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History of the Conferences
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These international conferences grew out of several informal meetings held in the years prior to the
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field of solid mechanics. This conference was successful in attracting participation from the mechanics
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(International Conference on Inverse Problems in Engineering – ICIPE are italicized.)
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Preface
This is the 25th in the series of national and international meetings on Inverse Problems that were initiated
at Michigan State University in 1988. The 2014 edition is the 8th International Conference. Both the
Scientific Committee Members and the Participants come from many countries all over the world: USA,
Brazil, Russia, Poland, France among others.

The primary purpose of the Conference is to provide a forum of scientist and graduate students in sciences
and engineering to present recent results of the inverse problems.

The very important objective is also to exchange the knowledge and experience to strengthen existing
but also start new international scientific cooperation.

The problems coped with involve theory, applications and, of course, the combination of both. The topics
of the Conference cover inverse problems in all branches of science and engineering including thermal
sciences, structure mechanics, fluid flows, medical applications and many other. In particular, the covered
fields of interest can be summarized as:

• Statistical and Probabilistic Methods

• Identification in Nonlinear Differential Equations

• Regularization Techniques

• Design and Shape Optimization

• Inverse Scattering and Time Reversal

• Determination of Boundary and Initial Conditions

• Computational Methods

• Identifiability Concepts

ICIPE 2014 lasted four days: from May, 12th to May 15th in the former capital of Poland: Krakow.
Krakow is the second largest and one of the oldest cities in Poland. Situated on the Vistula River in the
Lesser Poland region, the city dates back to the 7th century. Krakow has traditionally been one of the
leading centers of Polish academic, cultural, and artistic life and is one of Poland’s the most important
economic hubs. It was the capital of Poland from 1038 to 1569.

The editors would like to thank the distinguished scientists who accepted the invitation to deliver Plenary
Lectures. The list of Keynote Lectures (in the order of presentations) is given below:

1. Prof. James V. Beck, Prof. Em., Michigan State University, East Lansing, MI, USA, Inverse Heat
Conduction Problem: Insights from scaled sensitivity coefficients, digital filter coefficients and
intrinsic verification

2. Prof. Oleg M. Alifanov, Russia, Inverse Problems in Identification and Modeling of Thermal Pro-
cesses: Theory and Practice

3. Prof. Helcio R. B. Orlande, Ph.D., Federal University of Rio de Janeiro, Brazil, Application of par-
ticle filters to some inverse problems in biomedical engineering

v



4. Prof. Jan Taler, Ph.D., DSc, Krakow University of Technology, Poland, Monitoring of thermal
stresses in pressure components using inverse heat conduction method

5. Prof. Assad Oberai, Ph.D., Rensselaer Polytechnic Institute, NY, USA, Biomechanical Imaging:
Theory, Practice and Applications

6. Prof. Aleksey V. Nenarokomov, Ph.D., Moscow Aviation Institute University of Aerospace Tech-
nology, Russia, Optimal experiment design with application to inverse problems

We also would like to thank all members of Scientific Committee for the effort with the valuable pa-
per reviews as well as thank the local organising committee for the hard work which eventually led to
a successful and fruitful meetings.

Ireneusz Szczygieł, Andrzej J. Nowak and Marek Rojczyk,

Gliwice – Krakow, Poland, May 2014
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ESTIMATING OF EXTERNAL HEAT FLUX FOR ABLATIVE THERMAL 
PROTECTION OF SPACECRAFT BY INVERSE PROBLEMS TECHNIQUE 
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Abstract 

The objective of this paper is to estimate heat fluxes on the surface of advanced materials with known 

thermal and thermokinetic properties using the approach based on inverse methods. In many practical 

situations it is impossible to measure directly heat fluxes on the surfaces of analyzed composite 

structures (in particular a thermal protection systems (TPS) of spacecraft) especially in the case of 

thermokinetic processes inside materials. Presently, heat and mass transfer in ablative materials are 

being studied intensively. This interest is associated with the important practical applications of the 

results of these investigations in aerospace technology, chemical technology, and other fields. But 

traditional measurements of the heat flux made to solve this problem are currently based on the use of 

a calorimetric method or the thin-wall method. However, the basic deficiency of these methods in the 

considered conditions is the requirement of conservation of the calorimeter mass or the wall thickness 

in the course of the experiment. This significantly limits the measurement time, since with the 

prolonged action of a flow on a calorimeter or a thin wall ablation breakdown begins. As a result, these 

methods cannot easily take account of the influence on the heat transfer of factors such as internal 

decomposing of the materials. The sufficiently effective way that can be used to overcome these 

difficulties is the solution of boundary inverse heat transfer problems. By solving such inverse 

problems, the boundary conditions and unsteady temperature field are reconstructed from interior 

temperature measurements in solids. Such problems are ill-posed in mathematical sense and their main 

feature shows itself in the solution instabilities. The general method of iterative regularization is 

concerned with application to the estimation of external heat flux.  

 

1. Introduction 
 

Moving in the planets atmosphere re-entry vehicles are influenced by large force and thermal 

loadings caused by gas approach flow. Frontal aerodynamic shields are used for RV protection from 

these loadings and its effective braking; a level of loadings depends on shields lateral dimensions. A 

trade-off between a decrease of a level of force and thermal loadings on RV by increasing RV’s lateral 

dimension and limitations of launch vehicle payload fairing cross section could be a frontal shield of 

opening construction. 

One of the options of this aerodynamic shield could be an inflatable shield (Fig. 1). In general 

this shield is a closed air-tight casing (or several casings) forming selected aerodynamic shape after 

filling it with a gas. This casing connects to a rigid frontal element of the aerodynamic shield which 

forms a RV’s inflatable brake mechanism (IRDT). The object is placed at the rigid frontal element 

designed for descending in the atmosphere. At the orbital injection phase IRDT is placed under the 

ICIPE2014 8th International Conference on Inverse Problems in Engineering, May 12–15, 2014, Poland
Eds: I. Szczygieł, A.J. Nowak, M. Rojczyk
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fairing in the compact volume folded position (Fig. 1а), and right before the aerodynamic deceleration 

phase, i.e. before the entry to the atmosphere,  is brought into a state of operating unfolded position 

(Fig. 1b). Flexible thermal protective coating (FTPC) is used for the protection of air-tight inflatable 

casing, with its material destruction temperature around 500K. Principle scheme of FTPC is shown at 

the Fig. 2. Coating consists of two multilayered packages – one external thermal protective and one 

internal thermal insulting. The external layer consists of silica fabric with sublimating polymer 

material. 

 

 

 

 

а) IRDT  

in a folded position 

б) IRDT  

in an unfolded position 

1 – air-tight casing, 

2 – heat insulting package,  

3 – thermal protective package,  

4 – sublimating material layer. 

Figure 1: RV with inflatable brake 

mechanism 

Figure 2:  Scheme of IRDT’s flexible 

thermal protective coating 

To provide mathematical simulation of IRDT the following initial data are nesessary: heat flux 

 wi
q   and/or external temperature variation  wi

T   at selected points at the surface. These 

measurements could be done at different TPC development phases during laboratory, benchmark, full-

scale (large-scale) and flight experiments and tests.  

 

 
  

Figure3  RV’s mockup with the IRDT at the 

thermal stand 

Figure 4 The scheme of suggested 

measurement points placing at the IRDT 

surface 

 

2 

4 

3 

3 

4 

1 2 3 4 

- selected points, - measurement points, 
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Photo of RV’s mockup with the IRDT installed at the test stand is presented in Fig. 3 and the 

scheme of suggested measurement points placing at the IRDT surface during benchmark tests is shown 

at the Fig 4. 

Results of simulation (at the points presented in Fig. 4) of a heat flux at the RV’s surface with 

the mass 138.5 kg and IRDT diameter 2.3 m for nominal model of the Earth atmosphere are presented 

in Fig. 5.  

 

  

Figure 5: Heat flux at  selected points at the 

RV’s surface 

Figure 6:  Temperature at  selected points on the 

thermal protection thickness for the point 3at  the 

RV’s surface 

 

Results of calculation of FTPC heating at the Point 3at the RV’s surface at selected points on 

coating thickness (Fig. 2) are presented in Fig. 6. 

 

2. Heat flux sensor development 
 

The experimental specimen of thermal protection coating is proposed as multilayer slab in the 

rectangular parallelepiped shape made of the regular material (Fig. 7). The choice of specimen size is 

depended on hardware opportunities. The important parameter is the ratio of specimen thickness to its 

length and width, which provides  he realization accuracy of one-dimensional temperature field in the 

line of axis. That’s why, for example, the ratio 1:10 – 1:15 is recommended for materials with low 

thermal conductivity. The scheme of thermal testing of the specimen with a sensor is shown at the Fig. 

7. The  prototype of sensors for IRDT based on sublimating polymer material were developed and 

manufactured for experimental verification of sensor structure and temperature measurement 

processing methods at the installation TVS-2M (MAI). Sensor scheme is shown in Fig. 8. 
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1 – sensor, 2 – experimental specimen, b –  

specimen thickness 
1 –sensor, Т1…Т5 - thermocouples 

Figure 7: Heat flux sensor Figure 8: Scheme of sensor prototype for coating 

based on sublimating polymer 

 

Special device was developed at MAI for installation of internal thermocouples
2X , 3X  and 

4X into sensors during the process of thermocouples manufacturing.  Thermocouples at the heated 

( 0X ) and reverse ( 5X ) surfaces of prototypes of sensors installed during the preparation of thermal 

tests during the integration of experimental sample in the experimental module.Photos of some 

prototypes of sensors with installed inside internal thermocouples are presented in  Fig. 9 –11. 

 

  

Figure 9:  Prototype of heat flux sensor for IRDT based 

on sublimating polymer 

 

Figure 10: – X-ray picture of central 

part of prototype of sensor   

 

The symmetric scheme of contact heating of two samples [11] was used in tests with the help of flat 

heating element (HE). The scheme is shown in Fig. 11. In this scheme the protective frames of sensor 

samples A and B made of sublimating polymer simulate the thermal-protective covering in which the 

sensors are installed. The stainless steel foil was used as of HE material with size 

(length×width×thickness) 120×80×0,1mm. The size of operating zone of HE equals to 80×60mm. The 

back surfaces of sensors and thermal protective covering are covered by thermal-isolated slab made 

from material which thermal conductivity coefficient are much more less than investigated sensors 

1 2 4 3 
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have. It allows to model the presence of thermal-isolating under the external covering layer in 

consistent of real multilayered flexible thermal protective covering.  

 

 
 

Fig. 11:  The scheme of thermal test: 1 – heating element (HE),  2 – thermal-isolated slab,  3 – thin 

copper slab on the sample А, 4 – sample А (upper), 5 – frame of upper copper slab,  6 – protective 

frame of sample А, 7 – point of voltage measurement,  8 – sample В (lower),  9 – thermal-isolated slab, 

10 – thin copper slab on the sample В,  11- point of voltage measurement,  12 – fram of lower thin 

copper slab,  13 – protective frame of sample В.  Т1  - thermocouple on the HE, Т1* - the reserve 

thermocouple on the HE, Т2  and Т7  - thermocouples on the heating surfaces of  A and B samples 

respectively,  Т3 ÷ Т5 – inner thermocouples of sample А, Т6  and Т11 – thermocouples on thin copper 

slabs,   Т8 ÷ Т10 –inner thermocouples of sample В. 

 
The construction and technological peculiarities of flux thermal sensor prototype designed for flexible 

Thermal Protection based on sublimating polymer as well as samples of sensors prototypes designed 

for thermal tests and methodology of thermal tests executing were detailed considered in [14]. In this 

paper the results of sensor prototype study in condition of thermal tests with vacuum heating (1×10
-

3
bar) and heating rate 32,7K/sec within temperature range 300-925K are presented. The vacuum 

installation TVS-2M developed  for destructive materials of Thermal Protection was employed. The 

prototype of heat flux sensors were placed in the experiment module EM-3D (Fig. 12-13). 

 

The two couples of experimental samples of sensors prototypes D1А, D1В and D2А, D2В based on 

sublimating polymer were manufactured for execution of thermal tests. The two first sensors were 

used for pilot tests execution and two second sensors were used for optional tests execution. The 

sensors had form of rectangular parallelepiped with size (length×width×thickness) 60×60×6mm (Fig 

11). 

 

Table 1: The real coordinates of measurements in sensors D2А and D2В. 

Sensor x1,[mm]  x2, [mm] x3, [mm] x4, [mm] x5, [mm] 

D2А 0,0 1,10
±0,1

 1,70
±0,05

 2,20
±0,05

 6,20
-0,1

 

D2В 0,0 2,30
-0,1

 3,60
-0,2

 5,00
-0,2

 6,10
±0,05

 

 

1 2 3 Т3 Т4 Т2 Т1 4 6 

 9 Т9 Т8 Т7 Т1* 

Т5 Т6 5 

Т10 Т11 7 8 10 11 12 13 
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Figure 12: The general view of stand TVS-2M: 

1 – vacuum chamber, 3 – aggregates of 

vacuum system, 2 – manipulating and control 

rack.  

Figure 13:  Experimental module EM-3D installed 

in vacuum chamber of stand TVS-2M: 1 – 

vacuum chamber, 2 – module EM-3D, 3 – 

connector blocks of thermocouples 

 

3. Innverse problem algorithm 
 

The mathematical model of heat transfer in considered layer of Thermal Protection with 

thremokinetics  is 

 

 

  
 

  
 

  
   

  
 


























































,

,
,,

,

,
,

,
,

н

x
xTH

x

xT
dxTC

x

xT
xT

x

xT
xTC

x

x

g

 (1) 

      mLQx  ,0,0,   

     ,0,,0 0 LxxTxT   (2) 

   
 

    


 ,,0,0
,0

,0 111 TqT
x

T
T 




  (3) 

   
 

    


 ,,,
,

, 222 LTqLT
x

LT
LT 




  (4) 

   0,  rx  (5) 

   ccx  ,  (6) 

 
 

 

 
   

 




















 









c

rc

n

r

x

TxTx
xRT

E
A

TxT

x














,,0

,,,,
,

exp

,,0

,
 (7) 

1 

2 

3 

1 

2 

3 

8



O.M. Alifanov, S. A. Budnik, A.V. Nenarokomov, A.V. Netelev, V.M.Ydin 

  

where heat flux  1q  is desired function of time. The experimental equipment and the method 

described below could be applied for estimating  1q . 

The results of temperature measurements inside the specimen are assigned as necessary additional 

information to solve an inverse problem 

 

     M1,=m    ,,exp  mm fxT   (8) 

where M is the number of installed thermocouples. 

 

Let’s introduce in the consideration a least-square discrepancy of the calculated (by model (1)-(7)) and 

experimental (8) temperature values in points of thermocouples positioning 

 

        



M

m

mm dfxTpJqJ
1

2

1

max

min

,)()(





  (9) 

 

It is assumed here that the conditions of uniqueness of the inverse problem solving are satisfied. An 

iterative regularization method stated here, according to general definition of Tikhonov's regularizing 

operators [9], gives rise to a regularizing set of operators, in which a regularization parameter is the 

number of the last iteration. For linear ill-posed problems the iterative regularization method has 

received a rigorous mathematical proves and practical verification through data of mathematical 

modeling. Applicable to non-linear problems, there are at present no complete theoretical results on 

the substation of stability of iterative algorithms. However, the results of computational experiments 

already made in solving the inverse heat transfer problems of different types prove high efficiency of 

the iterative regularization method and possibility to analyze a wide range of nonlinear problems. 

 

So, proceeding from the principle of iterative regularization [9-11], the unknown function can be 

determined through minimization of functional (9) by gradient methods of the first order prior to a 

fulfillment of the condition 

 

 
     J p f 

 (10) 

where    
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   -  integral error of temperature measurements fm(), m=1,M, and  

 m   - measurement variance. 

 

To construct an iterative algorithm of the inverse problem solving a conjugate gradient method was 

used. The successive approximation process is constructed as follows: 

1) a-priori, an initial approximation of the unknown parameter vector 
0p  is set 

2) a value of the unknown vector at the next iteration are calculated  

 

1

1









ssss

ssss

gJg

gpp





 

  ,00   (11) 

  
pNPN

R

s

p
R

s

p

s

p

s

p JJJJ )()()1()(s ,    

where 
)(s

pJ   - value of the functional gradient at current iteration.  

9



O.M. Alifanov, S. A. Budnik, A.V. Nenarokomov, A.V. Netelev, V.M.Ydin 

  

 

The greatest difficulties in realizing the gradient methods are connected with calculation of the 

minimized functional gradient.  In the approach being developed the methods of calculus of variations 

are used. Here an analytic expression for the minimized functional gradient has been obtained 

 

   ,012
xJq   (12) 

where   ,x   - solution of a boundary-value problem adjoint to a linearized form of the initial 

problem (1)-(8). 

To calculate the descent step a linear estimation [10, 12] is used: 
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where the boundary-value problem for the Freshet differential of T(x,) at the point {  1q } (noted as 

),x(T  ). 

 

4. Testing esting of heat flux sensor 
 

The tests were carried out in the air in condition of decreased pressure 1×10
-3

 bar into vacuum 

chamber. During the realization of heating manipulation the indicated value of thermocouple Т1, 

installed on HE were used in capacity of feedback coupling.  The pilot tests of sensor samples D1А and 

D1В were carried out for verification of heating manipulation subsystem work in real test condition, 

measurement and data collection and for selection of heating mode as well as the verification of 

chosen temperature measurement scheme. The optional tests of sensor samples D2А (А - upper) and 

D2В (В – lower) were prepared and carried out with taking into account results of pilot test. The 

heating program Tpr
 
 includes several stages:  

primary stage with duration of 4 seconds and constant temperature value То = 298K, which equals to 

temperature into the vacuum chamber in the moment of tests beginning, which is necessary for 

manipulation system becoming on operative mode; 

the first operating stage is heating by linear behavior from set temperature То to maximum temperature  

Тmах = 950K with the given heating rate 32,7K/sec; 

the second operating stage  with constant temperature Тmах = 950K during the 32sec; 

the operating stage is decreasing of temperature from Тmах = 950K to 350K. 

The graph of heating program  prT   is presented in Fig. 14. 

The measurements results, which were obtained during the thermal tests   emT  0,  after 

primary data handling are given in Fig. 6-8. 

In the process of non-steady heating of specimens by means of an automatic system, recording of 

temperatures inside the specimen in places of thermocouple positioning, heater's temperature the 

electric power released on HE can be written as 

IUQelectr 
  (14) 

where  U - r.m.s. voltage on the heater, I - r.m.s. strength of current, transmitted through the heating 

element. The heat flux supplied to a specimen due to symmetry is determined as [11] 

   AUAQelectr 2)2(q1   (15) 

where A - heater's operating surface area.   

In the hole the carried out test approved efficiency and workability of developed technology 

and investigated sensor prototype for the solving thermal diagnostic problem (determining of 
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non-stationary temperature  ,T x   and heat flux  1q  of flexible thermal-protective 

covering based on sublimating polymer). The experimental data obtained from testing presented in 

previous subsection have been used to determine the heat flux on the heating surface of analyzed 

sensors. For this, the results of tests on the time uniform grid should be submitted as required by the 

software of inverse problem solution.  
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Figure. 15:  Comparing of calculated in positions of Т2 (1), Т3 (3) and Т4 (5) and measured Т2 (2), Т3 (4) 

and Т4 (6) temperatures (sensor D2А) and estimated values if heat flux (7). 

 
To solve inverse problem in the pointed versions there was used software developed and presented 

above. All input data are presented in previous sections. So the comparing of calculated and measured 

temperatures on specimens’ surfaces for sensors are presented in Fig. 14. Tab. 2 includes the obtained 

values of least square and maximum deviation of calculated temperatures from that measured in the 

experiments.  

 

Table 2: The deviation of the calculated temperatures and measured temperatures for heat flux 

sensors 

Sensors Least-squares 

temperature 

deviation (K) 

Maximum 

temperature 

deviation (K) 

D2А 12.7 19.1 

D2В 9.98 18.8 

 

6. Conclusions 
 

The paper seeks to describe the algorithm developed to process the data of unsteady-state thermal 

experiments for determining of the external heat flux. The algorithm suggested is based on the solving 

of the nonlinear inverse heat transfer problem in an extreme formulation. The following main factors 
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have an influence on the accuracy of the boundary inverse heat conduction problem (in sequence of 

significance): the errors in coordinates of thermosensor positions; the errors in values of a-priori 

known thermal properties of the sensor; the errors in estimating the residual level.  For partially 

decomposed materials the model of heat transfer with temperature-dependent thermal characteristics 

and one-stage thermal kinetics is approximate, and characteristics are effective, since the heat transfer 

in such material is provided by heat conduction and a few different transformation processes depended 

on conditions of heating.  
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Abstract 
The purpose of this research is to develop experimental technique and setup for remote (non-contact) 
diagnostics of structural defects in elastic materials. The performance of equipment is based on 
nonlinear interaction of two acoustic beams of finite amplitude in investigated material. The most 
promising direction in further development of non-destructive diagnostics (research methods) for the 
elastic composite materials is to use the procedure of inverse problems [1,2]. Such problems are of 
great practical importance in the study of properties of composite materials used as non-destructive 
elastic surface coating in objects of space technology, power engineering etc The experimental 
equipment and the method developed could be applied for determination of material's properties; the 
availability of corresponded experimental facilities allows us to provide uniqueness of the solution. 
Elastic properties of flaws differ from ones of base medium. Gradient of elastics properties on the 
border of flaws results in the appearance of non-classic nonlinearity in the region. Such nonlinearity 
exceeds significantly the physical nonlinearity of a medium under diagnostics. Determination of 
spatial distribution of structural acoustic nonlinearity in the sample under investigation allows spotting 
the defects. In the paper the experimental technique for remote diagnostics of subsurface flaws in 
elastic materials is considered. 

1. INTRODUCTION 

The surface of re-entry vehicles is interacted with high-enthalpy gas flows, and its protection as well 
as breaking in the atmosphere is provided by aerodynamic screens of Thermal Protection Systems 
(TPS), and external heat fluxes determined by the diameters of such screens. Therefore it is necessary 
to find the compromise between the maximal diameters of TPS screens for re-entry stage and 
constrains of launch vehicles. At last time the transformed structures of re-entry space vehicles 
become more and more popular. And one of such recently developed approach is inflatable systems 
(Inflatable Re-entry Demonstrator Technology – IRDT, Fig.1).  

ICIPE2014 8th International Conference on Inverse Problems in Engineering, May 12–15, 2014, Poland
Eds: I. Szczygieł, A.J. Nowak, M. Rojczyk

13



Oleg M. Alifanov, Aleksey V. Nenarokomov, Kirill A. Nenarokomov, Anna V.Terentieva, Dmitry M. Titov, 
Valery S.Finchenko 

  
 
 
 
a) 

 

 
 

b) 

                                 c) 

 
Figure 1: Re-entry vehicle with inflatable sructure: a - initial position, b - 1st stage, c – 2nd stage 

 
There are a lot of possible applications of IRDT, and just one of them is presented in Fig.2. 
 
The realization of IRDT concept should be provided by solving of some none-traditional technical 
problems: 

• development of structure of flexible TPS for inflatable screen, provided its keeping in special 
container and transformation in functioning position (Fig.3); 

• computational-experimental analisys of heat transfer in frexible TPS; 
•  development of supercharge system for inflatable screen; 
•  computational-experimental analysis of dynamics of transformation for re-entry flight;; 
• analysis of stress and stability of IRDT; 
• in-site diagnostics of covert defects of flexible TPS (delaminations, cracks, breakage, friction 

refinements, gapes, etc.) after testing (especially vibration testing (Fig.4). 
 

 
 

Figure 2: The Application of IRDT 
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Figure 3: TPS structure testing a – initial position; b – transformation 1; с – transformation 2; d – final 

position 
 

Figure 4: Vibtation tests 
 
This paper is devoted to the last item in the list above. Enough sensitive nonlinear acoustics 
diagnostics methods are suitable for non-destructive diagnostics of defects. Sometimes the position of 
defects is required. The developed technique costrains the wave field so that defects can be located. 
This paper has focused on development and analysis the nonlinear acoustics methods in order to 
make them suitable for the diagnostics of flexible TPS.  
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2. MATHEMATICAL MODEL 

In terms of acoustics pressure the mathematical model of wave propagation in specimen of flexible 
TPS in general case is [3] 
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where  coefficients ( ) ( ) ( ) ( ) ( )x,pS,x,pc,x,pb,x,pa,x,p lllllε , Ll ,1=  can be unknown. 
Let’s introduce the following notation mX is the coordinate of m th pressure sensor installed on 
external boundary of system. And the results of pressure measurements in the specimen are assigned 
as necessary additional information to solve an inverse problem  

 
 ( ) ( ) LmfXp mm ,1,,exp == ττ  (8) 
With the presented statement of inverse problem, the data gained in one experiment are not sufficient 
for simultaneous recovery of all unknown coefficients. But bellow we presented the universal 
algorithm without analysis of uniqueness.  

 

3. INVERSE PROBLEM ALGORITHM 

There are a few approaches to realize inverse problems methods with application to acoustics [4-11]. 
Here the extreme method is used. Thus, the identification problem is formulated as funding the 
function ( )τ,Xp m  which provides a minimum of least-square objective function (residual functional 
of the calculated and experimental pressure in points of sensors positioning: 
 

 ( ) ( )[ ]∑ ∫
=

τ

ττ−τ=
L

1m 0

2
mm

m

df,XpJ  (9) 

To construct an iterative algorithm of the inverse problem solving a conjugate gradient method was 
used. The successive approximation process is constructed as follows: 

1) a-priori, an initial approximation of the unknown parameter vector 0u  is set 
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2) a value of the unknown vector at the next iteration are calculated 
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where )s(
uJ ′  - value of the functional gradient at current iteration.  

 
To solve the minimization problem for residual functional a reformulation based on the following 
Lagrangian is necessary [2] 
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where ( ) ( ) ,,1,,, Llxx ll =ητψ ( ) ( ) 1,1,,,,0,, −== LlXLlX ll τµτη  are the Lagrange multipliers. If 
the functions ( ) ( ) ( ) ( ) ( )x,pS,x,pc,x,pb,x,pa,x,p nnnnnε  have received variations 

lnnnn S,c,b,a, ∆∆∆∆ε∆ . Than pressure ( )τ,xpl  will have variations ( ) Llxl ,1,, =τϑ , which are 
covered the following problem 
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Introducing the adjoint problem as: 
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we receive the variation of residual functional as 
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This formula can be considered as differential of residual functional, and in the case when unknown 
functions depend only on spatial coordinate x  or/and time τ  it can be transformed to gradient. If 
unknown functions depends on pressure (non-linear problem) it is convenient to introduce 
parameterization of unknown functions 
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The descent parameter sγ  is determined from the condition  
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A linear estimation is used for determination of the descent step. It can be calculated as  
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where ( )τϑ ,, xml  is the Freshet derivative of ( )t,хp  and is the solution of the  
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4. EXPERIMENTAL APPROVES 

Nonlinearity of a material with damaged structure is the result of elastic properties changes on the 
border of inhomogenuity and surrounding medium. Knowing the value of signal amplitude on 
heterodyne frequency during scanning makes it possible to restore the spatial distribution of structural 
damages in the investigated material [4].  The scheme for the computer-controlled experimental setup 
is on Fig. 5. 

 
The measurement of nonlinear response value dependence on coordinate allows to define spatial 
distribution of nonlinear parameter in the sample and to localize the damages of structure. Background 
noise measured on an object without structural damages is used as a zero signal value in all of the 
experiments. For testing measurements the sample of regular TPS was made. Its density was 800 
kg/m3. The sizes of the sample were 100x100x3 mm. The subsurface structural inclusions (inner 
cutting of different depth) were maden at internal surface  of the sample and imitated the structural 
damage of a composite material after testing. Som results of corresponded inverse problem solving are 
presented in Fig.6. 
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Figure 5: The experimental facilities 
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Figure 6: The non-linearity of the samples as function of cutting depth: 1 – depth is 1,5 mm, 2 – depth is 1.2 
mm, 3 - depth is 1 mm, 4 – depth is 0.8 mm, 5 – depth is 0.6 mm 

5. CONCLUSIONS 

The experimental facility and corresponded software were developed, allowing with the high accuracy 
to define the defects in elastic TPS materials. The deviations of the calculated pressure (using ( )xε  
estimations) from the pressure measured in the experiments are insignificant showing sufficient 
accuracy in the estimations of ( )xε  of the analyzed materials. 
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Abstract 

Rotary kiln installation as a very complicate system of many elements influences on the cement 

production. During operation of tertiary air installation some problems with settling the particles are 

possible. This paper presents results of numerical calculations of the gas-particle flow in tertiary air 

duct installation. Gas-particle flow was calculated using Euler method for air motion and Lagrange 

method for the particles motion. This paper shows that it is possible to focus on studies of the tertiary 

air installation without the analysis of the other processes in the rotary kiln. Solving the inverse 

problem it gave the possibility to analyse several variants of modification the tertiary air installation.  

1 Introduction 

Because of the clinker production process, portion of the fuel can be burned in preheater, it is 

necessary to supply additional air (tertiary air), which should be taken from the clinker cooler [1]. 

Trouble at the tertiary air conveying is that clinker particles which are entrained from the cooler may 

be settle in the duct [2]. For optimization of working conditions, it is necessary to understand the 

detailed process which takes place in the kiln. The specific requirements of the process are designing 

the burner system and provide a burner design that will deliver efficient and reliable combustion. Yet, 

extensive use of this type of transport may bring about some problems that should be eliminated.  

 
Figure 1 Rotary kiln general view 

For describing the complex process of cement production a numerical calculation domain was built. 

