [\mathbf{X}]^{-1} \{\mathbf{Y} - \mathbf{T}_0\}$

or premultiply by \mathbf{X}^T and solve for \mathbf{q} $\{\mathbf{q}\} = [\mathbf{X}^T \mathbf{X}]^{-1} \mathbf{X}^T \{\mathbf{Y} - \mathbf{T}_0\}$

Stoltz Method

- This "exacting matching" of data is sometimes referred to as the Stoltz method
 - can be applied either as *whole domain* method (as suggested above) or sequentially
 - the inherent *ill-posedness* of this problem is manifested by the poor condition number of the coefficient matrix $\mathbf{X}^T \mathbf{X}$
 - ill-posedness gives large changes in output \mathbf{q} for small changes in the input \mathbf{Y} or small values of Δt

Sequential Stoltz Method

• From the equation for T_M

$$q_{M} = \frac{\left(Y_{M} - \sum_{i=1}^{M-1} q_{i} \Delta \varphi_{M-i} - T_{0}\right)}{\Delta \varphi_{0}}$$
$$= \frac{\left(Y_{M} - \sum_{i=1}^{M-1} q_{i} \Delta \varphi_{M-i} - T_{0}\right)}{\left(\varphi_{1} - \varphi_{0}\right)}$$
$$= \frac{\left(Y_{M} - \sum_{i=1}^{M-1} q_{i} \Delta \varphi_{M-i} - T_{0}\right)}{\varphi_{1}}$$

Stoltz's Method

Stoltz Method: Example

• Material with $k=\mathbf{r}c_p=1$ with $T_0=0$ and data from x=L=1

3rd Int. Conf Inverse Problems in Engineering

Stoltz Method: Results

time	flux	time	flux
0.03	3.10E-02	0.93	-4.39E+14
0.09	8.00E-02	0.99	6.80E+15
0.15	2.99E-01	1.05	-1.05E+17
0.21	-2.10E+00	1.11	1.63E+18
0.27	3.61E+01	1.17	-2.53E+19
0.33	-5.54E+02	1.23	3.91E+20
0.39	8.59E+03	1.29	-6.06E+21
0.45	-1.33E+05	1.35	9.38E+22
0.51	2.06E+06	1.41	-1.45E+24
0.57	-3.19E+07	1.47	2.25E+25
0.63	4.94E+08	1.53	-3.48E+26
0.69	-7.64E+09	1.59	5.39E+27
0.75	1.18E+11	1.65	-8.35E+28
0.81	-1.83E+12	1.71	1.29E+30
0.87	2.84E+13	1.77	-2.00E+31
		1.83	3.10E+32

June 13-18, 1999 3rd Int. Conf Inverse Problems in Engineering

Beck's Sequential Method

• Add stability to exact matching by considering *r* future time steps and making the temporary (but incorrect) assumption that $q_M = q_{M+1} = \dots = q_{M+r-1}$

Beck's Sequential Method

• Write the equations for T_M , T_{M+1} , ..., T_{M+r-1} from the Duhamel's summation

$$T_{M} = \sum_{i=1}^{M-1} q_{i} \Delta \varphi_{M-i} + T_{0} + \varphi_{1} q_{M}$$
$$T_{M+1} = \sum_{i=1}^{M-1} q_{i} \Delta \varphi_{M-i+1} + T_{0} + \varphi_{2} q_{M}$$
$$\vdots = \vdots$$
$$T_{M+r-1} = \sum_{i=1}^{M-1} q_{i} \Delta \varphi_{M-i+r-1} + T_{0} + \varphi_{r} q_{M}$$

Beck's Sequential Estimation

• Now use least-squares to match the data in an average sense. Minimize

$$S = \sum_{i=1}^{r} (Y_{M+i-1} - T_{M+i-1})^2$$

• This leads to

Beck's Method

$$q_{M} = \frac{\sum_{i=1}^{r} \left(Y_{M+i-1} - \sum_{k=1}^{M-1} q_{k} \Delta \varphi_{M-k+i-1} - T_{0} \right) \varphi_{i}}{\sum_{i=1}^{r} \varphi_{i}^{2}}$$

Beck's Method Example

 Material with k=rc_p=1 with T₀=0 and data from x=L=1 (same as before)

3rd Int. Conf Inverse Problems in Engineering

Beck's Method Results

June 13-18, 1999 3rd Int. Conf Inverse Problems in Engineering

Noise in Data

- All data gathered experimentally contains some amount of error (or noise) associated with the measurement process
- If the noise is random and normally distributed with zero mean and standard deviation *s*, then an error over the range of +/- 1.96 *s* will encompass 95% of the data

$\pm \Delta T = 1.96\sigma$

Noise in Data

• To test the ability of the algorithm to perform in the face of noise, we "poison" the data by adding random perturbations from a normal distribution to the data

Noised Results

June 13-18, 1999 3rd Int. Conf Inverse Problems in Engineering

Regularization

- The use of future times information provides a stabilization, or *regularization*, of the underlying ill-posed problem
 - concurrently, the use of future times information induces *bias* in the estimate for q_i

- Windows Console Application (runs from command line)
 - Two input files
 - thermophysical property data
 - temperature data
 - keyboard input required
 - define which sensors to consider and how many future times to include
- "C" source code included
 - Closely follows algorithm in Beck, et al. (1985)

• Thermophysical Property data file – "therm.nod"

1		/* total number of sensors */
1		/* indicies of the sensors */
1.		/* length of 1-d domain */
1.	1.	/* k, rho*cp for AL 5083 alloy */
1.		/* number of distinct TCs locations *.
1.		/* dimensional locations of the TCs */

- Second thermophysical property file example
 - "therm.al"

- Temperature data file
 - "triangle.dat"

June 13-18, 1999 3rd Int. Conf Inverse Problems in Engineering

• Command Line execution

C:> Becks_Method therm.nod triangle.dat

• redirection will capture output to a file

C:> Becks_Method therm.nod triangle.dat > beck.out

References

Beck, Blackwell, and St. Clair, *Inverse Heat Conduction: Ill-Posed Problems*, John-Wiley, 1985 (out of print; copies available from J.V. Beck)