For subsequent analyses only flow distribution through the kiln head was important, authors decided to 

build the cement kiln installation only partially. Fig. 1 shows general view of the rotary kiln system 
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with connection between kiln head and preheater. Part of the installation inside a dotted line has been 

omitted and then there was a possibility to build a calculation domain for tertiary air duct only. Fig. 2 

shows tertiary air duct with inlet and outlet. In Fig. 3 head of rotary kiln connected with “basic” 

tertiary air duct is presented. Flow parameters for the system are based on the following assumptions: 

constant velocity in the inlet cross-section depends on the gas flow rate to the kiln head, at the outlet of 

the kiln and pipeline constant pressure value was determined for the “basic” variant for the appropriate 

distribution of gas stream to the kiln and tertiary air duct. 

 
Figure 2 Tertiary air duct   Figure 3 Rotary kiln head for “basic” conditions 

2 Mathematical model 

In order to realize numerical calculations, the mathematical model containing equations of motion for 

the gaseous phase and coal dust particles was formulated. The air motion was described with the Euler 

method, and the particle motion – by the Lagrange method. To analyse motion of the gas-particle 

polydispersive mixture, in this paper the PSI-Cell method was applied[3]. 

Numerical calculations are based on the following assumptions: considered flow is isothermal, 

stationary and without phase changes, both phases are incompressible, Gas motion is described in the 

uniform, generalized conservative form, isolating convection, diffusion and source components. In 

a consequence we obtain 
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where  is a generalized dependent variable,  is the coefficient of diffusion transport, and the source 

term S contains all the remaining components of the differential equations[2]. The coefficients  and 

S are dependent on the variable . In the PSI-Cell method it is assumed that particles of the 

disintegrated phase are the sources of mass, momentum and energy occurring as additional 

components Sp in equations of the continuous (gaseous) phase.  

The system of equations is accompanied by suitable boundary and initial conditions. The above system 

of partial differential equations is non-linear. Particular equations are coupled, so they have to be 

solved with special numerical techniques. 

In order to calculate turbulence model k- was used. The standard k- model is a semi-empirical model 

based on model transport equations for the turbulence kinetic energy k and its dissipation rate . The 

model transport equation for k is derived from the exact equation, while the model transport equation 

for  was obtained using physical reasoning and bears little resemblance to its mathematically exact 

counterpart [4]. 
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In the derivation of the k- model, it was assumed that the flow was fully turbulent, and the effects of 

molecular viscosity were negligible. The standard k- model is therefore valid only for fully turbulent 

flows [5]. The turbulence kinetic energy, k and its rate of dissipation , are calculated from the 

following transport equations [6]: 
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In these equations, Gk represents the generation of turbulence kinetic energy due to the mean velocity 

gradients. Gb is the generation of turbulence kinetic energy due to buoyancy. YM represents the 

contribution of the fluctuating dilatation in compressible turbulence to the overall dissipation rate. C1, 

C2, and C3 are constants. k and  are the turbulent Prandtl numbers for k and , respectively. Sk and 

S are user-defined source terms. The turbulent (or eddy) viscosity µt is computed by combining k and 

 as follows:  
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The particle trajectory should be known during calculation of the mentioned above source components 

of differential equations. The particle trajectory is calculated according to its equation of motion. If the 

phase density difference is big, the equation of particle motion can be written as [11][12]: 
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3 Pressure drop optimization 

Information about flow rate of incoming air to the head of rotary kiln was received from the 

monitoring system of the cement factory. Having information about the area of the inlet velocity was 

set to 5,538 m/s. Pressure loss between inlet to head and outlet from tertiary air pipe was treated as 

a base information for calculation proper distribution of gas. The primary step of setting the numerical 

calculation was the pressure at the outlet to the kiln, as the flow distribution is the same as at the start 

of the analysis. Over 70% of the incoming flow to the head is transported through the kiln. Minor rest 

is transported through the tertiary air installation.  

Fig. 4 presents velocity profile for the “basic” conditions. In the tertiary air duct velocity is going to be 

in range from 0 to 20 m/s. In Fig. 5 there are results of calculations particles concentration in selected 

cross sections of the head of kiln.  
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Fig. 4 Velocity profile [m/s] – variant V0   Fig. 5 Particle concentration [kg/m

3
] – variant V0 

 

For the particle calculation Rosin-Rammler-Sperling distribution was used and 10 fractions of particle 

with the range from 15 to 600 µm were determined. Tab. 1 presents the particle percentage of each 

fraction determined as a part of the mass flow for one fraction. In the calculations was assumed the 

same number of intake point for all particle fractions. Such adopted boundary conditions gave the 

results of the pressure drop calculation as was assumed. Calculations were made by using ANSYS 

Package [13]. Fig. 6 shows particle trajectories in the head of rotary kiln.  
 

Table 1. Particle percentage 
 

d[µm] Percentage 

15 7.51 

35 9.39 

55 10.32 

75 14.12 

110 17.16 

150 18.66 

220 16.67 

350 5.15 

450 0.95 

600 0.07 

 
Figure 6 Particle trajectories (d110, d150, d220 m) – variant V0 

4 Tertiary air installation with solid particle settler. 

For the “basic” conditions obtained from the initial calculations (variant V0), special settler just after 

the outlet of the kiln head as one of the tertiary air installation sections was used. Fig. 7 shows selected 

variants of the modification. In variants V1 and V2 inlet and outlet in the settler are situated under 90° 

angle, in variants V3 and V4 inlet and outlet are in the same axis but another relative to the circular 

base of the settler. Selected particle trajectories are presented for each variant. In variants V1 and V3 

settler is situated back to the rotary kiln, in variants V2 and V4 – closer to the kiln. In each variant 

some particles are transported with the gas through the tertiary air duct, especially in variant V2 a 

“rope” of particles is visible. For this set, the largest number of particles is transported in the tertiary 

air duct, so in these variant working conditions are the worst of the possible. 
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a)  

 

b)  

 

c)  

 

d)  
Figure 7 Considered modifications of the settler and selected particle trajectories (d110, d150, d220 m) for:  

a) variant V1, b) variant V2, c) variant V3, d) variant V4 
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4.1 Particle conveying.  

The next step was the opportunity of counting particles transported in tertiary air installation. Tab. 2 

presents number of particles at the outlet from tertiary air installation for “basic” conditions and next 4 

variants.  

Table 2 Number of particles at the outflow from tertiary air installation 

diameter V0 V1 V2 V3 V4 

d015 809 797 805 704 736 

d035 780 745 737 683 721 

d055 749 737 730 417 578 

d075 678 705 705 570 564 

d110 665 651 667 304 614 

d150 497 307 619 610 605 

d220 481 257 498 496 499 

d350 80 2 24 2 21 

d450 0 0 0 0 0 

d600 0 0 0 0 0 

 

For better explanation of the problem, next step there were calculations in order to obtain information 

on mass particle flow for each of the variants. Tab. 3 shows the results of the calculation.  

Table 3 Mass flow rate [t/h] 

diameter V0 V1 V2 V3 V4 

d015 0,1110 0,1094 0,1105 0,0966 0,1010 

d035 0,1338 0,1278 0,1265 0,1172 0,1237 

d055 0,1413 0,1390 0,1377 0,0786 0,1090 

d075 0,1750 0,1819 0,1819 0,1471 0,1455 

d110 0,2085 0,2042 0,2092 0,0953 0,1925 

d150 0,1695 0,1047 0,2111 0,2080 0,2063 

d220 0,1465 0,0783 0,1517 0,1511 0,1520 

d350 0,0075 0,0002 0,0023 0,0002 0,0020 

d450 0,0000 0,0000 0,0000 0,0000 0,0000 

d600 0,0000 0,0000 0,0000 0,0000 0,0000 

sum 1,0932 0,9455 1,1308 0,8942 1,0321 

 

Tab. 3 shows that the best results in terms of reducing the number of particles being transported in the 

tertiary air installation is obtained in variant V1, where inlet and outlet are positioned relative to the 

settler at an angle of 90°. In variants V3 and V4 mass flow rate is smaller than the “basic” system, but 

the ratio of particles having diameters exceeding 150 m is greater. This is probably connected with 

results of the formation of a „rope” of particles passing through the settler. This phenomena is even 

more visible in the variant V2, where most of the particles exiting from the head after being distributed 

to the pipeline, avoiding the middle part of the settler.  
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5 Summary 

From the results of numerical calculations, the following conclusions can be drawn: 

 It is possible to develop the inverse problem in order to focus on studies of the tertiary air 

installation without the analysis of the other processes in a rotary kiln, 

 Initial conditions were selected on the basis of a predetermined pressure drop between kiln 

head and preheater, 

 The pressure at the outlet to the rotary kiln was selected as long, as the distribution of the gas 

flow rate is consistent with the real installation, 

 Solving the inverse problem, it was possible to analyse several variants of modification the 

tertiary air installation  
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Abstract 

Most of passive techniques for heat transfer enhancement (e.g. rough surfaces, swirl-flow devices and 

coiled tubes) origins an irregular distribution of the heat transfer coefficient at the fluid wall-interface 

along the wall perimeter. This irregular distribution could be critical in some industrial applications 

but most of the available research papers, mainly due to the practical difficulty of measuring heat flux 

on internal wall surface of a pipe, presents the results only in terms of Nusselt number averaged along 

the wall circumference. The application of inverse heat conduction problem solution techniques 

overcomes this limitation because they enable to estimate the local convective heat transfer coefficient 

starting from the temperature distribution acquired on the external wall surface. In this work, two 

different techniques were considered and compared: Tikhonov Regularization Method (TRM) and 

Gaussian Filtering Technique (GFT). They were tested considering a particular problem within passive 

heat transfer enhancement techniques: estimating the local convective heat transfer coefficient in 

coiled tubes. The comparison, performed both by synthetic and experimental data, revealed that the 

TRM performs better than the GFT if the signal is affected by low noise level while, for higher noise 

value, their  efficiency is comparable. 
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1 Introduction 

Savings in materials and energy use provide strong motivation for adopting techniques of heat transfer 

enhancement in the design of commercial heat exchangers. Enhancement techniques can be separated 

into two categories: passive and active. Passive methods require no direct application of external 

power and they usually employ special surface geometries, which cause heat transfer enhancement. On 

the other hand, active schemes (e.g. electromagnetic fields and surface vibration) do require external 

power for operation, [1].   

Passive techniques are commercially more attractive because no power is required to facilitate the 

enhancement and among them treated surfaces, rough surfaces, displaced enhancement devices, swirl-

flow devices, surface-tension devices, coiled tubes, or flow additives are found. Most of them origins 

an irregular distribution of the velocity field over cross-section of the tube and this could lead to a 

significant variation of the heat transfer coefficient at the fluid-wall interface along the circumferential 

angular coordinate, [2,3]. Although this irregular distribution could be critical in some industrial 

applications, such as in the ones that involve a thermal process, most of the papers available in the 

scientific literature did not investigate this aspect, mainly due to the practical difficulty of measuring 

heat flux on internal wall surface of a pipe, and they presented the results only in terms of the Nusselt 

number averaged along the wall circumference.  

The application of the Inverse Heat Conduction Problem (IHCP) solution techniques overcomes the 

experimental problem of monitoring heat transfer on the internal wall of the tube because they enable 

to estimate the local convective heat transfer coefficient starting from the temperature distribution 

acquired on the external wall surface. However, this approach presents some complications due to the 

fact that IHCP is ill-posed and, consequently, it is very sensitive to small perturbations in the input 

data. In order to bypass the ill-posedness of  inverse problems, many techniques based on the 

processing of the experimental data have been suggested and validated in literature. In this work, two 

different techniques were considered and compared: Tikhonov Regularization Method (TRM) and 

Gaussian Filtering Technique (GFT).  

Filtering approach is one of the most promising ones when input data are represented by spatially 

highly resolved temperature maps, such as the ones obtained by new generation infrared cameras. This 

approach is based on filtering out the unwanted noise from the raw temperature data in order to make 

feasible the direct calculation of its Laplacian, embedded in the inverse heat conduction problem’s 

formulation [4]. In the present investigation the Gaussian filter, already successfully applied in 

literature for solving IHCPs, was adopted. The choice of the cut-off frequency of the filter, a crucial 

problem of this approach, was performed according to the discrepancy principle [5].  

On the other hand, TRM is one of the most famous approach for this kind of problem [6];  it solves the 

original ill-posed IHCP by the minimization of an objective  function expressed by the sum of the 

squared difference between measured and estimated temperature discrete data and of a regularization 

parameter times a term that expresses the smoothness of the unknown quantity. The success of this 

approach relies on a proper choice of the regularization parameter and this is not an easy task. In the 

present paper, in order to make the comparison with the filtering technique more reliable, the 

discrepancy principle was adopted for determining a proper value of the regularization [5]. It has to be 

reminded that, if for TRM other approaches (e.g. Fixed-point, L-curve) are available, for filtering 

approaches the discrepancy principle is the only reliable one.  

In this paper, these two methods were tested considering a particular application: starting from 

temperature distribution on the external wall surface of a coiled tube, the local convective heat transfer 

coefficient at the internal wall surface has to be estimated. This application, from the industrial point 

of view, is particularly interesting because helical coil is a widely adopted technique of heat transfer 

enhancement in the thermal processing of highly viscous fluids. Its effectiveness relies on the fact that 

wall curvature gives origin to the centrifugal force inducing local maxima in the fluid velocity 

distribution, locally increasing the temperature gradients at the wall and, as a result, maximizing the 
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heat transfer [7-10]. The uneven distribution of the velocity field leads to a significant variation of the 

heat transfer coefficient along the wall perimeter. For all these reasons this tube geometry is an ideal 

benchmark for testing the IHCP solution techniques. In this paper the comparison is performed both 

with synthetic and experimental data.  

Finally, it must be stressed that, as observed in [11], the use of data filtering approach to the solution 

of the IHCP is still not well-established, even though these filters are available in many engineering 

data processing environments with very moderate computational costs. Therefore, it is desirable that 

some further research efforts will be devoted to this research topic and the present paper has been 

developed in this direction.  

2 Problem’s definition 

A typical condition in which curved tubes are tested is the one in which the convective heat transfer 

within the fluid that flows inside the tube occurs under the uniform heat flux boundary conditions, 

such as the one considered by Rainieri et al. [10,12] in their experimental investigations where a heat 

flux was dissipated by Joule effect directly within the tube wall. 

In order to evaluate the local actual value of the convective heat transfer coefficient at the fluid internal 

wall interface on a given cross section (as highlighted in figure 1), the temperature distribution is 

acquired on the external wall surface and then the IHCP in the wall domain is solved by considering 

the convective heat transfer coefficient distribution on the internal wall surface to be unknown.  

 

 
Figure 1: Coiled tube. 

  

The test section (sketched in Fig. 2) is efficiently modelled as a 2-D solid domain by assuming that 

along the axis of the tube the temperature gradient is almost negligible. 

In this domain the steady state energy balance equation is expressed in the form: 

          (1) 

 

where qg is the heat generated per unit volume and k is the tube wall thermal conductivity. The 

following two boundary conditions completed the energy balance equation: 
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 (2) 

 

that is applied on surface     and where Renv is the overall heat transfer resistance between the tube 

wall and the surrounding environment with the temperature Tenv ; 

  
  

  
             (3) 

that is applied on surface    and where    is the bulk fluid temperature and hint is the local convective 

heat transfer coefficient at the fluid- internal wall interface. 

 

 
 

Figure 2: Geometrical domain with coordinate system.  

 

For a given experimental set-up the bulk fluid temperature can be easily calculated by imposing that 

the energy balance is satisfied [10,12]. 

3 Solution techniques 

In this paragraph the two techniques employed to solve the IHCP and to estimate the local convective 

heat transfer coefficient are synthetically presented. An exhaustive discussion of these approaches can 

be find, for the TRM, in [12] and for GFT in [4].  

3.1 Gaussian filtering technique  

The filtering approach aims to filter out the unwanted noise from the raw temperature data in order to 

make feasible the direct calculation of its Laplacian, embedded in IHCP’s formulation. The 

effectiveness of the Gaussian kernel in this kind of inverse problem was experimented by Murio et al. 

[13], Delpueyo et all [14] and Bozzoli et al. [4]. 

In order to implement the above procedure, that can be ultimately classified as a function estimation 

procedure, a thin wall model of the test section was considered. Under this approach, the convective 

heat transfer coefficient at the fluid-coiled wall interface follows form the steady state local energy 

balance: 
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(4) 

where    is the measured temperature distribution on the external tube’s wall, processed by the 

Gaussian filter .   

A Gaussian filter is a filter whose impulse response is a Gaussian function. Since the Fourier transform 

of a Gaussian is again a Gaussian function, the application of a Gaussian filter has the effect of 

reducing the data high-frequency components. It is widely adopted in the enhancing of images’ quality 

within graphics software. The transfer function in the frequency domain, of this kind of filter can be 

expressed as follows: 

 

              
     

 
, (5) 

 

where uc is the cutoff frequency. Since in real application the optimal cutoff frequency value for each 

kind of filter is not known a priori, a criterion to choose it must be selected in order to make successful 

the regularization procedure. This choice is similar to the selection of optimal regularization 

parameters when dealing with regularization methods for inverse estimation [5,6,15]. In the present 

analysis the criterion provided by the discrepancy principle, originally formulated by Morozov [16], 

was adopted. 

According to this principle, the inverse problem solution is regarded to be sufficiently accurate when 

the difference between filtered and measured temperatures is close to the standard deviation of the raw 

measurements. The cutoff frequency was determined as the frequency at which the condition 

expressed in Eq. (6)  is satisfied.  

 

      
 

  
    

(6) 

 

where       stands for the 2-norm of a vector, N is the size of the vector Y and σY is the standard 

deviation of the measurement error. 

3.2 Tikhonov regularization method 

It is helpful to reformulate the direct problem making explicit the local convective heat flux at the 

fluid-internal wall interface; under this approach the boundary condition expressed by Eq.(3) becomes:  

 

 q
r

T
k 



 , 

(7) 

which is applied on surface S2 and where q is the local convective heat flux at the fluid-internal wall 

interface, assumed to be varying with the angular coordinate . 

To express the problem in the discrete domain, the convective heat flux distribution can be simplified 

by considering that it is described by a continuous, piecewise linear function.  Proceeding  this way the 

direct problem becomes linear with respect to the heat flux q(α) and its discrete version can be 

described as follows: 

 

0qTXqT  , (8) 
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where T is the vector of the discrete temperature data at the external coil surface, q is the heat flux 

vector at the fluid-internal wall interface, Tq=0 is a constant term and X is the sensitivity matrix.  

The direct formulation of the problem is concerned with the determination of the temperature 

distribution on the tube external wall when the convective heat flux vector q is known. In the inverse 

formulation considered here, q is instead regarded as being unknown, whereas the surface temperature 

Y is measured. 

As the inverse problem is ill-posed, in order to cope with  the presence of noise in the measured 

temperature some type of regularisation is required. The TRM, successfully applied in the inverse 

heat-transfer literature [17,18], makes it possible to reformulate the original problem as a well-posed 

problem that consists of minimising the following objective function: 

  
2

2

2
2

2
)( LqTXqYq 0q  J , >0, 

(9) 

 

where 
2

2
 stands for the 2-norm,  is the regularisation parameter, L is a discrete derivative operator 

and T is the distribution of the external surface temperature derived from a direct numerical solution of 

the problem obtained by imposing a given convective heat flux distribution on the internal wall side q. 

Often, L is the zero, first or second derivative operator: in this work the second-order derivative 

formulation was chosen to preserve the local variation in the heat-flux distribution.   

The function expressed in Eq. (9) represents a trade-off between the fidelity of the fit and the stability 

of the solution. Thus, an appropriate choice of  is a crucial point to find a reliable approximation of 

the wanted solution. 

In the present paper, in order to make the comparison with the filtering technique more consistent, the 

discrepancy principle was adopted for determining a proper value of the regularization parameter 

[5,18]. The discrepancy principle suggests computing   in such a way that the corresponding 

Tikhonov solution, that is the minimum of the Eq. (9), satisfies the non linear equation: 

 

 0qTXqY   
 

  
    

(10) 

where N is the size of the vector Y and σY is the standard deviation of the measurement error. 

Once the heat-flux distribution at the fluid-wall interface compatible with the experimental 

temperature data has been determined through the strategy described above, the local convective heat-

transfer coefficient can be determined, as follows: 

 

bTrrT

q
h




),(

)(
)(

int

int



 

, 
(11) 

  

where q(α) is the heat flux distribution estimated under the solution approach based on the Tikhonov 

regularisation method and T(α,r=rint) is temperature distribution on the tube internal wall efficiently 

estimated by numerically solving the direct problem expressed by Eq. (8) by imposing a convective 

heat flux equal to q(α).   
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4 Numerical comparison 

The comparison of the two above described techniques was first performed by adopting synthetic data. 

By imposing a known distribution of      and by solving the governing Eq. (1-3), a synthetic 

temperature distribution on the external wall surface was obtained. The physical and geometrical 

parameters used in this work correspond to a stainless steel tube with an internal radius of 7 mm and 

an external radius of 8 mm. For the local convective heat transfer coefficient, a distribution according 

to the data of Jayakumar et al. [8], and shown in Fig. 3, was adopted. This distribution, corresponding 

to the thermally fully developed region, was derived by numerical simulations performed under the 

turbulent flow regime and it shows a significant variation along the curvilinear coordinate.  

Then the synthetic temperature distribution on the external wall surface, deliberately spoiled by 

random noise, was used as the input data of the inverse problem. In particular, a white noise 

characterized by a standard deviation ranging from 0.01 K - 5 K was considered.  

In Fig. 3 the local heat transfer coefficient distributions restored by TRM and GFT for two different 

noise level are compared with the exact one.   

 

  
Figure 3: Exact and reconstructed hint distribution obtained by Tikhonov Regularization Method 

(TRM) and Gaussian Filtering Technique (GFT) for two different noise level. 

 

In order to quantify the effectiveness of the two approaches at different signal to noise level a residual 

analysis could be performed by plotting the estimation error, defined as follows: 

 

  
                             

 

              
  

 

(12) 

 

versus the standard deviation of the measurement error. 
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Figure 4: Estimation error  on hint  for Tikhonov Regularization Method (TRM) 

and Gaussian Filtering Technique (GFT) at different noise level. 

 

This comparison highlights that, for the problem here investigated, the TRM performs better than the 

GFT if  the noise is lower than 0.1 K  while, for higher noise value, their  efficiency is almost 

comparable. 

5 Experimental comparison  

The two estimation techniques were compared trough their application to a set of experimental data 

obtained in [12]:  a stainless steel coiled tube was tested under the prescribed condition of uniform 

heating generated by Joule effect in the wall. Ethylene Glycol was used as working fluid and laminar 

flow regime was investigated. The temperature distribution of the tube external wall was obtained by 

moving the infrared camera around the section and merging together the acquired  multiple images. 

Further details on the experimental facilities and procedures can be found in [12] . 

In order to apply both the estimation procedures, the noise level in the acquired data has to be 

estimated; it was done  by measuring the surface temperature distribution while maintaining the coil 

wall under isothermal conditions. 

For a representative Reynolds number value, the distributions of the convective heat transfer 

coefficient restored by TRM and GFT are compared in Fig. 5:  this plot  underlines  that, for the case 

here investigated,  the two approaches give equivalent results although the implementation of the 

regularization approach through Gaussian filter requires a lower computational cost if compared to 

Tikhonov regularization approach.  

The residuals between the experimental and the reconstructed temperature, plotted in Fig. 6, gives 

deeper insight into the performances of two estimation procedures: the residuals produce by TRM are 

more randomly distributed than the ones by GFT. This observation suggests that, in this case, even if 

no appreciable differences are noticeable in terms of estimated local convective heat transfer 

coefficient, TRM works slightly better than GFT which tends to excessively smoothen the temperature 

distribution .  
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Figure 5: Convective heat transfer coefficient distribution at the fluid-

internal wall interface obtained by Tikhonov Regularization Method 

(TRM) and Gaussian Filtering Technique (GFA),  Re = 665. 

 

 

  
Figure 6: Residuals between the experimental and the reconstructed temperature obtained by GFT 

(left) and TRM (right). 

6 Conclusions 

Two different Inverse Heat Conduction Problem solution techniques were considered and compared: 

Tikhonov Regularization Method (TRM) and Gaussian Filtering Technique (GFT). They were tested 

with regard to the estimation of the local convective heat transfer coefficient in coiled tubes. In order 

to make the evaluation more robust, the discrepancy principle was adopted for the both techniques. 

The comparison, firstly performed through their application to synthetic data, revealed that the TRM 

performs better than the GFT if the signal is affected by low noise level while, for higher noise value, 

their efficiency is comparable. 

The following application to experimental data established that, for the experimental facilities here 

adopted,  the two approaches give equivalent results although the implementation of the regularization 

approach through GFA requires a lower computational cost if compared to TRM.   
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Abstract 

This work proposes the use of inverse problem techniques in connection with COMSOL to estimate 

the heat flux and the temperature field on a turning cutting tool in transient regime. The main purpose 

of the present work is to present the improvements performed in relation to the authors’ previous work 

to develop the complex geometry of a machining process. Specification function, which is an inverse 

problem technique, was implemented in a program to estimate the heat flux applied on the tool, from 

the experimental temperature records. Once the heat flux is known, COMSOL is again utilized to 

obtain the temperature field on the cutting tool. The validation of the methodology is carried out by 

comparing the numerical and experimental results of temperature. 

1 Introduction 

Several engineering processes have their performance and quality affected by high temperature values. 

A typical example is the machining process in which cutting tool temperatures may be higher than 

900ºC [1]. High temperatures change the microstructure and physical properties of the tool during 

machining, thus reducing their capacity to resist mechanical stress [2]. The direct consequence of these 

alterations is the reduction of their lifespan and performance. This leads to high operation costs and 

reduction of the end product quality. The right knowledge of the temperature values and applied heat 

flux in this kind of process, results in advantages like the development of more efficient cooling 

techniques as well as better specifications of the cutting parameters in machining processes. These 

temperatures have a controlling influence on the wear rate of the cutting tool as well as on the friction 

between the chip and the tool. However, the direct measurement of the temperature in a machining 

process is difficult to accomplish due to the movement of the piece as well as the presence of chips. 

Thus, the use of inverse heat conduction techniques conveys a good alternative to obtain these 

temperatures, since these techniques allow the use of experimental data obtained from accessible 

regions. Inverse problems consist of obtaining the value of a variable through the measurement of 

ICIPE2014 8th International Conference on Inverse Problems in Engineering, May 12–15, 2014, Poland
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another variable measured directly [3]. These techniques often use optimization algorithm in order to 

minimize the error between the calculated and real value of the variable in question. Nowadays, 

several researchers have proposed the combination of inverse techniques and numerical heat transfer 

solutions to analyze the thermal fields during machining processes. 

Conveying a greater availability of computational resources, the use of numerical methods gained 

terrain, and it did not take long before they started being used, along with experimental methods in the 

studies of temperature fields on cutting tools. A three-dimensional finite difference-based model to 

predict temperature in machining processes was presented in [4]. The FDM based model proposed in 

this paper offered very rapid and reasonably accurate solutions. The simulated results were validated 

with infrared thermal measurements which were determined from the machining of AISI 1050 and 

AISI H13 materials under various cutting conditions. In the study of [5] an analytical and numerical 

model for cutting temperature prediction of 316L stainless steel was developed. The simulation model 

was set up in commercial FEM software of Abaqus6.8, which is good at nonlinear dynamic 

calculation. An ALE finite element model, which combines the advantages of both Lagrangian and 

Eulerian techniques, was used. The Johnson-Cook plasticity model was used to model the workpiece 

material. The analytical modeling and FEM modeling results match very well. In [6] the temperature 

distribution of the micro-cutter in the micro-end-milling process was investigated by numerical 

simulations and experimental approach. Micro-end-milling processes were modeled by the three-

dimensional finite element method coupling thermal–mechanical effects. The micro-cutter cutting 

temperature distribution, the effect of various tool edge radii on cutting force, and the effective stress 

during micro-end-milling of aluminum alloy Al2024-T6 using a tungsten-carbide micro-cutter were 

investigated on. The simulation results showed that with the increase of the tool edge radius the cutting 

force increases, while the effective stress and mean cutting temperature decreases slightly.  

Inverse techniques have already been used to study temperature fields on a cutting tool. The solution 

of a three dimensional inverse heat conduction problem using an Evolutionary Algorithm (EA) was 

demonstrated in [7]. The heat flux on the tool during the turning process was determined by using 

evolutionary operations combined with measured temperatures on the tool surface. The three-

dimensional conduction in the tool and tool holder was simulated using FLUENT. In [8] an inverse 

method was proposed to estimate the heat sources in the transient two-dimensional heat conduction 

problem in a rectangular domain with convective bounders. The non homogeneous partial differential 

equation (PDE) is solved using the Integral Transform Method. The test function for the heat 

generation term was obtained by the chip geometry and thermomechanical cutting. Then the heat 

generation term was estimated by the conjugated gradient method (CGM) with adjoint problem. The 

sequential function specification method was used to estimate the transient heat flux imposed on the 

rake face of a cutting tool during the cutting operation with two different assumptions [9]. In one of 

them the thermal conductivity is assumed to be constant, and in the other one it varies with the 

temperature. The cutting tool was modeled as a three dimensional object. Simulated temperature data 

was used to recover the heat flux at the cutting tool surface using linear as well as nonlinear solutions. 

This work proposes the use of inverse problem techniques with the commercial software COMSOL® 

4.3 to estimate the heat flux and the temperature field in the contact area under transient regime, in a 

turning cutting tool. A Matlab program, with Specification Function technique, was developed to 

estimate the heat flux applied on the cutting tool, using experimental temperature records in a 

determined point. The validation of the proposed methodology was accomplished in controlled 

experiments in laboratory.  
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2 Theoretical Formulation 

2.1 Temperature model 

The problem dealt with in this work is represented by Fig. 1a, which represents a set consisting of a 

cutting tool, a hard metal, a wedge positioned under the cutting tool between the tool and the tool 

holder. There is also a staple and a bolt to fix the set. In Figure 1a the schematic model for the thermal 

problem of machining is presented. The heat generation during the machining process is indicated by a 

distribution of unknown heat flux q”(x,y,t), over the arbitrary area by x and y. A blown up view of the 

set is shown in Fig. 1b.  
 

  
 

 a)  b) 

Figure 1: a) Thermal problem scheme and b) Detail of the contact interface between the tool and the 

workpiece. 

 

The heat diffusion equation ruling this problem may be given as: 
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The direct problem consists in solving the heat diffusion equation according to the boundary 

conditions (Eqs. 1 to 4). The COMSOL
®
 4.3 program, which solves thermal problems by using the 

finite element method, is used for this purpose. The use of COMSOL for the numerical resolutions of 

differential equations that rule the physical phenomenon investigated should be highlighted. Also, 

COMSOL allows adjusting any boundary conditions, as well as modeling the geometry so as to 

faithfully represent the system investigated as presented in Fig. 1a. 

2.2 The Inverse Problem 

The inverse technique adopted in this work is the Specification Function [3]. This technique requires 

the calculation of the sensitivity coefficient which is done numerically from Duhamel Theorem [10]. 

The sensitivity coefficient is then obtained with the use of a numerical probe which follows the 

temperature changes in the point equivalent to where the thermocouples were placed in the 

experiments. Once the sensitivity coefficient is at hand, the heat flux is estimated with the use of a 

Matlab language program. Another important parameter is the value of future time steps r. In the 

Specification Function technique, a determined value of future time steps r is used to estimate the heat 

flux at present instant. In the resolution of the inverse problem, the Specification Function searches for 

a heat flux value that minimizes the objective function given in Eq. 5, for each time step 
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3 Validation of the Methodology Proposed 

A great difficulty in the solution of inverse heat conduction problems is the validation of the technique 

used. This difficulty is inherent to the problem, once the validation of the estimated heat flux requires 

the previous knowledge of the experimental heat flux. It is observed that in real inverse problems, as in 

machining process, the experimental heat flux is not known. Thus, an alternative for the validation of 

the inverse technique is to carry out a controlled experiment, in which the heat flux and the 

temperature are measured at the cut tool. In this sense, before the analysis of the real machining 

process, a cemented carbide tool with dimensions of 0.0127 x 0.0127 x 0.0047 m was used. A heat 

flux transducer and two thermocouples previously calibrated and a kapton electric heater were used on 

this tool. This heater was connected to a digital power supply (MCE). The heat flux transducer was 

located between the heater and the tool, in order to measure the heat supplied to the tool. The 

temperatures at the tool were measured with two thermocouples. The heat flux and temperatures 

signals were acquired by a HP Series 75000 data acquisition system, controlled by a PC. Temperatures 

were measured using type K thermocouples (30AWG) welded by capacitive discharge and calibrated 

by using a bath temperature calibrator ERTCO with a stability of  0.01 ºC. 

The solution of the three-dimensional heat diffusion equation is obtained with the use of the finite 

element method, through the commercial software COMSOL® 4.3. For this, a computational thermal 

model was used to faithfully represent the experimental model of the sample. This model was 

discretized in a computational tetrahedral mesh. The validation results are presented in Figs. 2a, 2b and 

2c. Figure 2a presents a comparison between the experimental and estimated flux, whereas Fig. 2b 

compares the experimental and numerical temperatures. Figure 2c presents the deviation between the 

experimental and numerical temperatures. The Specification Function method for r equal to 10 future 

time steps was used in Fig. 2a.  
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 a)  b)  c) 

Figure 2. a) Experimental and estimated heat flux, b) experimental and calculated temperatures c) 

temperature residuals. 

4 Experimental Assembly in a Real Machining Process 

The machining test was carried out in a conventional lathe IMOR MAXI–II–520–6CV without 

coolant. The material used in the experimental test was a cylindrical gray cast iron bar FC 20 EB 126 

ABNT of 77 mm in external diameter. The insert and tool holder used were cemented ISO 

SNUN12040408 K20/Brassinter and ISO CSBNR 20K12/SANDVIK COROMAT, respectively. The 

temperatures were measured on accessible locations of the insert, the shim and the tool holder by using 

K type thermocouples and a data acquisition system HP 75000 Series B controlled by a PC (Fig. 3a). 

Table 1 presents the location of the thermocouples shown in Fig. 3b.  

 

 
 

 a) b) 

Figure 3. a) Experimental apparatus used to acquire the temperature signals in the tool during 

machining and b) detail of the position of the thermocouple welded to the tool. 

 

Table 1: Locations of the thermocouples shown in Fig. 3b. 

Position/Thermocouples 1 2 3 4 5 6 7 8 

x [mm] 0.0 0.0 0.0 4.490 6.528 7.222 9.512 5.300 

y [mm] 6.45 7.25 3.950 4.116 6.579 4.740 1.715 14.55 

z [mm] -6.55 -11.65 -2.12 -4.83 -4.83 0.0 0.0 9.4 
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The chip-tool contact area determination represents one of most important and delicate aspects among 

the main sources of errors in the solution of the thermal model problem. Some methods to identify this 

area can be found in the literature as, for example, the use of image analyzer software [11] or the 

application of coatings [12]. In both processes, the area is measured after cutting. This procedure is 

also used here. However, in this work, the interface contact areas were obtained from the three tests 

carried out with the same cutting condition. In order to measure the contact area an image system 

program with video camera Hitachi CCD, KP-110 model, an AMD PC- K6 450 MHz and the 

GLOBAL LAB image software were used. A typical contact area is presented in Figs. 4a and 4b. The 

contact area value was 1.41mm
2
, obtained for feed rate of 0.138mm/rot, cutting speed of 135.47m/min 

and depth of cut of 5.0mm.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a)  b) 

Figure 4. a) Image treatment of the contact area and b) contact area on the computational model. 

 

Many tests were carried out to observe the influence of cutting speed, feed rate and depth of cut in the 

temperature distribution. However, due to the limitation of pages in this paper the results are presented 

for only two tests. The test identifications with the cutting conditions are presented in Tab. 2. Each 

cutting condition was repeated three times to observe the repeatability. In each experiment the total 

number of measurement of each thermocouple was nt = 180 with a time sample of 0.5s. The thermal 

conductivity and diffusivity of the tool are respectively,  = 43.1 Wm/K and α = 14.8 x 10
-06

m
2
/s [13].  

 

Table 2: Cutting conditions. 

Cutting parameters Test 1 Test 2 

Feed rate 0.138 mm/rev 0.138 mm/rev 

Cutting speed 135.47 m/min 135.47 m/min 

Depth of cut  5.0 mm 1.0 mm 

Final diameter 72 mm 76 mm 

 

The tool holder is AISI 1045 steel and its thermal properties are  = 49.8 Wm/K and α = 13.05 x 10
-06

 

m
2
/s [14]. The support below the tool has the same thermal properties as the tool. All the faces, except 

the chip-tool interface, were submitted to a constant convection heat transfer coefficient, h = 20 

W/m²K. Another important error source that must be taken into account is the thermal contact 

resistance existing among the tool, the shim and the tool holder. The thermal contact depends on many 

parameters and conditions such as contact nature, surface properties, pressures, etc. Much effort has 

been spent in the model and identification technique. Although, this problem is not treated here, the 
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effect of this thermal contact is simulated as a gap of 10m thickness between the materials involved 

with the air properties at 300 K. The air thermal properties used are  = 0.026 Wm/K and α = 22.5 x 

10
-06

m
2
/s [15]. 

5 Results Analysis  

In this section, the results for the estimation of the heat flux and temperature calculations by using 

inverse problem technique Specification Function with software COMSOL 4.3 are presented. As 

aforementioned, for the study of the temperature field in the cutting tool, 3 experiments were carried 

out with no alterations in the assembly conditions or operations. Each experiment lasted 90s, with 

temperature reading at every 0.5s, totaling 180 temperature values. It is worth mentioning that in the 

beginning of the experiment, there is no contact between the tool and the workpiece, therefore the tool 

is found at uniform room temperature. The cutting time happened between the initial time and 60s. 

After the 60
th
 second, the cutting is stopped and the tool moves off the workpiece. And it is during the 

cutting time that heat flux is applied on the tool.  

The sensitivity coefficient was calculated numerically with the use of the COMSOL® 4.3 software, as 

the direct problem, using boundary conditions of heat flux of 1W/m² and initial temperature at 0ºC and 

an average convection coefficient of 20W/m
2
K. Many simulations were performed, as in [13], to 

analyse the influence of the value h = 20W/m
2
K. 

In Figure 5a, the heat flux was estimated for Test 1 (Tab. 2) by using the Specification Function 

Technique for the future time steps parameter, r = 10. In this figure, a comparison with the heat flux 

estimated in [13] and [16] is also presented. Tests were carried out with higher and lesser values of 

future time steps to confirm this value of r. According to the graph, the heat flux is applied from the 

beginning of the machining process up to approximately 60s. After this time interval, the applied heat 

flux is null, that is, no machining occurs on the material. In the time interval between 0 and 60s, the 

average applied heat flux was approximately 35MW/m². The computational time to estimate the heat 

flux by using the Function Specification technique was 9 minutes and 24 seconds using an Intel Core 

I7, 6 GB, Windows 7 Ultimate 64 bits. In Figure 5b, a comparison between experimental and 

calculated temperatures in positions T3, T6 and T7 is presented. In this figure, good results can be seen 

when comparing estimated and experimental temperatures, especially for thermocouple T3. Only the 

results for the highest values of temperature are presented. 

 

  
 

 a)  b) 

Figure 5. a) Estimated heat flux and b) Comparison between experimental and estimated temperatures 

for thermocouples T3, T6 and T7. 
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Figure 6a presents the estimated heat flux for Test 2 (Tab.2) by using the Specification Function for r 

= 10. A comparison between experimental and calculated temperatures in positions T3, T6 and T7 is 

presented in Fig 6b. There is also a good agreement when comparing with authors’ previous work 

(Fig. 6a) and with the experimental temperatures (Fig. 6b). In addition a comparison between the 

calculated temperatures in positions T3, T6 and T7 for Tests 1 and 2 is presented in Fig. 6c. It may be 

noticed that the temperatures increase for a higher depth of cut. 

 

 
 a)  b) 

 
c) 

Figure 6. a) Estimated heat flux, b) Comparison between experimental and estimated temperatures for 

thermocouples T3, T6 and T7 and c) comparison between estimated temperatures in positions T3, T6 and 

T7 for Tests 1 and 2. 

 

To complete, Figures 7a, 7b, 7c and 7d show a representation of the temperature field in the tool set 

for Test 1 according to the COMSOL® program at time 5s, 10s, 50s and 80s, respectively. According 

to Fig. 7c there is a high temperature gradient in the insert. 
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 a)  b)  

 

 
 
 c)  d)  

Figure 7: Temperature field in the set at instants a) t = 5s, b) 10s, c) 50s and b) t = 80s. 

6 Conclusions 

The temperature field in any region of the tool set (insert, shim and tool-holder) is calculated from the 

heat flux estimation at the cutting interface. A significant improvement in the technique to estimate 

heat flux and temperatures in a machining process was presented in this work. For this, the Inverse 

Problem Specification Function Method and the COMSOL® 4.3 were joined. In addition, several 

cutting tests using cemented carbide tools were performed in order to check the model and to verify 

the influence of the cutting parameters on the temperature field. The use of commercial packages for 

the numerical resolutions of differential equations that rule the physical phenomenon investigated 

should be highlighted, for these programs allow adjusting any boundary conditions, as well as 

modeling the geometry so as to faithfully represent the system investigated. 
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Abstract 

In this work, thermal conductivity, λ, and volumetric heat capacity, ρcp are estimated for a titanium 
sample. Two different intensities of heat flux were used in the same experiment with the purpose of 
increasing significantly the sensitivity for the thermophysical property estimation. The purpose of the 
present work is to present the improvements performed in relation to previous work of the authors. 
This paper also presents a study on the thermal contact resistance and an analysis of the uncertainties 
that occur in the simultaneous estimation of λ and ρcp. The thermal contact resistance is calculated 
considering the distance between the resistive heater and the sample and a kapton layer of the resistive 
heater. Satisfactory results are obtained for this analysis because these influences result in a 
temperature difference of around 0.1 ° C, which is equal to the uncertainty of the thermocouple. The 
uncertainty analysis is based on the propagation of uncertainty by taking the experimental thermal 
contact resistance and numerical errors into account. The uncertainty analysis is considered 
satisfactory because the obtained result was lower than 5%. 

1 Introduction 

Nowadays, due to globalization, more and more new techniques are required to quickly, reliably and 
accurately determine the thermophysical properties of materials. Another important aspect is the 
economic issue, because the lower the cost to determine the parameters, ensuring reliability, the 
greater the chance to compete in the national and international markets. The technique proposed in this 
paper can be used, for example, to correctly choose, under the point of view thermal properties, the 
materials to be used in the manufacture of a heat exchanger. This choice is made by taking into 
account the values of thermophysical properties, which should be ideal to yield a saving that is directly 
linked to energy and environmental issues, widely discussed in the current global circumstances. 
Another example can be a machining process which great part of the heat generated by friction 
between the workpiece and the cutting tool must be transferred to the tool holder, as the tool wear is 
directly linked to temperature increase. Thus, the right tool for the process can be chosen through the 
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knowledge of its thermal conductivity, since this property determines the range of the working 
temperature of the material. From these needs, researchers have developed many techniques which are 
being improved continuously [1,2]. 
There are several techniques to determine the thermophysical properties of diverse materials [3,4,5]. 
These techniques may determine these properties separately or isolatedly, moreover, most of these 
estimations occur rapidly, safely and precisely. Hence, an experimental assembly is necessary to 
perform this estimation. Therefore, when experiments are performed, several uncertainties occur 
related to the thermal contact resistance as well as in the equipment used to measure the temperature, 
the heat flux, among others. These uncertainties are intrinsic to the process and cannot be avoided. 
Therefore, the correct procedure is to perform a controlled experiment to quantify these uncertainties. 
However, authors like [6,7,8], and others have performed experiments without mentioning these 
uncertainties. Although these uncertainties are mentioned and quantified in [3,4,5], the method and the 
process to measure these uncertainties are not described. A method to estimate simultaneously thermal 
conductivity, λ and volumetric heat capacity, ρcp, of titanium ASTM B265 is presented in this work. 
An uncertainty analysis is also presented in this work as well a study of the contact resistance through 
the experiment aforementioned to estimate the thermal properties simultaneously. The study on the 
contact resistance displays the influence of the Kapton layer on the resistive heater and the distance 
between the heater and the sample. The uncertainty analysis is done by taking into account the 
influence of the thermal contact resistance and the numerical and experimental temperature errors. In 
addition, the main purpose of the present work is to present the improvements performed in relation to 
[9]. The heater, now, is completely symmetrical and the metal samples were rectified.  

2 Theory 

2.1 Thermal Model and Sensitivity Coefficient 

Figure 1 shows the proposed one-dimensional thermal model, which consists of a sample located 
between a resistive heater and an insulator. The sample has much smaller thickness than its others 
dimensions and all the surfaces, except the heated (x = 0), are isolated to ensure the one-direction heat 
flux.  
 

 
 

Figure 1: One-dimensional thermal model. 
 

The heat diffusion equation for the problem presented in Figure 1 can be written as: 
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subject to the boundary conditions: 
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and the initial condition: 
 
 0),( TtxT   at 0t , (4) 
where x is the Cartesian coordinate, t the time, 1  the prescribed heat flux, T0 the initial temperature of 
the sample and L the thickness. 
Studies of the sensitivity coefficient for each sample are performed in this work in order to determine 
the ideal region to estimate the properties and the best configuration of the experimental setup. This 
study provides information such as: the correct positioning of the thermocouples, the experimental 
time, and the time interval of the applied heat flux incidence. The higher the coefficients value, the 
better the chance of obtaining the properties reliably. The sensitivity coefficient is defined by the first 
partial derivative of the temperature in relation to the parameter to be analyzed (λ or ρcp), being written 
as follows: 

 
i

j
iij

P

T
PX




 , (5) 

where T is the numerical temperature, P the parameter to be analyzed (λ or ρcp), i the index of 
parameter, and j the index of points. As in this work, only two properties will be analyzed, i = 1 for λ 
and i = 2 for ρcp. 

2.2 Thermal Conductivity and Volumetric Heat Capacity Simultaneous Estimation and Heat 

Flux Analysis 

To estimate the two properties it is necessary to use an objective function. Usually, the objective 
function is simply the square difference between the temperatures [10,11]. However, since the thermal 
contact resistance is a systematic error, this influence needs to be considered in the analysis, because 
this value is constant and permanent. So, this influence was included in the objective function with the 
purpose of considering an initial error, therefore, the objective function will never be equal to zero. 
Thus, the objective function used in this work is based on the square difference between the 
experimental and numerical temperatures plus the influence of the thermal contact resistance. This 
equation can be written as: 
 

     



m

j
jjacc TYRRF

1

22"
2,

"
1,  , (6) 

To obtain the values for λ and ρcp in each experiment, the BFGS (Broydon Fletcher Goldfarb Shanno) 
sequential optimization technique, presented in [12], was used. This technique is a particularity of the 
variable metric methods. The advantages of this technique are its fast convergence and readiness for 
working with many design variables. Because it is a first order method, it is necessary to know the 
gradient of the objective function. 

3 Experimental Apparatus 

The experimental apparatus used to determine the properties of ASTM B265 Grade 2 Titanium is 
shown in Fig. 2. The ASTM B265 Grade 2 Titanium plate is 50.00 x 49.98 x 8.84 mm in dimension. 
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The 44.5 x 44.5 x 0.25 mm resistive kapton heater has a resistance of 15 Ω and was used due to its 

small thinness, allowing faster overall warming. This heater was connected to a digital power supply 
Instrutemp ST – 305D-II to provide the necessary heat flux. In this work, different intensities of heat 
flux were used in the same experiment as an attempt to achieve the best condition to estimate the 
properties simultaneously in accordance to the analyses of the sensitivity coefficients. To achieve this 
heat flux condition, the digital power supply has a configuration that allows working with parallel or 
series connection. Then, the series condition was used to provide the highest heat flux for the first 
period of the experiment, and the parallel condition to supply the lowest heat flux for the second part. 
A symmetrical assembly was used to minimize the errors in the measurement of the heat flux to be 
generated on the sample surface. In addition, the applied current value was measured by the calibrated 
multimeter Minipa ET-2042C and weights were used on top of the isolated sample-heater set to 
improve the contact between the components. To ensure a one-direction flux and minimize the effect 
of convection caused by the air circulating in the environment, the sample-heater set was isolated with 
polystyrene plates. Temperatures were measured using type K thermocouples (30AWG) welded by 
capacitive discharge in the middle of the bottom surface (25.0 x 25.0 x 8.84 mm) and calibrated by 
using a bath temperature calibrator Marconi MA 184 with a resolution of ± 0.01 °C. These 
thermocouples were connected to Agilent 34980A data acquisition set controlled by a microcomputer. 
In order to obtain better results, all experiments were performed in controlled room temperature. 
 

 
 

Figure 2: Sketch of experimental apparatus used to determine the properties. 
 

4 Results and Discussion 

Twenty experiments were performed to simultaneously estimate the thermal conductivity and the 
volumetric heat capacity of a titanium sample. This number of experiments was done in order to obtain 
reliable estimates of standard deviation and average of the data. According to the literature this number 
has to be at least 20 experiments [13]. Each experiment lasted 150 s, and the heat flux was imposed 
from 0 to 130 s. From 0 to 30 s, the imposed heat flux was approximately 2682 Wm-2; from 30 to 130 
s, the imposed heat flux was around 664 Wm-2. The time interval used to monitor the temperature was 
0.2 s. To guarantee the hypotheses of constant thermal properties, this configuration for the heat fluxes 
was chosen to keep the temperature difference lower than 5 K. This temperature difference is based on 
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the difference between the final and initial temperatures which are measured having the thermocouple 
on the same position of the sample. The sensitivity analyses were performed to determine the best 
region to estimate the properties. These analyses were performed by using the values of λ and ρcp 
obtained from [14] and the parameters described above. In addition, several analyses of the objective 
function (Eq. 6) with the sensitivity coefficient analyses were performed to determine the properties in 
the selected region [9]. This selected region corresponds to a set of points which provides accurate 
thermal properties estimation. Since this estimation presents an accurate result, it can be said that this 
region of points presents enough influence to determine these properties. Figure 3a shows the 
sensitivity coefficients at x = L for λ and ρcp. 
X1 represents the sensitivity coefficient for λ and X2 represents the sensitivity coefficient for ρcp, both 
on the isolated surface. The former is multiplied by a factor to improve the visualization of the curve. 
In Figure 3a, one can see that X1 increases in the first 10 s and remains constant thereafter until the 
change of heat flux; and X2 increases proportionally with the temperature. Because of this behavior, 
the highest heat flux was imposed in the first period of time, resulting in high sensitivity for λ. The 
lowest heat flux was imposed in the second part to increase the sensitivity for ρcp and maintain the 
sensitivity for λ. Figure 3b presents the distribution of experimental and numerical temperatures for the 
sample at x = L and the imposed heat flux at x = 0. The numerical temperature is achieved by applying 
the values of the estimated properties, λ and ρcp, from one of the accomplished experiments. These 
temperatures present good agreement, which can be proved by analyzing the temperature residuals 
shown in Fig. 3c. These residuals are calculated by the difference between the experimental and 
numerical temperatures. The maximum value found was lower than 0.08 ºC, which is much lower than 
the thermocouple uncertainty. This difference will be considered as the imperfection of the thermal 
insulation in the uncertainty analysis.  

 

  
 

 a)  b)  c) 
Figure 3: a) Sensitivity coefficients as a function of time for titanium sample, b) experimental (Y) and 

numerical (T) temperatures with heat flux () as a function of time for titanium sample and c) Temperature 
difference Y – T for titanium sample.  

 
A significant improvement obtained in this work concerns the difference between the measured 
temperatures in x = L on both samples used for the assembly to guarantee the symmetrical heat flux 
(Fig. 2). In [9] this difference presented an average error of approximately 0.2 ºC, with a maximum 
difference of 0.4 ºC, as may be seen in Figs. 4a and 4b. Thus, three significant changes were made to 
minimize this difference. The first concerns the asymmetry presented as a manufacturing error of the 
resistive heater. All Omega heaters previously used displayed this small asymmetrical heat flux when 
the experiment is performed under unsteady; this problem did not happen under steady condition. For 
the solution of this problem, resistive heaters purchased from  Laboratório de Meios Porosos e 
Propriedades Termofísicas da Universidade Federal de Santa Catarina were used. Several tests were 
performed to verify whether the problem of asymmetry had been solved. One of these results will be 
described in Fig. 5a and 5b. 
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Figure 4: a) Experimental temperatures comparison in x = L for titanium sample and b) temperature 
difference Y1 –Y2 for titanium sample [9]. 

 
All the samples used for the measurements were rectified aiming to minimize the thermal contact 
resistance between the heater and the samples. Therefore, Silver Artic thermal paste used in [9] was 
unnecessary. This procedure reduced the great uncertainty added to the value of the estimated thermal 
properties, mainly for the low values displayed by this thermal paste. Finally, the assembly of the 
samples was made in the vertical to avoid the influence one sample weight on the other. Figure 5a 
presents a comparison of the experimental temperature at x = L for the titanium as shown in Fig. 4a. 
As already mentioned above, the purpose of these procedures was to solve the asymmetry of the 
temperatures measured at x = L. The effective proof of this significant improvement may be verified in 
Fig. 5b. It may be observed from this figure that the average of the temperature differences is close to 
0 ºC and as expected, the difference between these temperatures vary randomly; whereas in Fig. 5b, 
the difference shows a systematic error, especially in the region of highest heat. 
 

 
Figure 5: a) Experimental temperatures comparison in x = L and b) temperature difference Y1 –Y2 for 

titanium sample. 
 

Table 1 displays the estimated property results (λ and ρcp) for all the 15 experiments carried out on 
titanium ASTM B265 Grade 2. To prove the symmetric assembly, these properties were estimated for 
the two temperatures signals measured on the surface of the two samples used at x = L. In this table, 
Th1 stands for Thermocouple 1 and Th2 for thermocouple 2. It may be seen that in several cases the 
results of both properties stand very close to each other, mainly for ρcp. Table 2 presents the average 
value, the standard deviation and the percent difference between the estimated average value and the 
literature values for λ and ρcp on titanium ASTM B265 Grade 2. It may be observed that the average 
values for λ and ρcp for both thermocouples were practically the same. One may see that the results are 
in accordance with the work found in literature due to the low standard deviation and small percent 
difference (Tab. 2). 
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Table 1: Obtained values for ASTM B265 Grade 2 Titanium samples. 

Experiment λ (W/mK) ρcpx10
-6

 (Ws/m³K) 
  Th1 Th2 Th2 Th2 

1 17.71 17.71 2.65 2.64 
2 17.71 17.71 2.64 2.64 
3 17.00 16.39 2.60 2.60 
4 17.71 17.71 2.64 2.65 
5 17.71 17.71 2.65 2.64 
6 16.98 16.58 2.67 2.66 
7 17.10 17.71 2.60 2.61 
8 17.71 17.71 2.63 2.63 
9 17.71 17.71 2.66 2.65 
10 17.71 17.71 2.64 2.64 
11 17.11 18.93 2.67 2.68 
12 17.71 16.81 2.66 2.67 
13 19.47 18.73 2.69 2.68 
14 17.71 17.18 2.66 2.67 
15 16.44 17.71 2.60 2.61 
16 17.71 17.71 2.62 2.61 
17 17.71 17.72 2.65 2.61 
18 17.71 17.72 2.64 2.66 
19 17.72 20.61 2.64 2.66 
20 17.72 17.72 2.65 2.67 

 
Table 2: Statistic values obtained for the ASTM B265 Grade 2 Titanium. 

Thermocouple Property Present work [14] S. D. Difference (%) 

1 
ρcpx10

-6
 (Ws/m³K) 2.64 2.66 ± 0.024 0.75 

λ (W/mK) 17.60 18.06 ± 0.57 2.54 

2 
ρcpx10

-6
 (Ws/m³K) 2.64 2.66 ± 0.025 0.75 

λ (W/mK) 17.77 18.06 ± 0.88 1.63 

 

5 Thermal Contact Resistance and Uncertainty Analysis 

The thermal contact resistance was analyzed with the purpose to find out if there is a significant 
influence during the temperature measurements. This study was divided into two parts: the first part 
considered the thermal resistance caused by the applied thermal compound; the second part took into 
account the influence of the kapton layer present in the resistance heater. In [9] the effect of the 
thermal resistance contact due to the thermal paste (    

 ) was added as a systematic error to the 
objective function as presented in Eq. (6). However, since the samples used in this work were rectified 
and the thermal paste was not used, this effect was disregard in Eq. (6); only the effect of the kapton 
layer of the resistive heater was considered. The influence of the kapton layer was analyzed. An 
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Optical Microscope Jenavert Zeiss (2000x) with the Image Analyzer Olympus Model TVO.5XC-3 
was used to measure the thickness of the kapton on the heater. The kapton layer presents a thickness of 
10.64 x10-6 m since the thermal conductivity of the kapton is 0.12 Wm-1ºC-1 [15]; a thermal contact 
resistance equal to 88.67x10-6 m2ºCW-1 was obtained. By considering the applied heat flux average, 
1117 Wm-2, this thermal contact resistance corresponds to a temperature difference of 0.10 ºC. 
An uncertainty analysis was done to verify whether the obtained results were reliable. This analysis 
was based on the uncertainty propagation procedure. In this procedure, it is necessary to decide which 
errors will be analyzed. In this work the procedure to determine the uncertainty in the estimation of λ 
and ρcp is based on linear propagation of uncertainties of the variables: temperature measurement, the 
imposed heat flux, measurement instruments, thermal contact resistance, imperfection of thermal 
insulation, and the numerical errors (BFGS and finite difference method. As the thermocouple was 
located in the middle of the bottom surface (opposite the heater), the uncertainty imposed by the 
position of the thermocouple was disregarded. The hypothesis of linear propagation is used because 
the objective function is based on the difference between the experimental and numerical 
temperatures. This analysis is in accordance with the theory of error propagation extracted from [16]. 
The uncertainty of the estimation can be calculated based on the objective function, which is 
composed of the experimental and numerical temperature, and the BFGS method. Thus: 
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 (7) 

After the final uncertainty has been defined, it is necessary to quantify the partial uncertainty. To 
define these values, the authors decided to consider each uncertainty divided by the mean value of the 
analyzed parameter. As the variations of the uncertainties considered in this work were very small, the 
uncertainties were considered constant. The data acquisition uncertainty is calculated from the 
resolution of the equipment which is 0.01 ºC and the maximum difference of the temperature which is 
approximately 5.00 ºC. This temperature difference is based on the difference between the initial and 
the highest temperatures which are measured by having the thermocouple on the same position on the 
sample. Thus, this uncertainty is: 
 

 %2.0
00.5

01.0
dataaquisitionU , (8) 

Now the uncertainty of the thermocouple is calculated by considering the a oscillation of 0.1 ºC and 
the same difference of average temperature of 5.0 ºC. Thus: 

 %,0.2
00.5

10.0
plethermocouU  (9) 

The uncertainty due to the thermal contact resistance of 0.1 ºC was estimated in Section 6. 
Therefore: 

 

 %,0.2
00.5

10.0
resistancecontactU  (10) 

As aforementioned, the maximum difference between the numerical and experimental temperatures of 
0.08 °C presented in Fig. 6 was considered as uncertainty due to the imperfection of the thermal 
isolation; hence: 
 

 %,60.1
00.5

08.0
nisnsulatiothermalU  (11) 
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For the calculation of the multimeter uncertainty, the resolution of the digital device divided by the 
average current and the average resistance is used; the values are 0.67 A and 15.0 . It is worth 
highlighting that this multimeter was used in the measurement of the current value, with a resolution 
of 0.01 A and the resistance with a resolution of 0.1 . In this manner, the following equations are 
achieved: 
 

 %,49.1
67.0

01.0
multimetercurrentU  (12) 

 %,67.0
0.15

1.0
multimeterresistanceU  (13) 

Finally, the uncertainty of the mathematical methods used must be quantified. For the BFGS method 
the error of 0.01 ºC was adopted and for the FDM 0.05 ºC as base values for the definition of the 
uncertainty; thus the following is obtained: 
 

 %,2.0
00.5

01.0
BFGSU  (14) 

 %,0.1
00.5

05.0
FDMU  (15) 

 
Once all the partial uncertainties have been calculated, it is possible to determine the uncertainty of the 
thermal properties by substituting Eqs. (8) to (15) in Eq. (7). 
 

 
%,78.3

,0.120.067.049.160.100.200.22.0 222222222





final

final

U

U
 (16) 

 
As it can be seen, the uncertainty value is in accordance with that found in the literature, because the 
presented value is lower than 5 %.  

6 Conclusions 

This paper presented a significant improvement in the technique that uses different intensities of heat 
flux in the same experiment to estimate the thermal conductivity and the volumetric heat capacity of 
metal samples simultaneously. The estimated properties are in good agreement with the literature. This 
affirmation can be proved due to the small difference between the literature and estimated values, and 
the low standard deviation. In addition, an error analysis based on thermal contact resistance and 
uncertainty analysis in the estimation of λ and ρcp was presented. Other contributions of this work are: 
the low cost of the experimental apparatus in terms of the equipment used, the facility to assemble this 
apparatus, the short duration of the experiment, the small size of the samples, and the study of the 
global minimum value along with the sensitivity. 
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Abstract 
This paper presents a computationally fast methodology to estimate spatial and transient unknown heat 
fluxes between sandwiched materials, using non-intrusive measurements. The methodology is 
formulated in such a way that the spatial and temporal variation of the unknown quantity is obtained 
simply by solving a linear system, whose solution vector is composed of some integrals containing the 
measured temperatures and applied heat flux at an external boundary. Good estimates are obtained, 
even for functions containing discontinuities. Simulated measurements with and without errors are 
considered, showing promising good results. 

1 Introduction 

The non-destructive evaluation of contact failures in composite materials is important in several 
applications [1,2]. In fact, different areas, such as electronic packaging, nuclear reactors, aerospace and 
biomedicine, among others, rely on efficient heat removal mechanisms, which are strongly dependent 
on the perfect contact among the layers of a system. When there is a total contact failure between two 
layers of a material, the heat flux at such interface will have a very small value, whereas for a perfect 
contact, this heat flux will be large.  

There are different types of damages in laminated composite materials, which are generally classified 
as [2]: delamination or disbound, debound, and kissing bounds. Delamination or disbound refers to the 
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lack of contact between two layers of a laminated composite. When such failure is corrected and the 
defect appears once again, it is called debond. Finally, kissing bounds are failures related to the lack of 
adhesion between the layers. Kissing bounds are more difficult to be detected, since the layers are still 
in contact. The technique described in this paper is related to the first two types of defects, where the 
two layers might have an intermittent contact along their interface. 

Some previous studies were related to the estimative of a time and/or spatial dependent variation of the 
thermal contact conductance at the contacting interface between two materials. Thermal contact 
conductance is defined as the ratio between the heat flux and the temperature jump at the interface 
between two materials. Fieberg and Kneer [3], motivated by the study of temperature distribution in 
internal combustion engine components, solved an inverse heat conduction problem to estimate the 
heat flux at the interface between two solids and used temperature measurements at the interface to 
estimate the thermal contact resistance (defined as the reciprocal of the thermal contact conductance). 
In their work, the measurements were taken by an infrared camera pointed at the interface between the 
two materials, which required access to such location. As a result, only a time dependent global 
contact resistance with constant spatial distribution could be estimated. Also motivated by automotive 
applications, Huang and Ju [4] estimated the transient periodic thermal contact conductance between 
the exhaust valve and its seat in an internal combustion engine, using intrusive measurements. Yang 
[5] also used an inverse heat conduction problem to estimate a time dependent contact resistance in 
single-coated optical fibers. Although good results were obtained, intrusive measurements were 
required. No spatial variation was considered. Also based on intrusive methods, Ozisik et al. [6] and 
Orlande and Ozisik [7] used the conjugate gradient method of function estimation with adjoint 
problem formulation in order to estimate the contact conductance during a solidification process and 
for periodically contacting surfaces, respectively.  

Shojaeefard and Goudarzi [8] estimated the thermal contact resistance for various levels of pressure 
applied to composite materials using intrusive measurements. The same authors mentioned that values 
of thermal contact resistances presented in the literature differ significantly, probably due to the fact 
that they derive from different experimental conditions. Shojaeefard et al. [9,10] also estimated a time 
dependent thermal contact conductance, using the conjugate gradient method with adjoint problem, but 
again using intrusive measurements.  

Gill et al. [11] solved an inverse heat conduction problem to estimate the spatial distribution of the 
thermal contact resistance. The authors mentioned that several models consider such resistance 
constant in space, although it actually varies spatially. The results obtained by the authors were very 
sensitive to measurement errors and required temperatures measurements very close to the interface. 
However, the main contribution was to estimate the spatial variation of the thermal contact resistance 
instead of using a constant value. 

Other authors [12-15] also obtained the overall thermal contact resistance between different materials, 
using intrusive measurements.  

In this paper we describe a non-intrusive method for determining the heat flux at the interface between 
two materials. The method is based on the reciprocity functional approach [16-19] and does not 
involve any iterative procedure. The method starts solving some auxiliary problems, which do not 
depend on the unknown quantity. Once these problems are solved, several different functional forms 
of the heat flux at the inaccessible interface can be determined solving a linear system, whose solution 
vector is composed of some integrals of the imposed heat flux and measured temperatures at an outer 
surface. 

This paper is related to our previous works [17-19]. In [17,19] we presented a non-intrusive method 
for estimating thermal contact resistances in steady-state problems and in [18] we presented an 
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extension for transient problems. This paper is a completely new approach to transient problems, since 
it does not uses any iterative procedure, as we did in [18].  

2 Physical Problem 

Lets consider a generic domain Ω, divided in three parts so that Ω = Ω1UΓUΩ2, where Ω1 is a domain 
with a thermal conductivity K1 and thermal diffusivity α1, Ω2 is a domain, with a thermal conductivity 
K2 and thermal diffusivity α2 that is in contact with Ω1, and Γ is the contact interface between them. In 
this paper, it is considered that thermal conductivities and diffusivities are known constants. The 
boundary of Ω1 is ∂Ω1 = Γ0UΓ1UΓ, where the surface Γ0 is subjected to a prescribed heat flux q and its 
temperature is measured. Γ1 is the lateral surface of Ω1 and Γ is the contact surface between Ω1 and Ω2. 
Similarly, the boundary of Ω2 is ∂Ω2 = Γ00UΓ2UΓ, where Γ00 is the lower surface, Γ2 is the lateral 
surface of Ω2 and Γ is the contact surface. Fig. 1 shows the geometry for a three-dimensional case. 

 
Figure 1: Geometry for a three-dimensional case 

The lateral surfaces Γ1UΓ2 are assumed to be thermally insulated while the lower surface Γ00 is 
subjected to a prescribed temperature. The measurement surface Γ0 is assumed to have a prescribed 
heat flux q imposed on it. The contact surface Γ is assumed to have a Robin boundary condition, i.e., -
K1∂T1/∂n=h(T1-T2)=K2∂T2/∂n, where n is the normal derivative outward the boundary, K1 is the 
thermal conductivity of region 1, T1 and T2 are the temperatures at the interface of domains Ω1 and Ω2 , 
respectively, and h is the thermal contact conductance.  

The statement of the interface transient heat transfer problem for constant conductivities K1 and K2 can 
be formulated as the following direct problem:  
 

1
α1

∂T1
∂t

=∇2T1  in Ω1, for t>0 (1.a) 

−K1
∂T1
∂n1

= q  at Γ0, for t>0 (1.b) 

∂T1
∂n1

= 0  at Γ1, for t>0 (1.c) 

−K1
∂T1
∂n1

= h T1 −T2( )  at Γ, for t>0 (1.d) 

1
α2

∂T2
∂t

=∇2T2  in Ω2, for t>0 (1.e) 
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∂T2
∂n2

= 0  at Γ2, for t>0 (1.f) 

T2 = 0  at Γ00, for t>0 (1.g) 

K2
∂T2
∂n2

= −K1
∂T1
∂n1  at Γ, for t>0 (1.h) 

T1 = T2 = 0
 

for t=0 in Ω1U Ω2 (1.i) 
 

The inverse problem under analysis in this paper consists of estimating the normal derivative ∂T1/∂n at 
the inaccessible contact surface Γ, by using some extra transient temperature measurements Y at the 
boundary Γ0. For the inverse problem all the other quantities appearing in the formulation of the 
physical problem are assumed as deterministically known, except h, T1 and T2 at the boundary Γ.  

In this paper we will present a formulation that allows the determination of such unknown function 
using a backward reciprocity function. This formulation is based on the idea of the reciprocity 
functional [16-19], extended to a transient case. The approach used here is different from our previous 
paper [18] in the sense that a non-iterative procedure is used in this paper. The sought function can 
then be obtained simply solving a linear system, whose solution vector is composed of some integrals 
in space and time of a function that depends on Y and q. The method firstly solves some auxiliary 
problems that do not depend on the unknown function. Once this pre-processing is done, such result 
can be used to estimate different variations of the unknown function in a post-processing stage, that 
does not require any iterative procedures and can recover the entire field of interest (in time and space) 
in short CPU time. Notice that the pre-processing stage can be done in advance and the results stored 
for different estimates. 

3 Backward Reciprocity Function 

Let us write the following auxiliary problem for some functions G1,j, for domain Ω1: 

 

1
α1

∂G1, j
∂t

= −∇2G1, j  in Ω1, for 0<t<tf (2.a) 

G1, j =ψ j
 at Γ0, for 0<t<tf (2.b) 

∂G1, j
∂n1

= 0  at Γ1, for 0<t<tf (2.c) 

∂G1, j
∂n1

= 0  at Γ, for 0<t<tf (2.d) 

G1, j = 0
 

for t=tf in Ω1U Ω2 (2.e) 
 

Notice that this problem includes (2.e) a final condition (at t=tf) instead of an initial condition, and it 
must be solved backwards. Also, the boundary condition at Γ0 is an imposed function ψj(x,t), which is 
taken as an element of an orthonormal basis function, on the spatial component.  

Let us now write the following identity, concerning the boundary Ω1, where Eqs. (1.a) and (2.a) are 
used: 
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G1, j∇
2T1 −T1∇

2G1, j( )
Ω1

∫ dΩ1 = G1, j
1
α1

∂T1
∂t

+T1
1
α1

∂G1, j
∂t

&

'
(

)

*
+

Ω1

∫ dΩ1
  (3) 

 

Using Green’s second identity, we can then obtain: 

 

G1, j
∂T1
∂n1

−T1
∂G1, j
∂n1

#

$
%

&

'
(

Γ0Γ1Γ
∫ d Γ0 Γ1 Γ( ) = G1, j

1
α1

∂T1
∂t

+T1
1
α1

∂G1, j
∂t

#

$
%

&

'
(

Ω1

∫ dΩ1

 
 (4) 

 

or, using the chain rule: 

 

G1, j
∂T1
∂n1

−T1
∂G1, j
∂n1

#

$
%

&

'
(

Γ0Γ1Γ
∫ d Γ0 Γ1 Γ( ) = 1

α1

∂ G1, jT1( )
∂t

+

,
-
-

.

/
0
0Ω1

∫ dΩ1
  (5) 

 

Using now Eqs. (1.b), (1.c), (2.c), (2.d), and the fact that some measurements T1=Y are available at 
boundary Γ0, we obtain: 

 

−G1, j
q
K1

−Y
∂G1, j
∂n1

#

$
%

&

'
(

Γ0

∫ dΓ0 + G1, j
∂T1
∂n1

#

$
%

&

'
(

Γ

∫ dΓ = 1
α1

∂ G1, jT1( )
∂t

+

,
-
-

.

/
0
0Ω1

∫ dΩ1
  (6) 

 

Integrating now both sides in time and using (1.i) and (2.e), we obtain: 

 

−G1, j
q
K1

−Y
∂G1, j
∂n1

#

$
%

&

'
(

Γ0

∫ dΓ0 dt
t
∫ = − G1, j

∂T1
∂n1

#

$
%

&

'
(

Γ

∫ dΓdt
t
∫   (7) 

 

After solving Eqs. (2.a)-(2.e), we can obtain the value of G1,j at interface Γ and call it βj. Notice that 
since those equations are solved for an orthonormal basis function Ψj, the value of βj is also a basis 
function. Then, approximating the normal derivative of T1 at interface Γ as: 

 

∂T1
∂n1 Γ

= βiαi
i
∑   (8) 

 

we can then write Eq. (7) as: 
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−G1, j
q
K1

−Y
∂G1, j
∂n1

#

$
%

&

'
(

Γ0

∫ dΓ0 dt
t
∫ = − β j,βi L2 0,t f( )×t f( )

αi
  (9) 

 

Then, after solving the linear system given by Eq. (9) and obtaining the values of αi, the normal 
derivative of temperature at interface Γ can be obtained using Eq. (8). Notice that since βj is a function 
of time and space, the estimated function also varies with these two variables. Also, the auxiliary 
problems need to be evaluated only once, since they do not depend on the unknown quantity. Thus, 
once these problems are solved, different heat fluxes can be obtained simply solving the linear system 
given by Eq. (9), whose solution vector comprehends a series of integrals of the auxiliary variables 
multiplied by the imposed heat flux and measure temperatures. Notice that the coefficients of such 
linear system are given by the double integral (in space and time) of the coefficients βi and βj and can 
be stored in advance to estimate different functional forms of the sought function. 

4 Results 

In this paper we considered the simulation of a problem that can be reduced to a simplified two-
dimensional setting, using the same material for both domains (AISI 1050 steel) with length equals to 
0.04 m and a total thickness equal to 0.02 m (0.01 m for each layer). The imposed heat flux q was set 
to 100,000 W/m2, which resulted in a maximum increment achieved for the temperature of 270 oC 
after 10 minutes of simulated experiment. Lower applied heat fluxes were also simulated and the 
results were similar to the ones presented here. Six different profiles for the unknown heat flux at the 
connecting interface were considered. These profiles were obtained by using a constant thermal 
contact resistance, according to Table 1. Notice that a time dependent thermal contact conductance 
could also be used, but to simplify the direct problem simulation, a constant value was used in this 
paper. 

 
Table 1: Functions used for the contact conductance 

Profile h [W/(m2oC)] 

1 1000 for x < L/4 and x > 3L/4 
0 for L/4 < x < L/2 

2 1000 for (x < L/4) and (L/2 < x < 3L/4) 
0 for (L/4 < x < L/2) and (x > 3L/4) 

3 1000 sin(πx) 
4 1000 sin(2πx) 
5 1000 

6 
1000 for (x < L/4) and (L/2 < x < 3L/4) 

500 for (L/4 < x < L/2) 
0 for (x > 3L/4) 

 

Simulated measurements were used in this paper, which were obtained by solving the direct problem 
given by Eqs. (1.a)-(1.i) for the six different thermal contact conductances given in Table 1. The 
solution was obtained by using the finite difference technique after a proper grid convergence analysis 
has been conducted. Since the direct and inverse problems rely on different techniques, the so-called 
inverse crime was avoided.  
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To verify the stability of the inverse problem solution, simulated experimental errors were introduced 
in the measured temperatures according to: 

 
Y = T Γ0( )+εσ  (10) 

 
where ε is a random variable with a Gaussian distribution and σ is the standard deviation of the 
measurements. In order to generate the Gaussian random variable ε, with zero mean and unit variance, 
the Box-Muller transformation was used 

 
ε = −2 ln u( ) cos 2πv( )  (11) 

 
where u and v are two uniformly distributed random numbers (between 0 and 1) generated by the 
Fortran intrinsic function random_number(). 

As discussed before, the auxiliary problem was solved for a set of orthonormal functions. In this study, 
for the two-dimensional setting, a combination of sine and cosine-wave functions (Fourier series) was 
chosen. As it will be shown, this choice does not provide the best estimate for discontinuous functions, 
mainly due to the Gibbs phenomenon. The number of test functions used was set to forty-one in time 
and forty-one in space. Notice that the auxiliary problems must be solved only one time. Once their 
solution is obtained, different heat fluxes can be obtained.  

The linear system was solved using the preconditioned bi-conjugate gradient method, where a Jacobi 
preconditioner was employed, for errorless measurements. When noise was introduced, a truncated 
SVD solver was used, where the minimum singular value allowed was 0.001. The double integrals 
appearing on the left and right side of Eq. (9) were calculated using the IMSL DBS2IG subroutine, where 
a second order B-Spline was used. The frequency of measurements used was set to 0.96 Hz. 

Figure 2 shows the estimate of the heat flux at the contact interface resulting from the six different 
thermal contact conductances presented in Table 1, for measurements with and without noise. In this 
figure, x coordinate is aligned to the Γ boundary presented in Fig. 1. Considering the non-intrusive 
character of such method, and the very little computational effort to post-process the results (once the 
temperatures are measured, the entire estimate is performed in a few seconds), the results are very 
good, although some oscillations are present, mainly due to the Gibbs phenomena. It is interesting also 
to notice that even in the case where experimental errors were introduced in the measurements, the 
estimate was reasonable good. 
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Figure 2: Exact (left) and estimated (middle and right) variation of ∂T1/∂n at Γ for errorless 

measurements (middle) and for measurements containing noise with σ=0.5 oC (right). 
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5 Conclusions 

In this paper we presented a non-intrusive methodology to estimate unknown heat fluxes located in the 
interface between two materials. The method was capable to capture the spatial and temporal 
distribution of the unknown quantity in a fast way, only solving a linear system, whose solution vector 
was composed of some integrals of the imposed heat flux and measured temperatures at an outer 
interface. Measurements with and without errors were considered, showing a good estimate of the 
function. For errorless measurements, a preconditioned bi-conjugate gradient method was used, 
whereas for measurement containing errors a truncated SVD solver was employed. Future works shall 
investigate the use of more general orthonormal basis functions, as well as other regularization 
techniques.  
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Abstract
A method is proposed to identify the aerodynamic coefficients and to reconstruct the trajectory of a fin-
stabilized projectile from partial flight data. A reduced model for the flight mechanic equations is used
instead of the more general six-degree-of-freedom model. An optimization problem is introduced to
find the set of aerodynamic coefficients minimizing the difference between the measured and calculated
state parameters. The use of Lagrange multipliers instead of a penalization term is preferred to take
into account the flight mechanics equations and therefore to denoise data. An iterative method is also
developed and tested on real flight data to reconstruct the trajectory of the projectile where measurements
are not available.

1 Introduction

We have a good representation of the aerodynamic forces and moments acting on the projectile during its
flight and each aerodynamic forces and moments are connected to an aerodynamic coefficient. Accurate
knowledge of the aerodynamic coefficients of a projectile is then essential in understanding, controlling
and predicting its flight attitude, in terms of precision and stability. Different tools can be used to iden-
tify these coefficients, such as aerodynamic numerical codes [1] or wind tunnel tests. The coefficients
obtained by numerical codes are sometimes incompatible with the technical stakes in question. The tests
performed in wind tunnel are subjects to a perturbation in the flow due to the sting used to hold the
mock-up in the flow vein, altering the quality of the determination of the drag coefficient. The firing
test, allowing real conditions to be reproduced, remains the most reliable method to study the aerody-
namics of a projectile. Our aim is to develop a technique to identify the aerodynamic coefficients using
measurements from a flight tests.

ICIPE2014 8th International Conference on Inverse Problems in Engineering, May 12–15, 2014, Poland
Eds: I. Szczygieł, A.J. Nowak, M. Rojczyk

71



V. Condaminet, F. Delvare, D. Choı̈, H. Demailly, C. Grignon, S. Heddadj

Several identification techniques have been previously developed [2, 3, 4, 5]. Some of them are based on
least squares optimization so as to minimize the deviation between the measured and computed trajecto-
ries [2, 3]. Other methods consist, for example, in employing a Kalman filter with the aim to reduce the
inaccuracy of the estimations due to noise related to the instrumentation [4, 5].

In this paper, we first recall the method developed by Demailly et al [6] for the identification of the
aerodynamic coefficients using a reduced model of the projectile flight attitude. This model takes into
account the state parameters the most representative of the motion of a projectile, namely axial velocity
vi and roll rate ωc. This identification method consists in a least square minimization composed of two
terms. The first term characterises a deviation between the measured data and the calculated quantities.
The second term is a penalization term expressing the flight mechanics equations in discrete form.

In section 2, the forces and moments applied on the projectile and the reduced model introduced by
Demailly et al [6] are presented. In section 3, the penalization method introduced to take into account
the flight mechanic equations is compared with the use of equality constraints. Finally, in the section 4,
an iterative method is proposed to reconstruct the trajectory of the projectile in taking into account the
partial measured data and the iterative method is tested on real flight data taking from cards and RADAR
equipments.

2 Reduced system of equations of motion

The identification of aerodynamic coefficients by inverse method requires first of all to establish the
most representative direct model of the attitude of the projectile in flight. On this purpose, the inventory
of the aerodynamic forces and moments must be done. Several authors have already been interested in
the inventory of forces and moments applied on the projectile during its flight as Fleck [7] or Lieske and
Mackenzie [3].

2.1 General formulation

Aerodynamic forces and aerodynamic moments are each associated with aerodynamic coefficients.
Forces like gravity −→g and Coriolis

−−→
Cor forces can be distinguished from aerodynamic forces (Figure 1)

such as the drag force
−→
D(Cx), the lift force

−→
L (Cz) and the Magnus force

−→
K(Cy) which are induced by

the air flow around the projectile. The projectile is also subject to aerodynamic moments (Figure 1) as
the rolling moment

−−→
ME(Cl0), the roll damping moment

−−→
MR(Clp), the pitching moment

−−→
MA(Cm), the

pitch damping moment
−−→
MD(Cmq) and the Magnus moment

−−→
MM (Cnp).

According to the basic principle of the dynamic, we obtain a system of non-linear differential equations.
These equations are representative of the projectile’s attitude in a six degrees of freedom model which
gives the position (three parameters) and orientation (three angles) of the projectile.

2.2 Formulation of a reduced model for a fin-stabilized projectile

Demailly et al [6] showed that, for a fin-stabilized projectile, a reduction of this model is possible. A sen-
sitivity study of the state parameters with respect to a variation of each aerodynamic coefficients shows
that the axial velocity component (vi) depends only on the drag coefficient Cx and the roll rate parameter
ωc is influenced only by the coefficients Cx, Clp and Cl0. The equations governing the evolution of vi

72



ICIPE2014, May 12–15, 2014, Cracow, Poland

Figure 1: left: Inventory of the forces; right: Inventory of the moments [6]

and ωc can be decoupled from the other equations. This amounts to consider a model composed only of
the drag force

−→
D , the rolling moment

−−→
ME and the roll damping moment

−−→
MR

−→
D = −1

2
ρSCxvi

−→vi

−−→
ME =

1

2
ρSDCl0vi

−→vi
−−→
MR = −1

2
ρSD2Cl0ωc

−→vi

where ρ is the density of the air, D is the projectile’s calibre, S is the frontal area of the projectile, m
is the projectile’s mass and I1 the projectile’s longitudinal inertia. The principle of the dynamic reduces
then to the following system of two equations :





v̇i = − ρS
2m

v2iCx

ω̇c = − ρS
2I1

[D2Clpωcvi −DCl0v
2
i ]

(1)

For the sake of simplicity, the state parameters, denoted U = (vi, ωc), will be associated with the aero-
dynamic coefficients C = (Cx, Clp, Cl0) in the form of the following dynamical system :

U̇ − f(U,C, t) = 0 (2)

3 Identification procedures of the aerodynamic coefficients

During a flight, discrete and partial measurements of the state parameters vi and ωc are recorded. The
principle of the identification method is to look for the set of aerodynamic coefficients (Cx, Clp and Cl0)
associated with the couple (v∗i , ω∗

c ) to be as close as possible to the measurements (φd) and satisfying the
flight mechanics equations (in a discrete form) at all times. As an example, if the Euler explicit scheme
is employed, the discrete flight mechanics equations are:

Am
i (Um+1, Um, C) = Um+1 − Um − f(Um, C, tm)(tm+1 − tm) = 0 ∀tm ∈ [t0 . . . tN−1] (3)
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where Um is the vector composed of the state parameters vector value at time tm.

3.1 Non linear optimization using a penalization term

Demailly et al [6] have proposed a non-linear optimization problem which minimizes the distance be-
tween measured and calculated data using the least-squares technique.





Find Ψ = (U∗, C∗) such as

J(Ψ∗) ≤ J(Ψ) ∀ Ψ = (U,C)

J(Ψ) = ||U − φd||2 + ||R(Ψ)||2
(4)

A penalization term ||R(Ψ)|| is introduced to take into account the flight mechanics equations in a dis-
crete form (equation (3)). As an example, if we use the Euler explicit scheme, the penalization term
is:

||R(Ψ)||2 =
N−1∑

m=1

[Um − Um+1 − f(Um, C, tm)(tm+1 − tm)]2

The Newton-Raphson technique is then used to solve the system of non-linear optimality equations.
It appears, see Figure 2, that a penalization term is not appropriate for noisy data, numerical solution
obtained with this method is not correctly denoised.

3.2 Non linear optimization under equality constraints

We propose another technique, to take into account the flight mechanics in their discrete form. We take
into account the flight mechanics by equality constraints which lead to the following constrained mini-
mization problem:





Find Ψ∗ = (U∗, C∗) which minimizes

J(Ψ) = ||U − φd||2 ∀ Ψ = (U,C)

under the equality constraints (3)

(5)

Obviously, the matrix system size (4N × 4N ) is greater compared to the use of a penalization term
((2N + 2) × (2N + 2)) because we need to introduce Lagrange multipliers to take into account the
equality constraints. The calculation time is consequently greater.

3.3 Numerical tests

We use simulated data which have been generated numerically and noised to compare both identification
methods. We remark that the use of equality constraints enables not only to identify the aerodynamic
coefficients, but also to denoise the experimental measurements, in comparison with the use of a pe-
nalization term. For the sake of confidentiality, the curve presented in Figure 2 has been normalized
(ω∗

c = ωc
ωcmax

and t∗ = t
tmax

).
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Figure 2: Comparison between the penalization method and the equality constraints method

In addition, Table 1 (which corresponds to the results of Figure 2) shows that the identification of the
aerodynamic coefficients is better when using equality constraints rather than using a penalization term.
The relative error is calculated from the reference solution.

Relative error (%)
Cx Clp Cl0 CPU Time (s)

Penalization method 0.26 8.12 8 11
Equality constraints method 0.26 1.78 2 245

Table 1: Comparison of the relative error on the coefficients identification obtained by both identification
techniques

4 An iterative identification method from partial flight measurements : application to
real data

4.1 Iterative regularization method

In this section, we are interested in the reconstruction of the entire flight from partial experimental data
as the measurements from instrumentation are not available on the entire flight. In addition, the various
state parameters often have different acquisition frequencies. An iterative regularization method inspired
from [8, 9] introduced by Cimetière et al has been developed to determine the missing information.
The functional Jk contains two terms. The first one characterizes the validity given to measures and
the second one characterizes the distance to a priori known information. The solution of this optimiza-
tion problem is the limit of the solutions of a sequence of minimization problems where the a priori
information is updated at each step.
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Find Ψk+1 = (Uk+1, Ck+1) which minimizes

Jk
c (ψ) = ||U − φd||2 + c||U − Uk||2 with ψ = (U,C)

under the equality constraints (3)

(6)

4.2 Application to real flight data

The effectiveness of this iterative method is now illustrated by comparing its results with those obtained
by Demailly et al [6] in the case of real flight data. We only have information on the two state parameters
which are axial velocity vi and roll rate ωc. The roll rate measurements comes from two different sources.
Cards were positioned on the beginning of the flight to determine the angular attitude of the projectile
between each of them. The roll rate parameter is then deduced from these measurements. The second
source of measurements for the roll rate parameter is captured from RADAR (associated with reflectors)
on another part of the trajectory. There is therefore a gap where no measures are available, between
the cards and RADAR measures. In addition, cards and RADAR measures have different acquisition
frequencies. We compare the efficiency of the two methods : the penalization method [6] and the iterative
regularization method. For the iterative regularization method, the interpolated data are updated at each
iteration, i.e. we trust only the measured data.

4.2.1 Comparison between the penalization method and the iterative method to reconstruct the projectile
attitude

On the Figure 3, the reconstruction with both methods using only the 9th card data and all the RADAR
data is shown. It illustrates the efficiency of the iterative regularization method, in comparison with
the penalization method to reconstruct the evolution of the state parameter ωc over the entire flight. In
addition, the iterative method enables to reconstruct the initial value of ωc. We observe (Table 2) that the
coefficients identified with the regularization method are closer to those identified with all data than the
coefficients identified using a penalization term (the relative error is calculated from a identified ωc curve
which is passing through all the measured data).

Relative error (%)
Cx Clp Cl0 CPU Time (s)

Penalization method 2 40 39 35
Iterative regularization method 1.5 11 11 780

Reference (all data) 0 0 0

Table 2: Comparison of the relative errors on the coefficients identification

4.2.2 Influence of the cards data on the reconstruction of the roll rate parameter

We also wanted to explore the possibility to dispense cards measures to identify properly the coefficients.
A first identification test have been realized without card data, a second with the first card data and
a last test was realized with the 9th card data. The reconstructions associated to this test are shown in
Figure 4 and the corresponding relative errors on the identified coefficients are calculated relatively to the
aerodynamic coefficients identified with all data. We can observe, Figure 4 and Table 3, the importance
of having data at the beginning of the flight to identify with accuracy the aerodynamic coefficients and
to reconstruct properly the projectile attitude.
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Figure 3: Comparison of the reconstructions of the adimensional roll rate ω∗
c using the iterative regular-

ization method and the penalization method

Relative error (%)
Cx Clp Cl0

Without card data 1 11 11

With the 1st card data 1.5 7 7

With all data 0 0 0

Table 3: Influence of the number and the positions of cards data on the identification of the aerodynamic
coefficients

5 Conclusion

We have developed an optimization method with equality constraints which has proved to be most effec-
tive to denoise the flight measurements than the use of penalization term to take into account the flight
mechanics. Then we have introduced optimization techniques which enables, from partial flight data, to
identify with accuracy the aerodynamic coefficients at simultanously to reconstruct the entire trajectory
of a projectile. This method has been tested with a reduced model developed by Demailly et al [6] and
validated using real flight data. The technique developed opens a large field of applications such as to
determine the initial conditions of a firing test or to study the influence of the instrumentation position
along the flight.
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[7] V. Fleck, Introduction à la balistique extérieure avec exercices, Cours de Balistique extérieure,
Coetquidant, France, 2005.

[8] A. Cimetière, F. Delvare, M. Jaoua, F. Pons, Solution of the Cauchy problem using iterated Tikhonov
regularization, Inverse Problems, 17, 553-570, 2001.

[9] F. Delvare, A. Cimetière, J.L. Hanus, P. Bailly, An iterative method for the Cauchy problem in
linear elasticity with fading regularization effect, Computer Methods in Applied Mechanics and
Engineering, 199, 49-52, 3336-3344, 2010.

78



Reconstruction of Continuous Mechanical Deformations in

Power Transformer Windings

Mariana Dalarsson∗, Martin Norgren, Hadi Emadi

Department of Electromagnetic Engineering, School of Electrical Engineering,

KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden

e-mail: mariana.dalarsson@ee.kth.se

Key words: Inverse Problems, Power Transformers, Continuous Deformations, Microwave Radiation

Abstract
We present an online method to detect continuous mechanical deformations of windings in a power trans-

former. We employ an approximate cylindrical continuous model of an outer winding surrounded by the

transformer tank wall, where the power transformer winding can be viewed as a continuous metallic

structure with deformations described by means of suitable continuous functions. In such a model, the

perturbation theory for waveguide conductor boundaries can be used and the computation complexity

can be reduced as compared to the previously studied discrete conductor models. The idea is to insert

antennas inside the transformer tank above and below the winding to radiate and measure microwave

fields that interact with the metallic structure bound by the outer winding and the transformer tank wall.

The responses from the radiated waves are assumed to be sensitive to the continuous mechanical defor-

mations on the outer surface of the outer winding. The goal is to reconstruct the continuous deformation

function from measurements of the scattered fields at both ends. The inverse problem of reconstructing

sinusoidal boundary deformations in a coaxial waveguide is solved by using a first order perturbation

method applied to the dominant TEM-mode. The reconstruction results from using reflection data are

presented and they indicate an agreement between the reconstructed and true continuous functions that

describe the sinusoidal mechanical deformations of transformer windings.

1 Introduction

Local deformations of the power transformer windings, due to the heavy mechanical forces from short

circuit currents, are known to increase the risk of failures which may cause serious electrical power

outages. It is therefore of interest to develop suitable on-line methods for early detection of such wind-

ing deformations. Some consequences of various degradation phenomena in power transformers can be

diagnosed by frequency response analysis (FRA) method, applicable only when the transformer is dis-

connected from the power grid. In e.g. [1] FRA has been used for detection of winding deformations.
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Eds: I. Szczygieł, A.J. Nowak, M. Rojczyk

79



Mariana Dalarsson, Martin K. Norgren, Hadi Emadi

However, in order to reduce risks of power outages, the online methods - applicable while the trans-

former is in operation - are desirable. In [2] and [3] we studied an online method based on positioning

microwave antennas inside the transformer tank and using the microwaves to reconstruct the set of all

radial positions of the individual winding segments or turns along the axial winding dimension. In these

papers, we used an approximate model and applied a full wave method that takes into account the de-

tails of the winding geometry. The locations of the individual conductors are then reconstructed using an

optimization method. In order to reduce the computational complexity in [2] and [3] we studied cases

with up to ten winding segments or turns. However, in a more realistic case the number of winding turns

may be prohibitively large to allow a full-scale numerical model used in the optimization procedure. Our

primary interest is, however, to detect small winding deformations and it is therefore of interest to study

whether inversion methods, based on weak scattering, can be utilized for the reconstruction of trans-

former winding deformations. In a recent paper [4] a first step towards such a method was taken, where

each winding was not considered in detail, but instead modeled as an equivalent outer boundary surface,

which shape is to be reconstructed. In [4] a specific piecewise linear shape of the winding deformation

in a parallel-plate waveguide model of the power transformer winding structure was assumed. In the

present paper we pursue this investigation a step further by considering the continuous axially symmetric

sinusoidal deformation in a coaxial waveguide model of the power transformer winding structure. We

present a simple and computationally efficient first order perturbation method to solve the inverse prob-

lem of reconstructing deformations in the lower coaxial waveguide boundary. The model is tested using

synthetic measurement data from simulation of the structure in the commercial FEM program HFSS.

2 Problem formulation and scattering analysis

We consider an axially symmetric scattering configuration with a coaxial waveguide oriented along the z-

axis, shown in Fig. 1. The inner boundary cylinder is located at r = r0 while the outer boundary cylinder

is located at r = r0 + a such that the radial width of the unperturbed cavity is equal to a. In the context

of a power transformer, the outer boundary models the wall of the transformer tank while the lower

boundary models the outermost layer of the winding structure. Hence, we describe the winding as an

equivalent PEC surface. In a more realistic treatment it can be described by e.g. an anisotropic boundary

condition [5]. Although a realistic transformer is filled with oil, we here assume that the medium inside

the waveguide is air (or vacuum). At the inner boundary cylinder along the section z1 < z < z2 there is

a local deformation described by the equation

r = ag(z) with max |g(z)| � 1 , g(z1) = g(z2) = 0 (1)

The inverse problem at hand is to reconstruct g(z) in the estimation region z1 < z < z2 using scattering

data obtained when the waveguide is excited from both ends. In order to focus the present study on the

primary scattering mechanism, due to the local deformation of the lower boundary, we assume that there

are no reflections from the ends of the waveguide, i.e. the waveguide is infinitely long.

2.1 The direct scattering problem

Following [3] we assume that the radial width of the unperturbed cavity is small compared to the mean

radius of the coaxial wave guide, i.e. that a � 2r0. As r0 represents the radius of the outermost layer of

the winding structure and a represents its distance to the tank wall, such assumption is generally justified

for the realistic power transformers where a is typically about 10-15 percent of the outer diameter of

80



ICIPE2014, May 12–15, 2014, Cracow, Poland

Figure 1: Geometry of the coaxial waveguide model.

the winding package d0 = 2r0. Thus the model based on the above assumption can be considered

as reasonably good for the present analysis, given the fact that the very model of coaxial cylindrical

waveguide is approximate in the first place. In the present investigations, the cavity size a = 1 m is

used for simplicity. Since we are mainly concerned with investigating the reconstruction principles, the

dimensions used are not intended to mimic a realistic power transformer. Furthermore, we restrict our

present analysis to mechanical deformations that possess cylindrical symmetry (i.e. are independent on

the polar angle ϕ) and consider the TM-modes only. In such a case we can use a new variable ρ = r−R0

and use the approximate solution for the TM-modes as follows

Em = Emr er ∝ cos(
mπρ

a
) , Hm = Hmϕ eϕ ∝ cos(

mπρ

a
) , m = 0, 1, 2, . . . (2)

and especially the dominant mode (m = 0) that propagates at all frequencies. Furthermore, we note that

the longitudinal component of the electric field Ez is non-zero only for m ≥ 1.

2.1.1 Perturbation method

The inversion scheme (Sect. 2.2) is based on solving the direct scattering problem by means of a boundary

perturbation method for waveguides, similar to the one used in [6]. For the dominant mode the corrections

to the transmission parameters are second order in the perturbation g(z):

S12 = 1 + O(max |g2|) , S21 = 1 + O(max |g2|) (3)

Thereby we consider transmission data to be too sensitive for measurement errors, and consequently it

will not be included in the subsequent analysis. Locating the measurement planes to the boundaries of

the estimation region z1 < z < z2, the first order approximation of the reflection parameters become

S11(k) ≈ −jkej2kz1G∗(k) , S22(k) ≈ −jke−j2kz2G(k) (4)
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where k = ω
√

ε0µ0 is the vacuum wavenumber and we introduce a ”k-transform” G(k) of g(z) and its

complex conjugate as follows

G(k) =

∫ z2

z1

g(z)ej2kzdz , G∗(k) =

∫ z2

z1

g(z)e−j2kzdz (5)

2.1.2 HFSS model

As generator of synthetic measurement data, we use a full-wave FEM model implemented in the com-

mercial program HFSS. This model takes into account all TM modes in the waveguide. The output is

the set of complex S-matrices solved in our case for the frequency range 20 MHz to 150 MHz with a

step size of 5 MHz. The reason for choosing the frequencies up to 150 MHz is that one must be cautious

about the existence of higher order modes that can propagate freely or be trapped in the coaxial waveg-

uide structure. The unperturbed waveguide cavity size a = 1 m implies the cutoff frequencies at multiples

of 150 MHz. In other words, in the unperturbed region, the first higher order mode starts to propagate at

approximately 150 MHz and the present method, based on the contributions from the ground mode only,

is not expected to give reasonably accurate results at higher frequencies.

2.1.3 Transmission Line (TL) model

For comparison purposes, we have also modeled the TEM-mode scattering with a transmission line (TL)

model, in which the L and C parameters are computed from the local value a(1−g(z)) of the waveguide

width. From [7], it follows that e.g. S11 obeys the Riccati equation

dS11

dz
= jk[

1

1 − g
+ 1 − g]S11 +

jk

2
[

1

1− g
− 1 + g](1 + S2

11) , S11(z2) = 0 (6)

Note that, like the perturbation method, this model does not take into account any higher order TM-

modes. Approximating the equation (6) to the first order in g, it is easily verified that it implies the

solution for S11 given in the first of the equations (4). Thus, to the first order in g the TL-model and the

waveguide perturbation method are equivalent to each other.

2.2 The inverse scattering problem

Let us now consider the perturbation function g(z) with the properties given in (1). Since we require that

g(z1) = g(z2) = 0, any such function can be expanded into the Fourier Sine series of the form

g(z) =

∞
∑

n=1

pnφn(z) , φn(z) = sin(nπ
z − z1

z2 − z1

) (7)

where we use the infinite set of mutually orthogonal sine functions φn(z) satisfying the required condi-

tions φn(z1) = φn(z2) = 0. The coefficients pn in (7) are real numbers and they are not functions of z.

If we then apply the ”k-transform”, as defined in (5), to both sides of the equation (7), we obtain

G(k) =

∞
∑

n=1

pnΦn(k) , G∗(k) =

∞
∑

n=1

pnΦ∗

n(k) (8)

where

Φn(k) =

∫ z2

z1

φn(z)ej2kzdz =
nπ(z2 − z1)(e

j2kz1 − (−1)nej2kz2)

n2π2 − 4k2(z2 − z1)2
(9)

82



ICIPE2014, May 12–15, 2014, Cracow, Poland

and G(k) is given by (5). In order to be able to perform the numerical optimizations, we approximate

the continuous inverse problem with a discrete inverse problem, where the deformation g(z) is expanded

into a finite set of functions, whereby we truncate the infinite series in (8) to a finite number of terms

denoted by N , as follows

G(k) =

N
∑

n=1

pnΦn(k) , G∗(k) =

N
∑

n=1

pnΦ∗

n(k) (10)

Since {pn}N
n=1

are real-valued, it is convenient to treat the real and imaginary parts of (10) as separate

equations

GR(k) =
N

∑

n=1

pnΦnR(k) , GI(k) =
N

∑

n=1

pnΦnI(k) (11)

where G(k) = GR(k) + jGI(k) and Φn(k) = ΦnR(k) + jΦnI(k) , with GR(k) , GI(k) , ΦnR(k) and

ΦnI(k) being real-valued functions of k. If we substitute G(k) and G∗(k) from (4) into (10), we obtain

k
N

∑

n=1

pnΦ∗

n(k) = jS11(k)e−j2kz1 , k
N

∑

n=1

pnΦn(k) = jS22(k)ej2kz2 (12)

where we see that

G∗(k) =
jS11(k)

k
e−j2kz1 ⇒ G(k) =

−jS∗

11
(k)

k
ej2kz1 , G(k) =

jS22(k)

k
ej2kz2 (13)

From the two results for G(k), given in (13), we see that in theory measurements of S11 and S22 give

the same G(k) and consequently the same equation (10). Thus it is in principle possible to perform

the reconstruction of the expansion coefficients {pn}N
n=1

, using the measurements of either S11 or S22

(one-sided reflection data) or both S11 and S22 (two-sided reflection data).

In practice however, the measurements of S11 and S22 may provide different values of G(k) due to the

contributions of higher-order modes, potential measurement errors, the truncation of the infinite series

and other approximations used in the present model. Thus if we use the measured S11 and S22, by means

of equations (13) we obtain the ”measured” functions G1M(k) and G2M(k) as follows

G1M(k) =
−jS∗

11
(k)

k
ej2kz1 , G2M(k) =

jS22(k)

k
ej2kz2 (14)

In the present paper we perform the reconstructions using contributions from both S11 and S22 in such

a way that we calculate a simple arithmetic mean value of their respective contributions. In other words,

as measured GM(k), we use

GM(k) =
1

2
[G1M(k) + G2M(k)] (15)

As we have pointed out before, in theory, the two complex functions G1M(k) and G2M(k) are exactly

equal to each other. Although the actual complex functions G1M(k) and G2M(k) from the synthetic

measurements differ from each other, a simple analysis of their real and imaginary parts indicates that

their deviations from the real and imaginary parts of the exact analytical function G(k), obtained in the

case of some known deformation functions g(z), are approximately equal in size with opposite signs.

Thus, an arithmetic mean of two functions G1M(k) and G2M(k) is expected to be closer to the exact

analytical function G(k) than either of the two functions G1M(k) and G2M(k) by themselves. We have

83



Mariana Dalarsson, Martin K. Norgren, Hadi Emadi

therefore chosen to use (15) in the present paper. However, there are in general no restrictions to use

either of the functions G1M(k) and G2M(k) or any weighted mean value between the two in the present

model.

The coefficients {pn}N
n=1

are collected into the vector p. From measurements of GM(k) at several values

of k, i.e. frequencies, the right hand side of (10) is collected into the vector G = [GMR GMI ]
T , while

the evaluations of Φn(k) are collected into the matrix with elements Φnk = Φn(k), such that

Φ =

[

ΦR

ΦI

]

, G =

[

GR

GI

]

(16)

The vector p is determined as the solution of the optimization problem

min ||Φp − G||2
2

(17)

with respect to the optimization parameter α to be defined below. Since for each value of k, i.e. for

each frequency, we have two real valued equations (11), in the present paper we choose exactly N/2

different k-values which gives us the N × N square matrix Φ and the vector G of even length N . The

main advantage of our choice is that it makes the matrix Φ analytically invertible, while a potential

disadvantage is a minor loss of generality of the model. This choice is in line with our initial exact

analytical investigation based on the solution of the linearized Ricatti equation. In principle, there are

no restrictions in the present model to choose any number of modes N with more than N/2 different

k-values. This amounts to having more data points than expansion coefficients, in which case the vector

p could be determined as the solution of the least square problem (17) using standard numerical methods.

Although we choose the even number of expansion coefficients N and exactly N/2 different k-values,

we expect to study more general cases of overdetermined solutions for p in our coming studies.

For optimization purposes, we employ the analogue of the variational principle of quantum mechanics

[8] whereby we modify the equations (12) by introducing a variational parameter α which defines the

effective size of the estimation region, as follows

z1 → z1 − α , z2 → z2 + α (18)

From the family of all possible reconstruction curves for different values of α, by means of the variational

method, we determine the value of α = αopt which gives the best estimate of the reconstructed deforma-

tion function g(z), by minimizing the norm of p. It should also be noted that the variational parameter α

according to (18), is introduced on both sides of the estimation region in a symmetric fashion.

2.3 The sinusoidal perturbation function

In [4] a specific piecewise linear shape of the winding deformation in a parallel-plate waveguide model of

the power transformer winding structure was assumed. In the present paper we consider the axially sym-

metric sinusoidal deformation in a coaxial waveguide model of the power transformer winding structure.

The function r = g(z) is given by

r = g(z) =















0 , z1 ≤ z ≤ 0

D sin(nπz
b

) , 0 ≤ z ≤ b

0 , b ≤ z ≤ z2















(19)
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Figure 2: Reconstructions using HFSS data for N = 4, D = 0.2 (20 % intrusion and extrusion), dimen-

sions z1 = −0.3 m, b = 0.9 m and z2 = 1.2 m and (a) n = 1 and (b) n = 2. In both graphs, the true

shape is represented by the green line and the reconstructed shape by the blue line.

3 Reconstruction results

The general geometry of our transformer winding model is shown in 1. This geometry with r = g(z)

given by (19) is used to generate synthetic measurement data using HFSS. The reconstructions are then

performed using HFSS data as synthetic measurement data for S11 and S22. Fig. 2 shows two examples

of reconstructions of the function g(z) for N = 4 and dimensions z1 = −0.3 m, b = 0.9 m and z2 = 1.2

m. Fig. 2(a) shows the reconstruction results for D = 0.2 (20 % intrusion), n = 1, and αopt = 1.2

m. Fig. 2(b) shows the reconstruction results for D = 0.2 (20 % intrusion and extrusion), n = 2 and

αopt = 0.565 m. From Figs. 2(a) and 2(b) we see that the reconstructions from the HFSS data are

qualitatively good but display certain deviations from the actual deformation shapes. This inaccuracy

may depend on a number of factors, including the simplifications in the present model as well as the

relatively simple variational technique based on the single parameter α. As the present simple method is

based on the contributions from the ground mode only, in the reconstructions shown in Fig. 2, we have

chosen to use the frequencies below 100 MHz which are well below the expected cutoff frequencies of

any modes other than the ground mode.

4 Conclusions

We have presented a simple and computationally efficient first order perturbation method to the inverse

problem of reconstructing deformations in a lower coaxial waveguide boundary. The present investiga-

tion is a step towards a general diagnostic technique for detecting deformations in power transformers,

that we are currently developing. The reconstruction results so far indicate that the method has potential

usefulness. If proven sufficiently accurate, the present method can easily be generalized to reconstruc-

tion of arbitrary deformations by means of the Fourier series of sinusoidal terms of the kind investigated

in e.g. Fig. 2(a) and Fig. 2(b). Otherwise, a natural improvement of the variational technique is to em-

ploy some more commonly used methods of regularization of ill-posed problems, such as for example

Tikhonov regularization. This will be the objective of our continued efforts.
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Abstract 

An explicit guidance law is developed for a reentry vehicle. Motion is constrained to a 
three-dimensional Bezier curve. Acceleration commands are derived by solving an 
inverse problem that combined with differential flatness approach. Trajectory is related to 
Bezier parameters. A comparison with pure proportional navigation shows the same 
accuracy, but a higher capability for optimal trajectory to some degree. Other advantages 
such as trajectory representation with minimum parameters, applicability to any reentry 
vehicle configuration and any control scheme, and Time-to-Go independency make this 
guidance approach more favorable.  

1 Introduction 

Generally, the design of guidance algorithms may be defined loosely as the art of finding 
the correct acceleration commands to move between two given points. Many different 
techniques have been suggested for the design of guidance algorithms. These range from 
the earliest algorithms derived using physical insight (e.g., pursuit, proportional 
navigation (PN) and their variants) to those derived from a systematic application of 
mathematical techniques. Most current guidance design methods may be classified into 
two main categories [1]: (1) nominal trajectory-based techniques and (2) on-line 
trajectory generation, reshaping and prediction schemes. In the first approach, an 
(optimal) reference trajectory is defined prior to the mission, and during the flight, a 
controller keeps the vehicle close to the nominal trajectory. The predictive and/or 
reshaping approaches propagate the future trajectory based on current flight state by 
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means of onboard numerical integration to calculate the control input during the 
remaining flight.  
Explicit guidance methods are good examples of the second category. A review of 
literature [2] shows that they have many advantages over other approaches. These 
methods, which use preset external trajectories, give a huge calculation advantage and 
can provide a near optimal solution with any desired accuracy. These are applicable to 
systems that have linear acceleration and aim at constructing guidance algorithms with 
specified desired dynamics (i.e. solving an inverse problem.). Although some authors [3, 
4] have considered the inverse problem as a direct method because of the implicitly 
parameterized control, it is better that this approach is examined within a different class. 
In a direct method, we are asked to predict the trajectory of the vehicle if the initial 
conditions and the time history of the controls are given, meaning Cauchy task, whereas 
in an inverse problem, we are asked to predict the controls that are compatible with a 
desired trajectory [5]. Inverse methods are of great interest in the context of synthesizing 
nonlinear autopilots [6-8] and guidance algorithms [9-13]. A survey about the inverse 
problem approach in optimal trajectory generation, both in Russia and in the United 
States, can be found in Yakimenko’s paper [3]. In guidance applications, the variable 
guidance gains are correlated with the shape of the trajectory that will follow and satisfy 
particular terminal constraints. Although, with an extension of Cameron [14], Page [15], 
and Taranenko's [13] methods, the use of this approach in guidance algorithm design has 
been developed by Hough [9] and Yakimenko [3], it still suffers from serious flaws: a 
relatively large number of optimization parameters (Ops) (Taranenko, 20; Mortazavi [16], 
12; and Hough, 8) depending on the vehicle's velocity vector, relatively difficult 
numerical calculations, accuracy dependence on the number of segments used in the 
approximation, and offline application.       
In this paper, the author extends the previous work done on maximizing terminal velocity 
[17]. The inverse problem approach is used to develop an explicit guidance law for 
guiding a hypersonic unthrusted reentry vehicle (RV) to a fixed point on the ground. The 
geometrical trajectory shape is specified by expressing the altitude and cross range as 
functions of the range using Bezier curves [18]. The guidance law is based on the normal 
and side accelerations. The present paper deals with a new, to some extent, simplified 
method that provides spatial trajectories being presented analytically and completely 
defined by minimum parameters. This method combines a number of advantages over 
methods presented by Taranenko and Hough. Although the guidance law is designed for 
an RV, it can also be applied to any vehicle at any phase. 

2 Problem definition  

Assuming a spherical, nonrotating Earth (this assumption was made for simplicity, but a 
similar guidance law can be derived based on more precise equations of motion including 
terms due to earth rotation) and a gravitational field with g=/r2, we have three-
dimensional point mass equations of motion for the RV (Fig. 1):     
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Figure 1: Geometrical definitions. 
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For the bank-to-turn control configuration (BTT): 
mLamLa /sin,/cos hccv    

The guidance problem is to find acceleration commands (or equivalently , and  for 
BTT), which steer the vehicle to its target, subject to the state equations (1); known initial 
conditions, V0, 0, 0, 0, 0, and h0; and known final conditions, f, f, and hf (equivalent 
to a fixed target position). The solution must satisfy the following constraint: 

max
2

hc
2

vcc ≤ aaaa                                                     (2) 
The amax can be related to the limitations of angle of attack, dynamic pressure, heat 
transfer, loading, etc.   

3 Differential Flatness and Inverse problem 

Differential flatness was first introduced by Fliess and el al [19] in a differential algebraic 
context. The important property of flat systems is that we can find a set of variables 
(equal in number to the number of inputs) such that all states and inputs can be expressed 
in terms of those outputs and a finite number of their time derivatives without any 
integration procedure. More precisely, we consider the dynamical system of the general 
form [20]: 

))(),(()(

))(),(()(

tutxhty

tutxftx




 

where t is the time variable, x is the n-dimensional state vector, u is the m-dimensional 
input vector, y is the m-dimensional tracking output vector, f(.) and h(.) are a nonlinear 
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functions. The system is differentially flat if we can find a set of variables z(t)m which 
are differentially independent, called flat outputs, of the form 

))(),...,(),(),(()( )( tutututxtz a  
such that 

))(),...,(),(()()),(),...,(),(()( )1()( tztztztutztztztx b
u

b
x

   
where  and  are smooth functions, z(a)

(t) and z(b)
(t) are respectively the a and b order 

time derivative of z(t).  
In situations where explicit trajectory generation is required, differential flatness can be 
very useful: since the behavior of flat systems is determined by the flat outputs only, the 
trajectories can be planned in output space and then mapped to the appropriate inputs. 
Many authors have been used differential flatness approach to reentry problem guidance 
[20-23]; As it is proved in the study of Neckel and et al [24], the nonlinear model (1) is 
not flat if h,  and  are considered as flat outputs. To get around this problem, all studies 
have kept the longitudinal and lateral motions uncoupled. Therefore, only the longitudinal 
dynamics are inverted using altitude and curvilinear abscissa as flat outputs, the lateral guidance 
being ensured via a typical roll reversal technique [e.g. 21]. Decoupling has its limitations. For 
overcoming these limitations, choosing  and  as flat outputs and solving problem by inverse 
approach is proposed.  
To apply this concept, the independent variable is changed from t to  in the system 
equations (1). (The independent variable may be any monotonous variable; Archer's study 
[25] would be useful for independent variable selection in RV guidance.) After that, we 
solve for acceleration commands:  

                                 (3)








coscos-

coscos-cos)-/(
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On the other hand, with geometrical considerations,  and  are obtained: 
                                   (4)  d/dtan,d/dcostan  h

In Eq. (3), the desired trajectory shape enters through the curvature terms    and  , 
obtained by the implicit differentiation of Eq. (4) with respect to : 









2

2

cos

cos)sin-cos( hh

                                                 (5) 

These functions introduce second derivative terms h   and  . Therefore, the guidance 
commands are related to the shape of the trajectory. An admissible trajectory must satisfy 
the relation, Eq. (2). 
Actual acceleration a lags the acceleration command ac, whose components are specified 
by Eqs. (3) and (5). For three degree-of-freedom (3DOF) simulations, noninstantaneous 
response could be modeled by a first-order lag: 

 ///d caaa td , 
where the time constant  approximates the dominant closed loop pole of autopilot and 
actuator. In the sequel, instantaneous response (0) assumed, and it follows that the 
acceleration commands of Eq. (3) are the actual acceleration components (a=ac). 
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4 Trajectory generation 

Many methods have been used for trajectory generation [3, 9, 26, 27]; all of them having 
many parameters and requiring specific conditions. In this paper, the Bezier curve is 
suggested for trajectory generation. 
In view of its properties, this curve has been used in various fields of study such as 
computer graphics [18], robotic guidance [28, 29], airfoil design [30, 31], and trajectory 
optimization [32].   Mathematically, a parametric Bezier curve of order n is defined by 

 (6)    ∑
n

0=i

in,i )()( uJBuP 

where the Bezier or Bernstein basis or blending function is 
i-nii

Nin, )-1()( uuCuJ  ,    
!)-(!

!i
N

ini

n
C   

and u  denotes the parameter of the curve taking values in [0, 1]. So, as seen from Eq. (6), 
the Bezier curve is completely determined by Cartesian coordinates of the control points. 
The derivative of order r of a Bezier curve can be derived as: 
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It is clear that the derivative of order r of a Bezier curve at one of its end points only 
depends on the r+1 control points nearest (and including) that end point. It follows that, at 
u=0: 

 (8)                   
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For this problem, the parameter u is equal to the normalized range  = (-0)/ (f -0), and 
the Bezier approximation of the trajectory is determined by coordinates (hi, i) of the 
control points Bi. With the allowable assumption n=3 for reentry trajectories, the first 
point B0 = (h0,0) and last point B3 = (hf, f) will be fixed. Now, we have to determine the 
middle control points B1= (h1, 1) and B2 = (h2, 2). In the beginning of trajectory, the 
second control point, B1, can be set using Eqs. (4) and (8): 
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where )-( 0f   . 
On the other hand, from Eqs. (3), (5), and (8), we have: 
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where 
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We know, 
maxhc ≤ aa , 

therefore from Eqs. (3), (5), and (8), we get: 
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With a value in this boundary, ahc may be determined from Eqs. (2) and (10): 
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By selecting the third control point, B2, the initial trajectory will be generated, and the RV 
will follow it so long as the constraints are satisfied. When the acceleration commands of 
Eq. (6) exceed the maximum allowable acceleration, acceleration command saturation 
causes the actual values of h, , , and  to deviate from the desired values along the 
initial trajectory. Holding the terminal conditions fixed, Bezier control points should be 
continuously updated with instantaneous  values. Using C0 (position), C1 (angle), and C2 
(acceleration) continuity conditions, the new trajectory's control points can be obtained 
automatically. Therefore, for guiding the RV, the only necessary task is to select the third 
control point, B2, for the initial Bezier trajectory. It must be noted that all choices in the 
boundaries of Eqs. (11) and (12) guarantee that the RV reaches the target while satisfying 
the constraints. 
In the case that the final velocity orientation is constrained, a fourth-order Bezier curve is 
suggested (e.g., if the final velocity vector is constrained to f, and  f, the B0, B1, B2, and 
B4 control points would be treated the same way). The fourth control point, B3, can be set 
like B1: 

3/sectan-,3/tan- 4343 fff hh    
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5 Simulation results and discussion 

To demonstrate the effectiveness of this guidance law, it has been used in a 3DOF (point 
mass) simulation containing a standard atmosphere, and aerodynamic coefficients as 
functions of Mach number, angle of attack, and Reynolds number in tabulated form for 
RV model based on [33].  
It is assumed that 2=21-0 in Eq. (11) and h2=g4 in Eq. (12) (i.e., selection of 2 and h2 
in such a manner that ahc=0 and avc= amax= g at the beginning of flight (For BTT: Lc=Lmax, 
and =180)). Results of this assumption (EXP) are compared with the performance of 
pure proportional navigation (PPN) with N=3 [34] and shown in Figs. 2-7 for a sample 
period of t=0.01 sec.  
A fourth-order, fixed-step, Runge-Kutta integrator is used in all simulations. The 
trajectory boundary conditions for the example problem are shown in Table 1. Both 
methods have nearly the same impact accuracy, with different behaviors.  
Figures 2 and 3 display the simulation flight path profiles. PPN turns quickly to line up 
with the target, whereas EXP (with those assumptions for selecting 2 and h2) shifts the 
majority of flight time to higher altitudes, where drag is low. Therefore, differences in 
horizontal paths and acceleration command (Fig. 4) have a very small effect on the 
velocity profile (Fig. 6).   
Table 1:  Trajectory boundary conditions. 

 Initial Final 
, km 80 0 
, km 2 0 
h, km 30 0 

V, m s-1
 4000 maximum 

, deg 20 unconstrained 
, deg 0 unconstrained 

 

 
Figure 2: Altitude comparison. 

 

 
Figure 3: Cross range comparison. 

 
Figure 4: Horizontal acceleration command. 
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Figure 5: Vertical acceleration command. 

 

 
Figure 6: Velocity comparison. 

 
Figure 7: Variation of h2. 

 
Figure 8: Variation of 2. 
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An explicit guidance method was devised to obtain descent trajectories for a prescribed 
destination using differential flatness and inverse problem combination. The guidance 
commands are related to shape of trajectory, specified by a Bezier curve, to reach the 
target. During periods of command saturation, the instantaneous Bezier control points 
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boundary conditions; 2) an absence of "wild" trajectories during path generation; 3) an 
analytical (parametric) representation of reference trajectory with minimum parameters; 
4) applicability to any RV configuration, regardless of its lift-to-drag ratio or range of 
flight Mach number regime; 5) applicability to any control schemes (bank-to-turn or skid-
to-turn), and 6) offline nominal trajectory and Time-to-Go independence. Results 
compared to pure proportional navigation for terminal velocity were excellent.  
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Abstract 

This paper presents the research results of milling process optimization in the electromagnetic mill due 

to obtain the predetermined particle size distribution of the brown coal. Because of the high relevance 

of brown coal to Polish energy industry (power plants produce 9433 MW of electrical power from 

brown coal, which corresponds to about 34% share in total fuel usage structure in energy industry of 

Poland – II qtr. 2013 [1]), there is a great need to foresee highly efficient methods of its mining, 

valorisation and low emission combustion alongside with CO2 capture. This paper proposes one of the 

concepts of adapting low-rank coal to being utilized in modernized and newly built plants, is a 

simultaneous grinding and drying process in an electromagnetic mill system. In addition, this solution 

is energy efficient and what is more reduces the space required for its adaptation, thanks 

electromagnetic mill’s compact installation design. It is essential to achieve the desired characteristics 

of the product through the adequate control of the processes. Major concern of this case study was set 

on determination of optimal grinding parameters in the electromagnetic mill in order to obtain two 

products of a desired size distribution (1 – 6,3 mm for the application in fluidized bed boilers and 0 – 

315 μm for boiler burners). Authors have presented some theoretical deliberations of the mechanisms 

and physical phenomena occurring while solid particles fragmentation as well as a literature review of 

the subject. The process complexity level, taking place in the active area of an electromagnetic mill, 

involves the influence between particle – milling rod, particle – particle interactions, volume of 

milling rods degree or coal particle residence time on the size distribution of the product, account for 

nonlinearity of the problem and make the conditions difficult to rescale. A heuristic approach to 

inverse problem, hence was chosen to analyse the differences between the desired and obtained 

particle size distribution. The examinations concerned grinding parameters, which were: total amount 

of rods (volume-based) and rod sizes (single and multi-size combinations of milling elements). As an 

investigated material were chosen equivalent samples of Polish brown coal with a particle diameter 

size ranging of 0 to 10 mm. Influence of the total volume of rods was examined using three values: 

100 ml, 150 ml and 200 ml. Two grinding aid element  sizes were chosen in a form of ferromagnetic 

rods: fine rods of the size of 10 × 1 mm and coarse rods of the size of 20 × 2 mm. 

 

 

 

 

 

ICIPE2014 8th International Conference on Inverse Problems in Engineering, May 12–15, 2014, Poland
Eds: I. Szczygieł, A.J. Nowak, M. Rojczyk

97



M. Gandor, K. Sławiński, K. Knaś, B. Balt, W. Nowak 

1 Introduction 

Poland is among countries with significant brown coal deposits. In 2012, the production of 

brown coal reached almost 80 × 10
6 
Mg, of which 67,5 × 10

6 
Mg constituted for an energetic coal. It 

accounts for one third of present basic fuels. With the rising demand for and electric energy production 

(38 GW of power installed in 2013 and a predicted 60 GW in 2030) the significance of brown coal 

will remain at high level [1, 2]. An increasing interest in this fossil is also justified by the expected 

period of its mining, which is considered to be about 300 years, in comparison with 200 years for a 

primary energy carrier - hard coal [2]. In many countries, including in Poland, research is conducted 

on a large scale related to the effective utilization of brown coal in energy sector and also on its 

valorization and protection of its deposits [3].       

 Several problems however accompany the utilization of brown coal associated with the 

characteristics of this fuel, that need to be taken into account when developing the old and creating 

new technologies. From the technical point of view, the biggest distinction between coals of different 

ranks is the amount of moisture and ash content, which has a significant impact on the energy 

efficiency of the boiler as well as some maintenance problems that may occur during the preparation, 

transport and combustion. Elevated moisture and ash content cause a decrease in energy density of the 

fuel, which in turn reduces or excludes the possibility of an economically justified long distance 

transport. Furthermore, an increased flue gas volume accompanying the combustion of brown coal has 

negative ecological consequences. Adding brown coal to higher-rank coals, allows to lower the NOx 

emissions by introducing volatile components in the vicinity of combustion zone [4]. Research is also 

conducted on coal gasification in pressure reactors and on underground gasification in situ. 

 Coal milling plays an important role in its preparation for utilization in various technologies. 

Grinding and especially selective grinding is one of the basic methods for solid fuel adaptation in a 

“clean coal technology” program. The assumption of this program is to diminish the negative impact 

of coal combustion on the environment.  Four main methods are favourable: pre-combustion 

(modification of fuel prior to its combustion), advanced combustion (modification of combustion 

process, for example with innovative boiler construction), advanced post-combustion (flue gas 

treatment) and conversion (gasification, pyrolisis etc.) [5]. For pre-combustion the usage of coal 

blends of desired properties and selective grinding are considered in order to clean the fuel from high 

contents of sulphur, which occurs in coal as pyrite. Deep coal processing is performed by fine-milling 

and removing small particles of waste rock. One of the methods of advanced combustion is using a 

blend of low and high-rank coals in order to obtain lower NOx emissions. Air dispersed finely ground 

brown coal also seems to be an interesting cheaper alternative for fuels used in boiler burners, such as 

fuel oil or mazout. Fine milling of coal allows for lower loss on ignition – smaller particles burn faster 

and fuel conversion is greater than that of coarse particles, which in turn allows more compact and 

effective boiler design. For the methods based on conversion it is also important to obtain a desired 

size of particles, for example for utilization in pressure fluidized gasification, one of the technologies 

developed under the Strategic Research Program “Advanced technologies for energy generation”, in 

which the authors actively participate. Research has shown, that parameters like volatile matter 

initiation temperature, peak reactivity value, temperature of char burnout, total burnout time or 

temperature of self-heating are influenced not only by the size distribution of particles but also by the 

grinding method used to obtain those particles [4]. Comminution is a highly energy intensive process, 

the power consumption according to literature can reach from 1 to about 15 kWh/Mg [6, 7]. The range 

of values is wide and it is affected by parameters like coal grindability, level of moisture or energy 

required for drying of feed material and product separation. Total power consumption of grinding 

process is higher, when efficiency of the machines is considered. 

The operation of a prototype electromagnetic mill installation for  grinding and drying of solid 

fuels proposed by authors is based on a rapid movement of small milling rods, which is forced with an 

alternating electromagnetic field. In this technology a high electric energy into mechanical energy 

conversion occurs and the heat generated by the milling rods is used to reduce moisture in the 

material. The milling rods move chaotically inside the chamber, hitting the fuel particles, each other 

and also the walls of the milling chamber. So far no accurate model exist for the phenomena 

accompanying electromagnetic grinding and a vast majority of parameters are obtained 
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experimentally. Therefore it is necessary to conduct an inverse analysis of grinding in an 

electromagnetic mill in order to determine the parameters allowing for an optimal particle size 

distribution of the product. 

2 . Comminution 

Comminution is a process of reducing the size of solid bodies to produce smaller elements 

with externally applied destructive forces.  The source of the force can  be either mechanical, or more 

rarely – chemical. Mechanical forces acting on the particles of fuel are dependent on the technology 

used, in most cases several comminution mechanisms occur simultaneously. Because grinding is the 

effect of a combination of many processes, it is hard to perform a modelling. As in the case of many 

disperse material  technologies, the analysis of a path of a single particle in the milling area is difficult 

and the characteristics that are true for a particle can be false for the material in a macro scale. 

Therefore it is common to make an estimation and to average those parameters.   

 One of the most essential parameters in milling coal is its grindability. It is a result of coals 

hardness, strength, crystalline structure. Those features are affected by  the rank of coal, petrography 

and mineral matter content. There is no single reliable method of classification of coals on the basis of 

their grindability. One of the most common ways to measure coals grindability is the Hardgrove test. 

The value of Hardgove index is determined via conducting a laboratory scale experiment, thus it 

doesn’t reflect the milling process in an industrial full-scale installation. The value of this index 

arranges different coals according to the “easiness” with which they are fragmented, however it 

doesn’t give the information on the amount of energy needed to comminute the material. Many 

authors claim that the value of Hardgrove index is non-additive and it shouldn’t be used for estimating 

grindability of coal blends made from coals of significantly different Hardgrove index. 

 

Fig. 1 Different mechanisms of comminution: a – crushing, b – breaking, c – attrition, d – lamination, 

e – shearing, f – mastication, g – hitting [8]. 

 There are several theories linking grinding with power consumption, they however have some 

limitations and do not apply in all cases. Kicks theory specifies the energy needed for the 

fragmentation of particles with the sizes exceeding 1 mm, Bonds theory specifies the approximate 

energy needed for the fragmentation of particles in the size range of tens to hundreds of µm and 

Rittingers theory concerns the particles of ultra-small particles. Generally the amount of energy 

required for fragmentation rises with decreasing of particle size and is proportional to the newly-

created surface area. Some improvement of the comminution theory is the Shi-Kojovic model from 

2007, which allows to estimate the energy required for grinding in a broad range of sizes (Hardgrove 

test is made for particles of the size 0,6 – 1,18 mm). Research on the influence of particle size and the 

energy of comminution showed, that for low values of specific fragmentation energy, with the 

normalization of the Shi-Kojovic equation, there is a linear correlation between experimentally 

obtained Hardgrove index and specific energy of comminution. For deeper milling there is a need for 

larger energies, which can be estimated by the Shi-Kojovic model [9].  
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 An important problem in case of grinding is the loss of energy for grinding of the particles 

which sizes are already in a desired range. It is essentially relevant in a case when a mill has a limited 

possibility for particle separation in the process. In such situations it is crucial to separate particles of 

different granulation prior to milling or to modify the installation [7]. Additional problems are caused 

by the moisture content in fuel, which lowers the ability for grinding, causes the particles to stick to 

the grinding surfaces and increases the energy losses due to the deformation in non-elastic bouncing.

 Lack of an absolute information on the processes taking place inside the chamber of the 

electromagnetic mill (the influence of the magnetic field, interaction between milling rods and the 

material, the number of collisions, influence of the moisture loss, effect of the moisture in the feed 

material on coals grindability) predestinates the problem for being solved with the use of inverse 

analysis. Additionally, with so many unknown parameters, a heuristic approach for the problem was 

selected in order to omit the initial estimation of the fragmentation model, and by analyzing the initial 

conditions and the obtained results. The goal of the analysis was to describe the processes inside the 

mill that determine the particle size distribution of the product. 

3 A conception of an electromagnetic mill for grinding and 

activation of the material 

Electromagnetic mill is a device for grinding of particulate matter of a maximal  size of couple 

of millimeters with the use of small ferromagnetic grinding aid. Grinding rods are pushed with the 

force exerted on them by an alternating electromagnetic field produced by the inductor. The field is 

created by the salient poles of the inductor with a three-phase alternating current from a 50 Hz power 

grid. The main element of the electromagnetic device for grinding and drying of coal is the mill, which 

consist of two basic parts: milling chamber with grinding aid and a stator with salient field poles. The 

milling chamber is a non-ferromagnetic tube in which small ferromagnetic milling rods are rotating 

suspended in magnetic field. Those two elements create work area in which the feed material is 

subjected to mechanical, thermal and magnetic treatment. With the increasing magnetic induction 

inside the chamber, small grinding rods are forced to rotate and move faster and more chaotically. A 

ferromagnetic rod suspended in magnetic field becomes a magnetic dipole and is attracted by the field 

with certain force. Thanks to the small size of milling rods and optimized dimension proportions it is 

possible to gain high acceleration and to quickly obtain maximum velocity of the grinding aid. 

Because of the very high rotation speed, there is a very large amount of consecutive collisions of rods 

and fuel particles, which allows for much quicker process when compared to the mills in which the 

period between impacts is extended. 

  

Fig. 2 Design scheme of the electromagnetic mill (left). 1 – milling chamber, 2 – inductor poles, 3 – 

stop, 4 – vapour transport holes, 5 – material inlet, 6 – grinding aid/gas inlet, 7 – vapour collection 

vent, 8 – product outlet, 9 – thermal insulation, 10 – fastener for a tight connection of the milling 

chamber with product container. On the right – physical model of the inductor. 
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Parameters influencing the operation of inductor, involving the geometry of the inductor,  

milling chamber as well as dimensions of grinding rods have been determined by mathematical 

modelling and were presented in a form of design methodology [10].    

 Research was conducted on a model with a milling chamber diameter of 100 mm. 

4 Problem identification 

The goal of this research was to establish the main parameters determining particle size 

distribution of the product (100 – 315 µm range for utilization as fuel in new generation coal dust 

burners and 1 – 6,3 mm used as fuel for fluidized bed boilers). Since at this stage of research no 

accurate model exists of the comminution process in an electromagnetic mill, very little information is 

available on the optimal amounts and sizes of milling rods and volume/weight ratios of grinding aid to 

coal. In theory, the usage of small milling rods should result in smaller particle sizes of the product. 

Electromagnetic mill is therefore especially effective in case of fine milling. The force exerted on 

grinding aid by magnetic field is dependent on the second power of the field induction magnitude in 

the vicinity of the milling rod. The induction in the neighbourhood of the rod in its axis is smaller 

when compared to milling rod – free region, so extensive amount of rods and their high density results 

in weaker induction in the milling chamber. The influence of the differently sized milling rod blends 

on the obtained particle size distribution of the product remained unexplored and it was also a subject 

of this research. 

5 Experimental 

During the experiments, two sizes of milling rods were used: 10 × 1 mm and 20 × 2 mm 

(length × diameter). Aspect ratio 10 : 1 of length to diameter are dictated by calculations, which 

showed that for such dimensions of both the magnitude of the induced magnetic field as well as the 

efficiency of grinding are optimal. The amount of grinding aid in each test was 100 ml, 150 ml and 

200 ml.            

 The feed material used in the tests was brown coal, characterized by the following parameters: 

Table 1. Physico-chemical parameters characterizing the sample of brown coal used in the 

study  

Parameter Value 

Received basis: 

Total moisture Wt
r [%] 51,14 

Ash kontent Ar [%] 10,74 

Total sulphur St
r [%] 0,91 

Lower heating value Qi
r [kJ/kg] 8555 

Analytical basis: 

Moisture Wa [%] 9,15 

Ash Aa [%] 20,04 

Volatiles Va [%] 38,28 

Higher heating value QS
a [kJ/kg] 23330 

Lower heating value Qi
a [kJ/kg] 21091 

Carbon Ca [%] 43,80 

Hydrogen Ha [%] 4,65 

Nitrogen Na [%] 0,53 

Total sulphur St
a [%] 1,77 

Dry Basis: 

Ash Ad [%] 23,08 

Total sulphur St
d [%] 1,82 

Volatiles Vdaf [%] 45,93 

Higher heating value QS
daf [kJ/kg] 19000 

 

For each test a constant volume of feed material was used. Flow of the material was forced by 

gravity.  
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Fig. 3 Histogram of the particle size distribution of feed material, blue colour - desired fraction, gray 

colour - the intermediate fraction. 

Tests were carried out using different volumes (100 - 200 ml), and different sizes of milling 

rods (10 × 1 and  20 × 2 mm) in order to compare the particle size distribution of the product with the 

particle size distribution of the feed material. This has resulted in a series of histograms which were 

used to determine the effect of the grinding aid on the quality of the final product in a form of fractions 

0 - 315 µm and 1 - 6.3 mm. 

 

6 Results and discussion 

The study begun with the use of 20 × 2 mm milling rods. 

  

Fig. 4 Histogram of the particle size distribution of the 

product, the blue colour - desired fraction, gray colour - the 

intermediate fraction. Grinding with 100 ml of milling rods 

of dimensions 20 × 2 mm. 

Fig. 5 Histogram of the particle size distribution of the 

product, the blue colour - desired fraction, gray colour - 

the intermediate fraction. Grinding with 150 ml of milling 

rods of dimensions 20 × 2 mm. 
 

Particle size distribution analysis of the product showed a slight reduction in the grinding of 

the coarse fraction and the intermediate, respectively, 4,33% and 3,91% and the increase in the share 

of fine fraction from 25,85% to 33,55% by weight. It was found that a low efficiency of grinding 

carried out in this manner can result from too low volume of the grinding aid with respect to the feed 

material and milling chamber volume.  
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Increasing the amount of grinding media should result in further reduction of coarser fractions 

and dispensing the weight loss between the finer fractions. After increasing the volume of grinding 

media from 100 to 150 ml, a clear decrease in the coarse fraction mass was observed. Part of the lost 

mass was found within the intermediate fraction, while the vast majority transferred to the fine 

fraction. As a result no satisfactory reduction of the intermediate fraction was obtained, and it was 

found that milling rods of the size of 20 × 2 mm may interact mostly with coal particles larger than 1 

mm. It was acknowledged that a more favourable effect can not be achieved by further increasing the 

amount of grinding aid and it is necessary to utilize finer milling rods for the stronger impact on sub 1 

mm particles. 

  

Fig. 6 Histogram of the particle size distribution of the 

product, the blue colour - desired fraction, gray color - the 

intermediate fraction. Grinding with 100 ml of milling rods 

of dimensions 10 × 1 mm, and 100 ml of milling rods of 

dimensions 20 × 1 mm. 

Fig. 7 Histogram of the particle size distribution of the 

product, the blue colour - desired fraction, gray color - the 

intermediate fraction. Grinding with 100 ml of milling rods 

of dimensions 10 × 1 mm, and 50 ml of milling rods of 

dimensions 20 × 2 mm. 

 

 

Fig. 8 Histogram of the particle size distribution of the product, the blue colour - desired fraction, gray colour - the 

intermediate fraction. Grinding with 150 ml of milling rods of dimensions 10 × 1 mm, and 50 ml of milling rods of 

dimensions 20 × 2 mm. 

 

After the change of grinding aid to a blend of 50 : 50 by volume of milling rods with 

dimensions of 20 × 2 mm , and 10 × 1 mm with a total volume of 200 ml , there was a significant 

decrease in the share of the intermediate fraction from 16,89 % in the case of using only coarse milling 

rods to 7,22% in case of using a 50 : 50 blend. As expected , rods of the size of 10 × 1 mm more 

effectively comminuted particles with the size less than 1 mm. Additionally, a significant share of 

ultra - fine milling occurred in the process, resulting in more than 55 % content of fraction 0 - 315µm. 

To obtain  information on mutual interactions of different size of milling rods in the grinding process, 

further studies were performed with the increasing share of the 10 × 1 mm milling rods for both the 

total volume of 150 and 200 ml. The reduction of the amount of 20 × 2 mm milling rods allowed to 

keep a larger share of fraction 1 - 6.3 mm. Furthermore, with the increase in the amount of 10 × 1 mm 
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milling rods up to 150 ml, a minor effect on the reduction of the coarse fraction was registered with a 

small reduction of the intermediate fraction. The effect of 10 × 1 mm milling rods on milling process 

was seen for each ratio of the mixture, changing only the ratio between fine and coarse fractions of the 

product. At this stage , it was found that the presence of small rods (10 × 1 mm ) is necessary to reduce 

the 0 – 315 µm fraction. Effect of the amount of 20 × 2 mm rods on the reduction of 0 – 315 µm 

fraction is small , and their impact on grinding process is  mostly visualized for particles greater than 1 

mm. To further reduce the share of the intermediate fraction, it was decided to carry out further studies 

using different amounts of milling rods with dimensions of 10 × 1 mm. 

  

Fig. 9 Histogram of the particle size distribution of the 

product, the blue colour - desired fraction, gray colour - the 

intermediate fraction. Grinding with 100 ml of milling rods 

of dimensions 10 × 1 mm. 

Fig. 10 Histogram of the particle size distribution of the 

product, the blue colour - desired fraction, gray colour - 

the intermediate fraction. Grinding with 150 ml of milling 

rods of dimensions 10 × 1 mm. 

 

 
Fig. 11 Histogram of the particle size distribution of the product, the blue colour - desired fraction, gray colour - the 

intermediate fraction. Grinding with 200 ml of milling rods of dimensions 10 × 1 mm. 

 

As presumed, in the case of milling with 10 × 1 mm rods, the lowest share of the intermediate 

fraction  (from 7.16 to 3.43 %) was obtained. In addition the share decreased with an increasing 

volume of grinding aid with respect to the volume of the chamber. In each case, similar proportions 

between fractions were obtained, namely: about 50% of the 0 - 315 µm fraction, about 30% of the 1 - 

6.3 mm fraction and 3 to 7 % of the intermediate fraction – which should be re-ground. This result 

with using 200 ml of 10 × 1 mm grinding aid is the most preferred since it significantly lowers the 

energy required to re-fragmentation of the intermediate fraction in the next grinding cycle. Different is 

also the nature of the influence of fine grinding aid on the coarse fraction, when compared to 20 × 2 

mm rods. In the case of coarser grinding aid, its total volume influences the fragmentation of the 

coarse fraction, and the effect increases significantly above 100 ml of grinding aid. For the 10 × 1 mm 

rods, no such significant impact was observed, whereby it can be concluded, that this type of grinding 

aid interacts weaker with coarse particles and a few percent reduction in coarse fraction may be due to 
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crushing occurring in the screw feeder and due to the interactions between the particles of fuel - the 

collision and mutual attrition. 

 

7 Conclusions 

During a research to obtain an optimum particle size distribution of electromagnetically ground lignite, 

a series of tests were conducted, using different size (10 × 1 mm and 20 × 2 mm) and various volumes 

of grinding aid (100, 150 and 200 ml). Studies have shown that it is possible to grind the feed in such 

manner that it is possible to obtain a minimum amount of intermediate fraction, which in turn allows 

for energy savings from less material requiring re-grinding. It has been found that grinding aid of the 

size of  20 × 2 mm strongly influences the > 1 mm fraction and by controlling their volume it is 

possible to obtain greater amounts of 1 - 6.3 mm fraction in the product. In addition, the use of milling 

rods of that size allows to obtain a significant share of 0 – 315 µm fraction. Still not fully explained is 

the relatively weak effect on reducing the share of the intermediate fraction. The increased amount of 

the intermediate fraction as compared to that obtained with finer grinding aid may result from the 

transfer of weight of the > 1 mm particles into smaller fractions as a result of their fragmentation. 

Smaller grinding aid can effectively grind particles in the range of 315 µm  - 1 mm and therefore 

reduce the amount of the intermediate fraction. In each case an ultra-fine milling was observed and the 

size of grinding aid defined the upper limit of the size of affected coal particles. The use of finer 

grinding aid can produce more homogeneous, fine-grained product, while the coarser milling rods are 

capable of fragmenting larger particles, resulting in both a linear and a more uniform particle size 

distribution of the product. A suitable combination of two or more sizes of grinding aid in a total 

volume considered optimal (200 ml), allows to achieve the desired product properties. 

 

The results presented in this paper were obtained with the research financed by the National Centre for 

Research and Development under contract SP/E/1/67484/10 – Strategic Research Programme – 

Advanced technologies for energy production: Development of technologies for highly efficient  

“zero-emission” coal-fired units with integrated CO2 capture from flue gas. 
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Abstract 

This paper presents an inverse problem solution in the research of brown coal drying in the 

electromagnetic mill. Representative samples of lignite were chosen from a brown coal mine. Lignite  

is classified as a low-rank coal due to its low caloric value and high moisture content, reaching 

approximately 40 - 50%.  

Examined  coal grains were in the size range of 0 - 80 mm, while the total moisture content in the feed 

was from 45% to 38%. The mill presented by authors is used for simultaneous grinding and drying of 

particulate matter. Due to the complexity of the processes occurring in the working chamber and lack 

of a precise mathematical model, this paper  will focus on an inverse analysis throughout the process 

of drying brown coal.  In order to maximize the process of reducing the moisture in fuel, a set of 

crucial parameters, such as ambient air humidity and temperature must be found. Case study of the 

moisture content in coal samples, before and after carrying out the drying process, shows that the 

microstructure of dried brown coal is highly reactive and hygroscopic. An expected reduction of total 

moisture of the raw lignite is set to be over 20 percentage points in relation to the input material. 

Analysis of the moisture content in the feed and the product was performed with a drier method at 110 

°C. 

  

The research takes into account a number of key parameters, i.e. the moisture content in the feed 

material, humidity of the ambient air, the temperature of the environment and the final moisture of the 

product. All parameters have a significant impact on the physical and chemical properties of dried 

coal. The drying process was carried out in a prototype of an electromagnetic mill. During the 

laboratory scale research, the determined objective – the reduction of the total moisture over 20 

percentage points – was acquired. Furthermore, the optimal set of parameters for electromagnetic mill 

drying was established based on the inverse analysis.
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1. Introduction  

 
Lignite is classified as low-rank coal due to its low calorific value mainly resulting from high moisture 

content. Power generation in Poland is based mainly on fossil fuels. The combustion of brown coal 

meets roughly 34% of the electricity and heat demand [1]. Despite the intended increase of natural gas 

and renewable energy sources in the market, it is predicted that a significant portion of electricity 

production will still be based on lignite-fired power plants in decades to come [2]. Brown coal is 

currently an inexpensive source of energy. The energy produced from it is about half of the price of 

that generated from hard coal. Advantageous geological conditions, large deposits and the simplicity 

of mining mean that in terms of calorific value, brown coal is one of the cheapest source of energy in 

Poland, and it will remain so in the near future [3]. 

 
2. Drying process.  

 

In drying process, brown coal improves its calorific value by reducing the moisture contained in it. 

Drying  is a thermal process in which water is evaporated from solid materials or solutions. It can be 

seen that the moisture loss of the material takes place in stages (Figure 1). Initially, the moisture is 

released from the surface of the lignite particles, after that an internal water transport takes place from 

the centre of the particle to its surface. The driving force is heat conduction and as a consequence of 

the energy transfer the breakage of the hydroxyl bonds together with vapour diffusion occurs. As a 

result of forced convection, mixing and movement of the components take place from the surface of 

the particles so that the drying agent enriched in moisture is moved away from the surface and is 

replaced by fresh portion of drying gas. The drying rate is determined by the transport of water 

through the lignite particles, which eventually alters the size and the porosity of the material after 

drying. Water from the solid is removed during certain processes, firstly are emptied macropores, 

mesopores, and then capillars (50 nm in diameter), as a consequence their disintegration and 

crosslinking occurs. Lignites porous structure during the thermal process  is partially disrupted and 

destroyed, which leads to reduction of the inner surface, in comparison to raw coal surface.  Drying 

process in terms of kinetic approach assumes changes not only in the average moisture content but 

also the average temperature over time. Furthermore, with this data one can determine the amount of 

moisture evaporated from the material or the heat inside the material and the amount of energy 

consumed. Moreover the mass and heat transfer inside the material can be exchanged between the 

surface of the material and the drying medium. As a result, the moisture content changes in the 

material subjected to drying [4]. The drying process applies to a variety of wet substances with 

different physic - chemical and biochemical properties. These substances can be divided into two 

groups: the colloidal compounds, in the drying process the molecule changes its dimensions in 

capillary-porous bodies, the drying process do not change their linear dimensions. Drying speed is 

defined as the amount of moisture evaporated from the dried material per unit time and area of the 

dried surface [5]: 

 
 
 

    𝝑 =  
𝒎·∆𝑿

𝑨 ·∆𝒕
     

𝒌𝒈

𝒔·𝒎𝟐      (1) 

 

where: 

 A - surface [m
2
] 

  t  - drying time [s]  

 X - absolute humidity of the material [kg/kg] 

 m - mass of dry material [kg] 
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During the drying process the material moisture bounded mechanically and physico-chemically is 

removed. The drying process is characterized by [4]: 

 

- drying curve [X = X(t)],  

- drying rate curve [J = J (x)],  

- temperature curve [T = T(x)]. 

 

 
 

                                  

Figure 1: The graphs show curve changes characterizing the drying process:  

and - drying curve, b - drying rate curve, c - temperature curve [5]. 

 

One of the coal drying technologies may be the electromagnetic mill technology, which permits 

simultaneous drying and grinding of fuel. This method also allows to obtain the desired physical and 

chemical properties of the product through the appropriate control of the processes in the working 

chamber of the electromagnetic mill [6]. 

3. Electromagnetic mill and its implementation for coal drying 

Electromagnetic mill, is a novel technology used for drying and grinding of the chosen material. Both 

processes occur simultaneously, so that there is a considerable saving of time and energy [6].  With the 

collision of grinding elements with the fuel in the working chamber appears a process of grinding 

together with the initial release of moisture. Inside the chamber, spin many small rod-shaped steel 

grinding elements (Fig. 2b). Furthermore, their low weight and high magnitude of the magnetic field, 

allows them to obtain a very high acceleration. The temperature risen by collisions of grinding 

elements with the material and grinding elements with each other is significant, what is shown in 

thermograms appearing in Figure 3 and Figure 4. Electromagnetic mill consists of a cylindrical 

working chamber, in which both drying and grinding appears, and the salient pole inductor powered 

by a three-phase current, which consists of six radially arranged poles (Fig. 2a.) that produce a rotating 

magnetic field. The force acting on grinding elements comes from the magnetic field and depends on 

the square of the induction field in that area. Operation of the electromagnetic mill does not require 

large energy inputs (960 kWh/day for the performance of the mill equal to 20 Mg/h [7]), since the 

grinding elements of small mass easily acquire a great kinetic energy. 
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Figure 2: Electromagnetic Mill (a)  
Movement of grinding elements in the working chamber (b) 

 
The rise of the temperature of the working chamber from the collisions of the grinding elements and 

the eddy currents which may occur in chambers walls are shown in Fig. 3, and the temperature of the 

grinding elements after exiting the chamber shows Fig. 4. 

 

  

Figure 3: The thermogram of the working 

chamber with the participation of grinding 

elements. 

Figure 4:  Thermogram of grinding 

elements after exiting the chamber. 

 

4. Identification of the problem 

 The aim of the study was to determine the main parameters governing the reduction of moisture in the 

product of more than 20%. This amount is on the one hand sufficient to effectively increase the 

calorific value of brown coal, on the other hand, the quality gain is not associated with excessive loss 

of efficiency in the whole process and does not cause problems of a technological nature with using 

such prepared fuel [8, 9]. Because of the absence of a precise model describing the drying process 

occurring in the electromagnetic mill, there is no information about the effects of moisture in the 

environment and the effects of the drying medium temperature on the degree of drying of the feed. 

The amount of evaporated moisture is affected by the partial pressure of water vapor in the drying 

medium - determining the possibility of diffusion and mass transfer of water between the fuel particle 

and the environment, and the ambient temperature. It should be remembered that within the mill,  the 

conditions are different than in its environment - on the one hand the feed loses heat by evaporation of 

moisture, on the other hand it obtains heat from hot grinding elements and the walls of the chamber. 

The goal of this research is also to determine whether it is possible to reduce the amount of water in 

b) a) 
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the feed using ambient air. In case of the lack of such opportunity or its substantial limitation it is 

expected to obtain outlines on the conditions necessary to provide for the effective reduction of 

moisture in the material. 

 

5. The research material and methodology  
 

In this studies, small ferromagnetic grinding elements were used. The feed material was brown coal, 

characterized by the parameters listed in Table 1. Moreover in all tests a constant volume of feed 

material was used. In Figure 5 is shown the histogram of size of lignite particles in the feed. Moisture 

content of the feed was in a range from 35% to 47% depending on the research environment 

conditions. The effect of the temperature and humidity of the environment on the drying process in the 

electromagnetic mill were analyzed during 5 tests described in next chapter. Tests were conducted at a 

constant and optimal quantity of grinding elements. 

Table 1: Physico-chemical parameters characterizing the samples of brown coal. 

 
Parameter Value 

Received basis: 

Total moisture Wt
r [%] 51,14 

Ash kontent Ar [%] 10,74 

Total sulphur St
r [%] 0,91 

Lower heating value Qi
r [kJ/kg] 8555 

Analytical basis: 

Moisture Wa [%] 9,15 

Ash Aa [%] 20,04 

Volatiles Va [%] 38,28 

Higher heating value QS
a [kJ/kg] 23330 

Lower heating value Qi
a [kJ/kg] 21091 

Carbon Ca [%] 43,80 

Hydrogen Ha [%] 4,65 

Nitrogen Na [%] 0,53 

Total sulphur St
a [%] 1,77 

Dry basis: 

Ash Ad
 [%] 23,08 

Total sulphur St
d [%] 1,82 

Volatiles Vdaf [%] 45,93 

Higher heating value QS
daf [kJ/kg] 19000 

 

 

Figure 5: Histogram of grains size variety. 
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6. Research results 

After drying process in the electromagnetic mill, changes in coal properties were revealed. Through 

the inverse analysis of the drying process, the influence of key parameters of the installation and their 

impact on the degree of drying and properties of the product were established. In this study five tests 

were made, with results presented in Figures 6 – 10. 

  

Figure 6: Ambient parameters and properties of the feed and 

product in test 1. 
Figure 7: Ambient parameters and properties of the feed and 

product in test 2. 

In case of performing the process with the parameters indicated in Figure 6, one could notice 

an increase of moisture content in the product. The main factor was a substantial content of moisture 

in the air, which has impeded or prevented diffusion of water from the fuel particles into the 

environment. Additionally, further absorption of water from the surroundings by the product has 

increased the amount of water in the product relative to the feed, which shows a significant increase in 

surface area of the material after passing the working area and the increase of the reactivity of the 

material as a result of hygroscopic properties and its activation. It can be concluded that the 

electromagnetic mill significantly changes physical properties of the material in terms of releasing and 

absorbing moisture.  Another test (Fig. 7) shows that despite a significant increase in the ambient 

temperature (from 17 °C to 35 °C), it is impossible to dry the material with ambient air humidity 

exceeding 80%. It must be noted that in both cases, despite the substantial difference in moisture 

content of the feed (38% and 45%), drying resulted in a similar final moisture (44% and 47%) of the 

product. This can therefore be inferred to a potential problem appearing while drying in the 

electromagnetic mill, which was increasing hygroscopic properties in the treated material. It is 

important for the design of installation and forces the need to isolate the product from the environment 

when the conditions are unfavorable (high humidity). Further, tests were carried out at a lower 

humidity. 

  

Figure 8:  Ambient parameters and properties of the feed 

and product in test 3. 
Figure 9:  Ambient parameters and properties of the feed 

and product in test 4. 

Tests 3 and 4 were carried out at a similar temperature of air (25 °C and 28 °C) and lower ambient 

humidity than in previous tests. In both cases, one can observe a reduction in the moisture of the dried 

lignite by 8% and 10%. A clear relationship can be seen between the obtained degree of moisture 

reduction and moisture content in the drying medium, while this relationship correlates poorly with the 

ambient temperature, which may be regarded as the parameter of less importance. From this 

112



ICIPE2014, May,12-15, 2014, Cracow, Poland 
 

 
 

observation it was decided to conduct a test in the conditions of low temperature (-15 °C) which 

provides very low air humidity (18%). 

 

 Figure 10: Ambient parameters and properties of the feed and product in test 5. 

 High moisture reduction (more than 29 percentage points) is ensured by an increased rate of 

diffusion of moisture from the fuel to low-humidity air. Moreover, such low air moisture content 

prevents or significantly reduces the re-absorption of water by coal. As stated earlier the temperature 

of the drying medium is of less importance if the product is isolated from the humid air immediately 

after the process, or under sealed conditions shall be fed directly into the combustion zone. The results 

demonstrate the feasibility of simultaneous grinding and drying with the use of an electromagnetic 

mill, but particular attention should be paid to the collection of the dried material and the selection of 

the drying medium.  

 

Figure 11: Summary chart of the results (negative values of reduction mean an increase in moisture 

content, positive values – a reduction of moisture content ). 

 

7. Conclusion 

 

This studies have shown the ability to improve the calorific value of lignite by simultaneous grinding 

and drying in an electromagnetic mill installation. In practice, it is possible to reduce moisture by more 

than 20 percentage points using dry gas medium. Satisfactory results were obtained even for negative 

temperatures, which demonstrates the secondary importance of this parameter in the drying process . 

In the case of using a hot drying agent, the obtained results would be even more advantageous. As a 

result of the inverse analysis, a significant difference in product properties were determined. The 

product was hygroscopic and reactive. Large concentrations of highly reactive coal dust can induce an 

explosion hazard - especially when using hot drying medium with significant content of oxygen. In 

practice, for safety reasons, drying of brown coal in hot air should be eliminated. A preferred drying 
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media should be incapable of initiating an explosion due to lack of oxygen, which can be ensured with 

such gases as carbon dioxide or nitrogen [10]. An alternative is to use a gas mixture low in oxygen, for 

example – dehumidified flue gases from combustion for energy purposes. Low oxygen content (in the 

limits of 6 %) reduces the risk of an explosion and high exhaust gas temperature can be effectively 

used for drying while reducing exergy losses in process and making the valorization of lignite cost-

effective. Due to the inclination of the working chamber at an angle relative to the plane of the surface 

which allows for the gravity transport of feed, a drying medium in a continuous process should be 

introduced concurrently above the workspace – capturing the released moisture and preventing the 

absorption of water by the material above the drying area. Particularly important for the dried and 

activated lignite, is the way of material collecting and storage. It is required to isolate the product from 

adverse environmental conditions. For this purpose, an additional module of an evaporation chamber 

was proposed, with the vibrating transporter at the outlet of the mill. In addition, due to changes in 

products structure, it can be assumed that further release of moisture is distributed in time and takes 

place outside the mill. Evaporation chamber should have a sufficient length to allow for evaporation of 

the remaining moisture to the environment and reaching an equilibrium state between the fuel particles 

and the drying medium. The use of vibrating transporter  due to the additional excitation of the 

particles speeds up this process, and one can reduce the length of the chamber needed to achieve the 

desired properties of the product. To maintain the low moisture content of the product in the 

environment it is also necessary to install the fans in the ceiling of the chamber to separate the 

moisture generated by the process from the product. Given these guidelines the authors have proposed 

a conceptual installation for drying with the use of electromagnetic mill shown in Figure 12. 

 

 
Figure 12: Conceptual facility model for drying and grinding  

with the application of  electromagnetic mill. 
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Abstract
In this work, microwave imaging is considered as a nonlinear inverse scattering problem and tackled
within a Bayesian estimation framework. The object under test (breast affected by a tumor) is supposed
to be composed of compact regions made of a restricted number of different homogeneous materials.
This a priori knowledge is appropriately translated by a Gauss-Markov-Potts prior. First, we express
the a posteriori probability laws of all the unknowns and then the Variational Bayesian Approxima-
tion (VBA) used to compute the posterior estimators and reconstruct both permittivity and conductivity
maps. This approximation consists in the best separable probability law that approximates the true pos-
terior probability law in the Kullback-Leibler sense. This leads to an implicit parametric optimization
scheme which is solved iteratively. Some preliminary results, obtained by applying the proposed method
to synthetic data, are presented and compared to those obtained by means of the classical contrast source
inversion method.

1 Introduction

In the last few decades, microwave scattered imaging has received an increasing interest for medical
applications such as breast cancer detection [1]. In addition to the non-ionizing nature of microwaves,
one of the motivation for developing a microwave imaging technique for detecting breast cancer is the
significant contrast that exists at microwave frequencies between the dielectric properties of normal and
malignant breast tissues. All this makes microwave imaging a better alternative, in terms of cost and
harmlessness, than X-ray mammography which is the most current breast cancer detection technique.
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Hence, measurements of the scattered fields resulting from the interaction between a known interrogat-
ing wave in the microwave frequency range and the breast can be used to retrieve a contrast function
representative of the dielectric properties (permittivity and conductivity) of the latter. This leads to a
non linear ill-posed inverse scattering problem solved, herein, in a variational Bayesian framework. The
associated forward problem consists in modeling the wave-breast interaction through a domain integral
representation of the electric field in a 2-D configuration in a transverse magnetic polarization case.

The Bayesian framework allows us to take easily into account a priori information on the sought solution.
Herein, we would like to account for the fact that the breast is composed of a finite number of different
tissues distributed in compact regions, meaning that the sought image is composed of a finite number of
homogeneous area. This a priori is introduced via a Gauss-Markov fields with hidden Potts label fields
[2]. Afterwards, the variational Bayesian approximation (VBA) [3] is applied to obtain an estimator of
the posterior law. It can be noted that a semi-supervised context is considered herein where the number of
different tissues is supposed to be known, while all the unknowns and hyper-parameters of the model are
estimated simultaneously through a joint posterior law. The purpose of VBA is to approximate the latter
by a free form distribution that minimizes the Kullback-Leibler divergence. This distribution is chosen as
a separable law. Then, thanks to the latter method, the initial inverse problem turns into an optimization
problem and an analytical approximation of the posterior is obtained. Its use in microwave imaging and
optical diffraction tomography has already been treated and results have shown its performances with
respect to the computation time and simplicity, compared to other methods such as Monte-Carlo Markov
Chain (MCMC) [4, 5].

The main contribution of this work is the application of VBA to breast imaging where the sought contrast
is complex valued, contrarily to the case treated in [5], and both permittivity and conductivity maps have
to be retrieved. Herein, we discuss the results obtained by means of this approach from synthetic data
generated in different configurations involving two different numerical breast phantoms: a simple model
made of two homogeneous media and a more sophisticated one built up from a MRI scan of a real
breast. Then we present results compared to those obtained by means of the deterministic contrast source
inversion method (CSI, [13]).

The paper is organized as follows: section 2 is about the experimental configuration and the forward
modeling. The VBA approach and Bayesian computations are discussed in section 3. In section 4, the
method is applied to synthetic data and is compared to CSI. Finally, some conclusions and perspectives
are given in section 5.

2 The forward modelling

2.1 The experimental configuration

We consider a 2-D configuration in a transverse magnetic polarization case where the object under test is
supposed to be cylindrical, of infinite extension along the z axis and illuminated by a line source whose
location can be varied and that operates at several discrete frequencies. This source generates an incident
electric fieldEinc polarized along the z axis with an exp(−iωt) implicit time dependence and illuminates
the breast from 64 various angular positions uniformly distributed around a 7.5-cm-radius circle centered
at the origin and at 6 different frequencies in the band 0.5 - 3 GHz. For each frequency and illumination
angle, 64 measurements of the scattered field are performed at angular positions uniformly distributed
around the same circle. The breast (domainD2) is immersed in a background medium (domainD1) and is
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supposed to be contained in a test domain (D). The different media are characterized by their propagation
constant k(r) such that k(r)2 = ω2ε0εr(r)µ0 + iωµ0σ(r), where ω is the angular frequency, ε0 and µ0
are the permittivity and the permeability of free space, respectively, r ∈ D is an observation point and
εr(r) and σ(r) are the relative permittivity and conductivity of the medium.

Two models of breast are considered herein (Figure 1). Both of them are supposed to be affected by
a tumor (domain D3) with a 2-cm-diameter circular cross-section and of electromagnetic parameters
εr = 55.3 and σ = 1.57 Sm−1. The first model (Model-1) is rather simple: it consists in an homo-
geneous breast, with a 9.6-cm-diameter circular cross-section and relative dielectric permittivity and
conductivity respectively equal to εr = 6.12 and σ = 0.11 Sm−1, immersed in a background medium
of electromagnetic parameters εr = 10 and σ = 0.5 Sm−1. The second model (Model-2) is more so-
phisticated. It is built up from a MRI scan of a real breast. Hence, the breast is also supposed to be of
circular cross-section with a diameter of 9.2 cm but it is now made of a very heterogeneous medium with
parameters varying in the ranges 2.46 ≤ εr ≤ 60.6 and 0.01 Sm−1 ≤ σ ≤ 2.28 Sm−1, surrounded by
a skin with electromagnetic parameters εr = 35.7 and σ = 0.32 Sm−1 and immersed in a background
medium whose relative dielectric permittivity and conductivity are respectively equal to εr = 35 and
σ = 0.5 Sm−1.

Figure 1: The measurement configuration and the two models of breast (left: Model-1, right: Model-2).

2.2 The problem formulation

The modeling is based upon domain integral representations obtained by applying Green’s theorem to
the Helmholtz wave equations satisfied by the fields and by accounting for continuity and radiation
conditions [8]. The forward model is described by two coupled integral equations. The first one, denoted
as the observation equation, is a Fredholm first kind integral equation that relates the scattered field to
Huygens-type sources induced within the target by the incident wave, whereas the second one, denoted
as the coupling (or state) equation, relates the total field to the induced sources [9, 4]. The forward
problem is solved from discrete counterparts of these integral equations obtained by means of a method
of moments whith pulse basis and point matching [10], which results in partitioning the test domain D
into ND elementary pixels small enough to permit considering both the field and the contrast as constant
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over each of them. Let us now consider a contrast function χ, defined in D and null outside the object,
such that χ(r) = (k(r)2 − k21)/k

2
1 , where k1 is the propagation constant of the background medium,

and define the Huygens-type sources w(r) as w(r) = χ(r)E(r), where E(r) is the total field in the
target. The above-mentioned discrete counterparts then read:

y = Go w + ε (1)

w = X Einc + X Gc w + ξ, (2)

where X = diag(χ), E, χ and w are vectors that contain the values of E(r′), χ(r′) and w(r′) at the
centers r′ of the pixels (r′ ∈ D), y is the vector containing the values of the scattered field y(r) at the
measurement points r, Go and Gc are huge matrices whose elements result from the integration of the
Green’s function over the elementary pixels [5] and ε and ξ are two variables that account for the model
and measurement errors and that are supposed to be centered and white and to satisfy Gaussian laws (i.e.,
ε ∼ N (ε|0, vεI) and ξ ∼ N (ξ|0, vξI)).
Now, the forward problem consists in first solving equation (2) for the induced sources w, knowing the
contrast χ and the incident field Einc, and then solving equation (1) for the scattered field y. At this
point it can be noted that the synthetic data of the inverse problem are generated in this way. However,
in the case of Model-1, in order to avoid committing an inverse crime which would consist in testing the
inversion algorithm on data obtained by means of a model closely related to that used in the inversion,
the data are computed by benefiting from the circular symmetry that exists in the absence of the tumor.
Hence, the data are computed by means of a model (the data model) where only the domainD3 occupied
by the tumor is discretized, whereas the breast and the background medium are considered as a cylindri-
cally stratified embedding medium and the Green’s function is modified consequently. Figure 2 displays
the scattered fields obtained by means of the data model on configuration Model-1 for an illumination
angle of 45◦ and at two operating frequencies: 1.5 GHz and 3 GHz, compared to that obtained by means
of the forward model used for inversion where the test domain D is a 12.16 cm sided square partitioned
into 64× 64 square pixels with side δ = 1.9mm. It can be observed that the results fit relatively well.

3 Bayesian inversion approach

3.1 Hierarchical prior model

The inverse problem consists in retrieving the unknown contrast χ, or more precisely the relative permit-
tivity εr and the conductivity σ, from the scattered field y, given the incident field Einc. It can be noted
that the induced sources w being also unknown, they must be retrieved at the same time as χ. Hence,
assuming that their relation to the contrast is given by the state equation (2), we define their a priori
probability law as:

p(w|χ) = exp

{
− 1

2vε
||w −XEinc −XGcw||

}
. (3)

Now, let us introduce a priori information on the sought solution required in order to counteract the
ill-posedness of the inverse problem. It consists in the fact that the sought object is composed of a
restricted number K of homogeneous materials distributed in compact regions. This prior information
is introduced by means of a hidden variable (or classification label) z(r) associated with each pixel r,
which represents a segmentation of the unknown object. The finite number of homogeneous materials
can then be accounted for through the following conditional distribution:

p(χ(r)|z(r) = k) = N (mk, vk), k = 1, . . . ,K, (4)
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Figure 2: Amplitude (left) and phase (right) of the scattered fields computed by means of the data model
(black) and by means of the forward model used for inversion (red) at 1.5 GHz (up) and 3 GHz (down).

which means that all the pixels with the same label (z(r) = k, k ∈ {1, ...,K}) correspond to the same
material with a mean value mk and a variance vk.

The compactness of the different regions can be accounted for by relating, in a probabilistic way, the
classification label z(r) of a pixel r to that of its neighbors. This is done via a Potts-Markov model on z:

p(z|λ) = 1

T (λ)
exp



λ

∑

r∈D

∑

r′∈Vr
δ
(
z(r)− z(r′))



 , (5)

where λ is a parameter that determines the correlation between neighbors (herein λ = 1), T (λ) is a
normalization factor and Vr is a neighborhood of r, herein made of the four nearest pixels.

Now we have all the components necessary to find the expression of the joint posterior law of all the
unknowns (χ,w, z,ψ) with ψ = {m,v, vε, vξ}. The latter is obtained by applying the Bayes formula:

p (χ,w, z,ψ|y) ∝ p (y|w, vε) p (w|χ, vξ) p (χ|z,m,v)

× p (z|λ) p (mk|µ0, τ0) p (vk|η0, φ0)
× p (vε|ηε, φε) p (vξ|ηξ, φξ). (6)
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Expressions of p(y|w, vε), p(w|χ, vξ) and p(z|λ) are derived respectively from equations (1), (3) and
(5), whereas conjugate priors laws are assigned to the hyper-parameters:

p(mk) = N (mk|µ0, τ0), p(vk) = IG(vk|η0, φ0)
p(vε) = IG(vε|ηε, φε), p(vξ) = IG(vξ|ηξ, φξ), (7)

whereN (m|µ, τ) and IG(v|η, φ) stand for Gaussian and inverse-gamma distributions, respectively, and
µ0, τ0, η0, φ0, ηε, φε, ηξ and φξ are meta-hyper-parameters appropriately set to have non-informative
priors, i.e. flat prior distributions.

3.2 The Variational Bayesian Approach

All the right-hand side expressions of equation (6) are known, which allows us to obtain the left hand side,
i.e. the joint posterior law of all the unknowns, up to a normalizing constant. However, the complexity of
its expression makes it very hard to obtain in a tractable form for conventional estimators, such as JMAP
or PM, and an approximation is then required. Hence, we opt for an analytical approximation based
upon the Variational Bayesian Approach (VBA, [11]) which aims in approximating the true posterior
distribution (6) by a simpler separable law q(u) =

∏
i q(xi) with u = {χ,w, z,ψ}, that minimizes the

Kullback-Leibler divergence KL(q||p) = ∫
q ln(q/p). We define the separable law as:

q(u) = q(vε)q(vξ)
∏

i

q(χi)q(wi)q(zi)
∏

k

q(mk)q(vk). (8)

Then we look for the optimal form of q that minimizes the Kullback divergence. This leads to the fol-
lowing parametric distributions:

q(w) = N (m̃w, Ṽ w), q(χ) = N (m̃χ, Ṽ χ), q(z) =
∏
r ζ̃k(r)

q(mk) = N (µ̃k, τ̃k), q(vk) = IG(η̃k, φ̃k)
q(vε) = IG(η̃ε, φ̃ε), q(vξ) = IG(η̃ξ, φ̃ξ), (9)

where the tilded variables are mutually dependent and are computed in an iterative way [5].

3.3 Initialization and convergence of the algorithm

The initial number of classes K used for segmentation, it is set to K = 3 for Model-1 and K = 8 for
Model-2, whereas the initial values of the unknowns χ(0) and w(0) are obtained by backpropagating
the scattered field data from the measurement circle onto the test domain D. From χ(0) and w(0), the
classification z and the hyper-parameters (means and variances) can be initialized by means of K-means
clustering [12]. Here, given the fact that the contrast is complex valued, first the real part is segmented
and, then, the same segmentation is used to initialize the imaginary part. Concerning the convergence,
the shaping parameters of the equation (9) are iterated until the convergence is reached. The latter is
estimated empirically by looking to the evolution of contrast and hyper-parameters in the course of
iterations (figure (3)).

4 Results

Figure (4) displays the results obtained for the conductivity of Model-1 after 500 iterations. These results
are compared to those obtained, after the same number of iterations, by means of the contrast source
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inversion method (CSI, [7]), an iterative deterministic method which consists in minimizing a cost func-
tional, that accounts for both observation and coupling equations, by alternately updating w and χ with
a gradient-based method. In general, the algorithm succeeds in retrieving homogeneous regions that cor-
respond to the background, the breast and the tumor. The results are, however, more accurate than those
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Figure 3: The evolution of the observation vε (left-) and coupling vξ (right) error variances as functions
of the iteration step for Model-1.

obtained by means of CSI. This is confirmed by the profiles reconstructed with both methods along an
horizontal line crossing the center of the tumor (figure 4 - (d)). Besides, the interest of VBA is that, in
addition to an image of the sought object, it yields also an estimate of the hyper-parameters, the segmen-
tation and the variances of the estimators.

Figure (5) displays the results obtained on Model-2, with a test domain D partitioned into 120 × 120

1-mm-side square pixels, after 2000 iterations. This figure highlights the observations made on Model-1
about the effectiveness of the proposed VBA technique. The glandular areas in the breast are not exactly
found, which is normal as they do not correspond to compact homogeneous regions, but, on the contrary,
the tumor is more apparent with VBA than with CSI, particularly in the conductivity map.

5 Conclusion

We consider microwave imaging as an inverse obstacle scattering problem which is known to be ill-
posed. This means that a regularization of the problem is required prior to its resolution, and this reg-
ularization generally consists in introducing a priori information on the sought solution. Herein, an
important knowledge about the object under test is that it is composed of a restricted number of ho-
mogeneous materials distributed in compact regions. This is tackled in a Bayesian inversion framework
via a Gauss-Markov-Potts model. Application to synthetic data shows a good improvement in the re-
construction quality compared to a CSI deterministic approach. However, several points still need to
be investigated. Particularly, concerning the convergence fastness, a gradient-like variational Bayesian
method [14] is under investigation. This technique has already shown its effectiveness compared to the
classical VBA, especially in terms of convergence fastness, in other applications. Furthermore, the use
of Gauss-Markov mixtures [4] as prior model for the unknown object may be more adapted, especially
when the latter is very heterogeneous, since with this model the links between pixels of the same class
are strengthened by means of a Markov field, while the independence between pixels of different classes
is kept in order to preserve the contours. An other point is under investigation concerning the number
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Figure 4: The results obtained for Model-1: maps of conductivity (first row) reconstructed by means
of CSI (b) and VBA (c) compared to the real object (a) and (second row) the conductivity profiles
reconstructed by means of CSI and VBA compared to the real profile (d), the hidden field (e) and the
mean mk of the imaginary part of the contrast (f) for the 3 classes.

of classes: the latter should converge to an optimal number, if initialized with a higher number, because,
during iterations, the number of pixels that belong to some of the classes decreases, which means that the
latter should disappear. Alternatively, the estimation of the number of classes, if the latter is unknown,
can be tackled by means of a non-parametric approach.
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Abstract
This work investigates the inverse problem of finding a time-dependent coefficient - the blood perfusion
coefficient - in the bioheat equation with nonlocal boundary conditions and integral mass/energy speci-
fication. Conditions which ensure that the problem is well-posed are established and notably, the global
continuous dependence on the data is proved. Furthermore, the numerical solution is obtained using the
boundary element method together with the Tikhonov regularization. The generalized cross-validation
is employed as a possible choice for the regularization parameter. A numerical example is presented to
verify the accuracy and stability of the solution.

1 Introduction

Time-dependent coefficient identification problems with nonlocal boundary and/or integral overdetermi-
nation conditions have recently attracted revitalising interest, e.g. the reconstruction of a time-dependent
diffusivity [1], a blood perfusion coefficient [2], or a heat source [3, 4].

In this paper, the determination of an unknown time-dependent blood perfusion coefficient for the
bioheat equation is sought under nonlocal boundary and integral additional conditions. A simple trans-
formation is used to reduce the bioheat equation to the classical heat equation. This inverse problem has
already been proved to be uniquely solvable in [5], but no numerical reconstruction has been attempted.
Therefore, the purpose of this study is to devise a numerical stable method for obtaining the solution of
the inverse problem.

2 Mathematical Formulation

Consider the one-dimensional time-dependent bioheat equation, see e.g. [6],

ut(x, t) = uxx(x, t) − P (t)u(x, t) + f(x, t), (x, t) ∈ DT := (0, 1) × (0, T ], (1)
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in a finite slab geometry x ∈ (0, 1), where T > 0 is a final time of interest, u is the temperature, P is
the blood perfusion coefficient and f is a heat source. Equation (1) has to be solved subject to the initial
condition

u(x, 0) = φ(x), x ∈ [0, 1], (2)

the convective Robin boundary condition at the left end x = 0, namely,

− ux(0, t) = αu(0, t), t ∈ [0, T ], (3)

where α is a constant heat transfer coefficient, the nonlocal boundary condition

u(0, t) = u(1, t), t ∈ [0, T ], (4)

and the integral (nonclassical) mass/energy specification/measurement

∫ 1

0
u(x, t)dx = E(t), t ∈ [0, T ]. (5)

We mention that the nonlocal boundary condition (4) is encountered in biological applications, see [7],
whilst the mass/energy specification models processes related to particle diffusion in turbulent plasma,
see [8], or heat conduction, see [9]. We are interested to find the pair solution (P (t), u(x, t)) ∈ C[0, T ]×
(C2,1(DT ) ∩ C1,0(DT )) satisfying the problem (1)–(5).

In [5], the unique solvability and local continuous dependence of the solution upon the data of
the inverse problem (1)–(5) have been established. In this section, we establish the global continuous
dependence based on a Gronwall’s-type inequality. Note that the case α = 0 has been dealt with in [3].
Herein we consider the case α ̸= 0 treated theoretically in [5].

First let us introduce some notations and assumptions as in [5]:

Y0(x) =





2µ0

α(µ2
0 + α2 − 2α)

[
(µ2

0 − α2) sin(µ0x) + 2αµ0 cos(µ0x)
]
, if α < 0,

− s0 + α

2α(s2
0 − α2 + 2α)

[
(s0 − α)2es0x − (s0 + α)2e−s0x

]
, if α > 0,

Y2n(x) = −4πn

α
sin(2πnx),

Y2n−1(x) =
2µn

α(µ2
n + α2 − 2α)

[
(µ2

n − α2) sin(µnx) + 2αµn cos(µnx)
]
, n ≥ 1,

where s0 is the unique positive solution of the equation es = 1+
2α

s − α
with α > 0, µn = 2πn+O(1) ∈

(2πn, (2n + 1)π), n ∈ N and µn = 2πn + O(1) ∈ ((2n − 1)π, 2πn), n = N∗ are monotone increasing
positive solutions of the equation µ sin(µ/2)+α cos(µ/2) = 0 in α < 0 and α > 0, respectively. Denote
by

φn =

∫ 1

0
φ(x)Yn(x) dx, fn(t) =

∫ 1

0
f(x, t)Yn(x) dx, n ∈ N.

We make the following assumptions on the input data φ, E and f :

(A1) φ(x) ∈ C2[0, 1],−φ′(0) = αφ(0), φ(0) = φ(1),

(i) φ0 > 0, φ2n−1 ≥ 0, for n ≥ 1, when α < 0;
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(ii) φ1 < 0, φ2n−1 ≤ 0, for n ≥ 2, when α > 0.

(A2) E(t) ∈ C1[0, T ], E(0) =
∫ 1
0 φ(x) dx,E(t) > 0 for t ∈ [0, T ].

(A3) f(x, t) ∈ C(DT ), f(·, t) ∈ C2[0, 1] for t ∈ [0, T ], −fx(0, t) = αf(0, t), f(0, t) = f(1, t),

(i) f0 ≥ 0, f2n−1 ≥ 0, for n ≥ 1, when α < 0;

(ii) f2n−1 ≤ 0, for n ≥ 2, when α > 0.

Kerimov and Ismailov [5] showed that if assumptions (A1)–(A3) are satisfied then the inverse problem
(1)–(5) has a unique solution. Moreover, for arbitrary P ∈ C[0, T ] the following representation for
u(x, t) holds:

u(x, t) = u0(t)X0(x) +

∞∑

n=1

[u2n−1(t)X2n−1(x) + u2n(t)X2n(x)] , (6)

where

X0(x) =





cos(µ0x) − α
µ0

sin(µ0x), if α < 0,
s0 − α

s0 + α
es0x + e−s0x, if α > 0,

(7)

X2n(x) = cos(2πnx) − α

2πn
sin(2πnx), X2n−1(x) = cos(µnx) − α

µn
sin(µnx), n ≥ 1,

uk(t) =
φke

−λkt

r(t)
+

∫ t

0

fk(τ)e−λk(t−τ)

r(t) − r(τ)
dτ, k ≥ 0,

λ0 =

{
µ2

0, if α < 0,

−s2
0, if α > 0,

λ2n = (2πn)2, λ2n−1 = µ2
n, for n ≥ 1,

and

r(t) = exp

(∫ t

0
P (ξ) dξ

)
. (8)

From (8) we remark that P (t) =
r′(t)
r(t)

, r(t) > 0, and r(0) = 1. Applying the overdetermination

condition (5) we obtain that r satisfies the Volterra integral equation of the second kind

r(t) = F (t) +

∫ t

0
K(t, τ)r(τ) dτ, (9)

where

F (t) =
1

E(t)

(
φ0e

−λ0t

∫ 1

0
X0(x) dx − 2α

∞∑

n=1

φ2n−1e
−µ2

nt

µ2
n

)
, (10)

K(t, τ) =
1

E(t)

(
f0(τ)e−λ0(t−τ)

∫ 1

0
X0(x) dx − 2α

∞∑

n=1

f2n−1(τ)e−µ2
n(t−τ)

µ2
n

)
. (11)

Then we have the following theorem which gives the continuous dependence upon the data of the solution
of the inverse problem (1)–(5).
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Theorem 1. Let J be the class of triplets of the form ϕ = (f, φ, E) which satisfy the assumptions
(A1)–(A3) and





∥f∥C2,0(DT ) ≤ N0, ∥φ∥C2[0,1] ≤ N1, ∥E∥C1[0,T ] ≤ N2,

0 < N3 ≤ min{ min
t∈[0,T ]

|E(t)|, min
t∈[0,T ]

|E′(t)|},
(12)

for some positive constants Ni for i = 0, 3. Then the solution pair (P (t), u(x, t)) of the inverse problem
(1)–(5) depends continuously upon the data in J .

Proof: Let ϕ = (f, φ, E) and ϕ̃ = (f̃ , φ̃, Ẽ) be two sets of data in J . Let (P, u) and (P̃ , ũ) the
corresponding solutions. Let r̃, F̃ , and K̃ be the analogous quantities corresponding to (9)–(11). We can
then estimate the difference

r(t) − r̃(t) = F (t) − F̃ (t) +

∫ t

0
(K(t, τ) − K̃(t, τ))r(τ) dτ +

∫ t

0
K̃(t, τ)(r(τ) − r̃(τ)) dτ. (13)

According to the proof of Theorem 2 of [5] we have the following estimates

∥K̃∥C([0,T ]2) ≤ C1N0

N3
, ∥K − K̃∥C([0,T ]2) ≤ C1∥ϕ − ϕ̃∥, ∥F − F̃∥C([0,T ]) ≤ C3∥ϕ − ϕ̃∥, (14)

for some positive constants C1, C2 and C3, and we denote

∥ϕ − ϕ̃∥ := ∥E − Ẽ∥C1[0,T ] + ∥φ − φ̃∥C2[0,1] + ∥f − f̃∥C2(DT ). (15)

Then, as in [4], using a Gronwall’s-type inequality, see Theorem 16 of [10], we can obtain that

∥r − r̃∥C[0,T ] ≤ C4∥ϕ − ϕ̃∥, (16)

for some positive constant C4. This means that r is continuously dependent upon the input data ϕ.
Similarly, one can prove that r′ and u also depends continuously upon the data. Finally, as P (t) = r′(t)

r(t) ,
this implies that P also depends continuously upon the data. This concludes the stability proof.

�
Consider now the following transformation, see [11],

v(x, t) = r(t)u(x, t). (17)

Then the inverse problem (1)–(5) becomes

vt = vxx + r(t)f(x, t), (x, t) ∈ DT , (18)

v(x, 0) = φ(x), x ∈ [0, t], (19)

v(0, t) = v(1, t), vx(0, t) + αv(0, t) = 0, t ∈ [0, T ], (20)

with the transformed integral condition
∫ 1

0
v(x, t)dx = E(t)r(t), t ∈ [0, T ]. (21)

We also have that r ∈ C1[0, T ], r(0) = 1, r(t) > 0, for t ∈ [0, T ]. Solving the inverse problem (18)–
(21) for the solution pair (r(t), v(x, t)) yields afterwards the solution pair (P (t), u(x, t)) for the inverse
problem (1)–(5) as given by

P (t) =
r′(t)
r(t)

and u(x, t) =
v(x, t)

r(t)
, (x, t) ∈ DT . (22)
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3 Numerical Method

The numerical discretization of the inverse problem (1)–(5) is based on the boundary element method
(BEM), [4, 12, 13]. This reduces the problem to solving a linear system of N ×N equations, generically
written as

Xr
¯
= y

¯
, (23)

where N is the number of constant boundary elements discretising uniformly in time [0, T ] each of the
boundaries x = 0 and x = L. In (23), the right-hand side vector y

¯
depends only on the initial temperature

φ(x) and the coefficient α, whilst the matrix X depends on α and the energy measurement E(t).

It is interesting to note that the measurement data (5) is usually contaminated with noise. This is
modelled by perturbing (5) with random noise as

e
¯
p = e

¯
+ random(′Normal′, 0, σ, 1, N), (24)

where e
¯

=
[
ei

]
N

:=
[
E(t̃i)

]
N

, i = 1, N , and random(′Normal′, 0, σ, 1, N) is a command in MATLAB
for computing a vector of N random variables generates from a normal distribution with the zero mean
and the standard deviation σ given by

σ = p × max
t∈[0,T ]

|E(t)|, (25)

where p is the percentage of noise.

Hence, it means that the system matrix X is contaminated with noise and

ϵ ≈ ∥X − Xϵ∥, (26)

represents the level of noise. Thus, instead of (23), we have to solve

Xϵr
¯
= y

¯
. (27)

For the solution of this system we employ the second-order Tikhonov regularization, [4, 13], which yields
the regularization solution

r
¯λ

=
(
(Xϵ)trXϵ + λRtrR

)−1
(Xϵ)try

¯
, (28)

where λ ≥ 0 is a regularization parameter to be prescribed and RtrR is a second-order derivative regu-
larization matrix given by, [14],

RtrR =




1 −2 1 0 0 . . .

−2 5 −4 1 0 . . .

1 −4 6 −4 1 0 . .

0 1 −4 6 −4 1 0 .

. . . . . . . .




.

In (28), the regularization parameter can be selected according to the generalized cross validation (GCV)
criterion which chooses λ > 0 as the minimum of the GCV function, see e.g. [15],

GCV (λ) =
∥Xϵr

¯λ
− y

¯
∥2

[trace(I − Xϵ((Xϵ)trXϵ + λRtrR)−1(Xϵ)tr)]2
. (29)
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The solution of the original inverse problem (1)–(5) can be obtained by substituting all approximate
solutions v, r, and r′ into (22). In order to obtain the solution P (t), we also need to find the derivative
function r′(t) which can be approximated using finite differences as

r′(t̃1) =
rλ(t̃1) − 1

T/(2N)
, r′(t̃i) =

rλ(t̃i) − rλ(t̃i−1)

T/N
, i = 2, N. (30)

4 Numerical Example and Discussion

In this section, we consider a benchmark test example with the input L = T = 1, α = −1, φ(x) =

1 + x − x2, f(x, t) = (3 + x − x2)e−t, and E(t) = 7e−t/6. Then the analytical solution of the problem
(1)–(5) is given by

P (t) = 2, u(x, t) = (1 + x − x2)e−t, (31)

whilst the analytical solution for the transformed problem (18)–(21) is

r(t) = e2t, v(x, t) = (1 + x − x2)et. (32)

We present the numerical results obtained with a BEM mesh of N = N0 = 40, where N0 is the number
of cells discretising uniformly the space interval [0, L].

We start first with the case of exact data E(t) = 7e−t/6, i.e. p = 0 in (24) and (25). The numerical
results for the unknowns r(t), u(0, t), r′(t), and P (t) obtained using the straightforward inversion r

¯
=

X−1y
¯
, i.e. without regularization λ = 0 in (28), are compared with their corresponding analytic values

e2t, e−t, 2e2t, and 2, in Figures 1(a)–1(d), respectively. From Figure 1 it can be seen that all the quantities
of interest are accurate.

Next we investigate the stability of the numerical solution with respect to some p = 1% noise
included in the input energy data, as in (24) and (25). The corresponding numerical results to Figure
1 (for exact data) are presented in Figure 2 (for noisy data). In Figures 2(a) and 2(b) the numerical
results obtained for r(t) and u(0, t), respectively, are relatively accurate. However, the numerical results
obtained for r′(t) and P (t) = r′(t)/r(t) shown in Figures 2(c) and 2(d), respectively, are highly unstable.
This is because the differentiation of the noisy function r(t) shown in Figure 2(a) with dashed line using
the finite differences (30) is an unstable procedure. In order to deal with this instability one can employ
the smoothing spline regularization of [16], but this requires the knowledge of the discrepancy between
the exact and numerical values of r(t) in Figure 2(a), which is not available if the exact solution is not
available. Alternatively, we employ the second-order Tikhonov regularized solution (28) with the choice
of the regularization parameter given by the minimum point of the GCV function (29). This is plotted
in Figure 3 for p = 1% noise and the minimum yields the value λGCV = 32. With this value of λ, the
solution (28) for r(t) is plotted in Figure 4(a). By comparing with the previous unregularized solution
shown in Figure 2(a), one can now see that the obtained solution for r(t) is indeed smooth. Then the
process of numerical differentiation (30) is permitted and a stable approximation can be obtained, as
shown in Figures 4(c). There are some inaccuracies manifested at the end points t = 0 and 1, but this is
commonly observed elsewhere when using other stabilising techniques such as the mollification method
or, the Tikhonov reguarization for Fredholm integral equation of the first kind presented in detail in [17].
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Figure 1: The analytical (—–) and numerical (− − −) results of (a) r(t), (b) u(0, t), (c) r′(t), and (d)
P (t) obtained using no regularization, i.e. λ = 0, for exact data.

5 Conclusions

The inverse problem of finding a time-dependent blood perfusion coefficient for the bioheat equation
with nonlocal boundary conditions and mass/energy specification has been investigated. The inverse
problem has been transformed to an inverse heat source problem with an unknown source present in the
integral over-determination condition. The numerical discretization was based on the BEM together with
the Tikhonov regularization. The choice of the regularization parameter was based on the GCV. For a
typical benchmark test example, accurate and stable numerical solutions have been obtained.
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Figure 2: The analytical (—–) and numerical (− − −) results of (a) r(t), (b) u(0, t), (c) r′(t), and (d)
P (t) obtained using no regularization, i.e. λ = 0, for p = 1% noise.
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Abstract 

This paper focuses on the numerical determination of two-dimensional temperature fields in flow 
boiling in an asymmetrically heated rectangular and vertical minichannel. One of the minichannel 
walls is made of the DC supplied heating foil. The opposite wall is made of glass, which makes it 
possible to observe the two-phase structure and void fraction. The external side of the heating foil, 
coated with a layer of liquid crystals, is protected with a pane of glass. Thermosensitive liquid crystals 
were used to detect two-dimensional temperature distribution of the heating foil. Direct and inverse 
heat transfer problems that occur in flow boiling in a minichannel were solved using the methods 
based on Trefftz functions. The selection of particular functions was dependent on the form of the 
differential equation describing the heat transfer in solids (glass pane, heating foil) and in liquids. 
These functions were used globally (in the classical Trefftz method) and as shape functions in the 
FEM (FEMT) to find the two-dimensional temperature fields of the glass pane and the heating foil. 
Solving these functions led to computing a direct heat transfer problem in the glass pane and an 
inverse problem in the heating foil and the boiling liquid. Known foil and liquid temperature 
distributions and gradients enabled the heat transfer coefficient on the foil-liquid contact to be 
calculated from the Robin boundary condition. The results obtained using the numerical methods 
described for single-phase flows ending in boiling incipience and for two-phase flows have been 
summarized, compared and found to be similar.   

1 Introduction 

Technological advances evolving towards miniaturization impose a search for new heat transfer 
devices and a modification of the existing ones. The boiling heat transfer process is accompanied by  
a change of phase, which enhances the efficiency of the device. A body of research is being carried 
out with the aim of developing miniature heat exchangers that use the change of phase of refrigerant 
to obtain high heat flux at a small temperature difference between the heating surface and the heated 
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working fluid. Experimental part of this issue, briefly discussed further in this article, has been 
described in detail in [6] and [9]. The basic element of the experimental stand, which is the test 
section with a minichannel and FC-72 refrigerant flowing through it, is shown in Fig.1.  
 

Z

X

Y

L

  G F MGlass

Liquid

Foil

liquid crystals

 G F
G

 
Figure 1: Test section of the minichannel. Temperature distribution at the foil-glass interface was 

determined using the liquid crystals technique (pictorial view, not to scale). 

2 Mathematical Model  

For convenience, in mathematical model only two dimensions were taken into account: dimension x 
along the flow direction and dimension y (perpendicular to the flow direction) relating to the thickness 
of the protecting glass ( G ) and the foil ( F ), and to the depth of the channel ( M ), Fig. 1. Our 

considerations focus on the central part of the measurement module (along its height) so that the 
physical phenomena on the side edges do not affect thermodynamic parameters within the 
investigated segment, Fig 1. Further in this work the subscript is used to denote the parameters 
relating to: G - the protecting glass, F - the heating foil, L - the liquid and M - the minichannel. In the 
presented model the system is assumed to be in the steady state and temperature changes in the glass 
pane, heating foil and the liquid along the minichannel width are slight. Because Re <2000, the liquid 
flow was assumed to have a laminar character. Stationary two-dimensional temperatures of the glass 
pane TG and the heating foil TF satisfy the equations [11]  
 

02
 GT   for       GG y,Lx:Ry,xy,x   002                  (1)  

F

V
F

q
T




2   for      FGGF y,Lx:Ry,xy,x   02         (2)   

The following boundary conditions were adopted at the foil � glass interface    
 

    mpGmpGGmpF T,xT,xT      for    mp = 1,2,...,MP                                 (3) 

    GGGF ,xT,xT        for   0 < x < L                                            (4)  

y

T

y

T G
G

F
F









     for = G  i  0 < x < L                                  (5) 
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Insulation was provided on the remaining boundaries of the protecting glass and the heating foil 
(except the boundary at the foil� liquid interface). The liquid temperature TL in L , where 

 

           MFGFGL y,Lx:Ry,x   02                              (6) 

is calculated in different ways depending on whether in the minichannel the predominant flow is that 
of a single phase convection with boiling incipience or that of two-phase convection and extended 
bubbly and bubbly-slug boiling [4]. The former will be referred to as the single-phase flow with 
boiling incipience, the latter simply as the two-phase flow.   
It is assumed that for the single-phase flow, when the void fraction is very low, liquid temperature TL  
changes linearly from the minichannel inlet temperature Tin to the outlet temperature Tout 
 

  x
L

TT
Ty,xT inout

inL


                                                          (7) 

When the bubbly or bubbly-slug boiling occurs in the considerable part of the minichannel, we 
assume, after [1,4] that 
1. the liquid flow is laminar and stationary with a constant mass flux density; 
2. the velocity of the liquid has only one component wx parallel to the heating surface  
 

       FGMFGMFGx yy
H

p
yw 




 22

2
2                        (8) 

3. the liquid temperatures at the inlet and outlet are known and equal to  
 

                  inL Ty,T 0   for   MFGFG y                                        (9) 

   outL Ty,LT     for   MFGFG y                                     (10) 

4. the liquid temperature in the contact with the heating foil satisfies the following condition  
 

 
     

     








xT,xT,xT

xT,xT,,xT
,xT

satFGFsat

satFGFFGF

FGL





if

if
                     (11) 

where Tsat is the saturation temperature dependent on the pressure p(x);    
5. the two-phase mixture per unit volume in the minichannel contains vapor phase and liquid phase in 
proportion  and (1�), respectively. We assume that the same proportions of vapor and liquid phases 
refer to any cross-sectional area of the minichannel and then to the heat exchange surface. For bubbly 
and bubbly-slug flows, following [1,4], we assume that the whole heat flux generated in the foil is 
transferred to the liquid phase in proportion carried over from the void fraction    
 

  
y

T
x

y

T F
F

L
L









 1         for  FGy    and  Lx 0     (12) 

Based on the adopted assumptions, the energy equation written only for the liquid phase takes the 
form 
 

   
x

T
cywT L

LLxLL



  2            for         Ly,x                       (13) 
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where domain L is given by (6). Where the heating foil temperature distribution and the gradient are 

known, the heat transfer coefficient  x  at the foil-liquid interface can be determined using the Robin 

boundary condition 

          1





 xT,xT,x

y

T
x aveFGFFG

F
F   (14) 

where T ave  is the reference temperature described further by (7) or equation 
 

 
 

 
















FEMTforT

method Trefftzfor
1

x

dyy,xT

xT

sat

L

T
ave

TFG

FG




                                (15) 

The thickness of the thermal layer T in (16) is determined from the equation [1] 

 

 h

.

T Pr  330  (16) 

where hydraulic layer h  is computed as in [5]. 

3 Numerical Methods 

To calculate two-dimensional temperature distributions of the glass pane and the heating foil, Trefftz 
functions for the Laplace equation (1) were used. Numerical computations were performed using two 
methods: the Trefftz method and the FEM with the Trefftz functions as shape functions (FEMT).   
In addition, the temperature of the liquid for the two-phase flow was determined using the Trefftz 
functions appropriate for the equation of energy (13) and described in [4].   

3.1 Trefftz method 

In this approach the unknown temperatures of the protecting glass TG and the heating foil TF  

are approximated with a linear combination of Trefftz functions ui (x,y)  for equation (1), [11], that is  
 

   



M

i

iiG y,xuay,xT
1

                                                 (17) 

     



N

j

jjF y,xuby,xu~y,xT
1

                                        (18) 

where function   y,xu~  is the particular solution to equation (2) . For the single-phase flow with 

boiling incipience, the liquid temperature along the minichannel is assumed to change linearly, 
according to (7). For the two-phase flow, the liquid temperature TL satisfies equation (13). Then, the 
liquid temperature TL is approximated with a linear combination of the Trefftz functions  y,xk  for 

equation (13) 
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K

k

kkL y,xdy,xT
1

                                                  (19) 

Unknown coefficients ai , bj , dk for i = 1,..., M,  j = 1, ..., N,  k= 1,..., K  are determined using the least 
squares method. This leads to the minimization of the functionals for each of the functions, TG, TF and 
TL. These functionals describe the mean squared error between the approximations and the prescribed 
boundary conditions. When the Trefftz method is used, the temperature of the protecting glass TG is 
approximated first, followed by the approximation of the heating foil temperature TF, and the liquid 
temperature TL , [4,5,11]. 

3.2 The FEM with Trefftz functions (FEMT)  

In this section the Trefftz functions for Laplace equation will serve the purpose of developing new 
functions of shape in the finite elements method (FEM). Using FEMT: 
 we may solve problems in domains of complex shape and 
 significantly reduce the number of the Trefftz functions used to approximate the solution in the 

subdomains as compared to method presented in subchapter 3.1; 
 we may adjust the layout of the nodes in the elements to the given values of temperature 

measurements and, thus exactly satisfy boundary condition (3); 
 only the integrals at the edges of the elements are calculated. 
In the presented approach shape functions were generated with a use of the Trefftz functions and  the 
Lagrange interpolation [7]. This method is a generalization of the method described in [2]. Both 
problems in the protecting glass and the heating foil were solved with FEMT as in [3,10]. 

In order to calculate TF and TG , domains G , F are divided into rectangular elements j

G  for 

GK,,,j 21  and 
j

F  for FK,,,j 21 , where  

 

  FGGMPF y,xxx:Ry,x   1
2                            (20) 

In (20) 1x  is the coordinate of the first measurement point on the boundary Gy   and MPx  the 

coordinate of the last measurement point. In each element the coordinates of the nodes are determined 
and then functions of shape fjk(x,y) are developed in the form of linear combinations of the Trefftz 

functions. The functions of shape in nodes  ii y,x  of elements j

G  and 
j

F  have the following 

property 

  kiiijk y,xf   ,     nn,,,i 21                                     (21) 

where: ki  denotes the Kronecker delta, j � number of elements, k � number of basis function in  j-th 

element, nn � number of nodes in the element. The temperature approximation of the protecting glass 

in each element j

G  is presented in the form of a linear combination of the basis functions fjk(x,y) 

    yxfTyxT
n

k

jk

n

G

j

G ,,
1



  (22) 

where: n � number of node in the entire  domain  G , n

G
T  �  sought-for temperature value  in the n-th 

node of  domain G . Indexes j, k, nn denote the same as in (21). Unknown coefficients n

G
T  of linear 
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combination (22) are calculated by minimizing the functional that expresses a mean square error of 
the approximate solution on the boundary as well the difference the approximate temperature and the 
normal derivatives of approximants on the borders of the neighboring elements. The temperature of 
the heating foil is calculated analogously. 
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Figure 2: a) Temperature measurements depending on the distance from the inlet to the minichannel 

obtained through liquid crystal thermography. Experimental data: Reynolds number 867, 
mass flux 286 kg/(m2s), pressure at the inlet 122 kPa,  qV = 8.57104

1.32105 kW/m3,   
b) Temperature measurements dependent on the distance from the inlet to the minichannel, smoothed 

with the Trefftz functions.  

4 Results 

Numerical calculations were performed for the data obtained from the experiments described in [9] 
(for a single phase flow)  and in [6] (for a two phase flow). Those experiments pertained to the forced 
flow of FC-72 in the asymmetrically heated minichannel. The boiling occurred on a flat vertical 
heating surface made of Haynes-230 acid-resistant rolled plate. Liquid crystal thermography helped 
calculate the temperature of the foil in contact with the glass pane. The glass pane isolating the 
minichannel helped observe the flow structure and determine the void fraction in the manner described 
by [6]. Other measured values included the temperature of FC-72 at the inlet and outlet of the 
minichannel, flow velocity, pressure at the minichannel inlet and outlet, voltage drop and the electrical 
current supplied to the foil. Both methods described in 3.1 and 3.2 involve computing the temperature 
of the protecting glass prior to computing the temperature of the heating foil. The temperature of the 
liquid for the two-phase flow is calculated by solving consecutive heat transfer inverse problem when 
the Trefftz method is used. 

4.1 Results of calculations for a single phase flow with boiling incipience 

A 360 mm long minichannel, which is 40 mm wide and 1 mm deep constitutes the main part of the 
experimental set-up. A heating foil used in the experiment was enhanced on one side with unevenly 
distributed minirecesses of less than 1 ìm on average [9]. The focus was placed on the data related to 

the nucleate boiling incipience in a minichannel. It was assumed that the boiling incipience starts at 
the point at which the highest temperature of the heating surface was recorded, at the constant heat 
flux, after which the temperature falls rapidly. The heat flux supplied to the heating surface was 
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changed gradually in each series. Numerical results were obtained for the experimental data in Fig. 2. 
First the measurement data were approximated using a linear combination of the Trefftz functions  
ui (x,y), as in [3]. 
Figure. 3 summarizes temperature measurement results for the foil and the temperature distributions 
of the protecting glass and the heating foil obtained using the Trefftz method. On boundary y= G 
condition (3) is not fulfilled exactly but the maximum mean squared error calculated for (3) does not 
exceed 1K. Analogous two-dimensional temperature distribution of the protecting glass and the 
heating foil was obtained for the FEMT.  It has to be emphasized that in the FEMT condition (3) is 
fulfilled exactly. 
The heat transfer coefficient takes on similar values and has the same plot in both methods:  
it decreases along the minichannel length and rises rapidly with the boiling incipience, Fig. 4.  
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Figure 3: Temperature for setting #5: a) foil (TF), b) glass (TG), obtained with the classical Trefftz 
method, c) measurement temperature (Tmp); d) temperature scale. 
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Figure 4: Heat transfer coefficient as a function of distance from the inlet to the minichannel calculated 

with: a) Trefftz method, b) FEMT. 

4.2 Results of calculations for the two-phase flow 

Numerical calculations were performed for the data presented in Fig. 5 and obtained from the 
experiments described [6]. In the vertical minichannel, 360 mm long, 20 mm wide and 1 mm deep,  
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a smooth heating foil was used. The void fraction calculated in [6] from the minichannel inlet was 
approximated by a quadratic function, Fig. 5.   
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Figure 5: a) Temperature measurements dependent on the distance from the inlet to the minichannel, 
smoothed with the Trefftz functions, b) void fraction. Experimental data: Reynolds number 1426, mass 

flux 569 kg/(m2s), pressure at the inlet 126 kPa,  qV = 9105
1.14106 kW/m3. 

 
Figure 6 presents the two-dimensional distribution of liquid and foil temperature calculated with the 
Trefftz method. The temperature distribution of liquid, foil and saturation at the foil-liquid interface 
allowed the comparison of how the calculated temperature satisfied condition (11). The drop in the 
pressure along the minichannel caused a drop in the saturation and liquid temperatures. Figure 6 
indicates the apparent effect of the assumed velocity profile (8) on the liquid temperature distribution. 
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Figure 6: Temperature for setting #3: a) foil, b) liquid obtained with the Trefftz method, c) saturation. 

 
Figure 7 summarizes the changes in heat transfer coefficient as a function of the distance from the 
minichannel inlet, calculated using the Trefftz method (Fig.7a) and the FEMT (Fig.7b). Heat transfer 
coefficients calculated using the FEMT have higher values than those calculated with the Trefftz 
method. The different plot of the heat transfer coefficient, Fig 7a) and Fig 7b), is a result of using  
a different method of determining the temperature of the liquid at the foil-liquid interface, eq. (15). 
For the FEMT, the liquid temperature has the plot similar to that of a linear function, Fig. 6c). Trefftz 
method-based calculations of the liquid temperature show values lower at first and then higher than 
the saturation temperature, Fig 6b). The maximum relative differences between the heat transfer 
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coefficient obtained using the Trefftz method and the heat transfer coefficients obtained with the use 
of the FEMT were calculated from the formula  
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Figure 7: Heat transfer coefficient as a function of the minichannel height calculated by:  

a) Trefftz method, b) FEMT,  for the data from Fig. 5.  
 
Then  x1 denotes the heat transfer coefficient obtained with the Trefftz method and  x2  the heat 

transfer coefficient obtained with the FEMT.  The results of the calculations are shown in Fig.8.  
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Figure 8. Maximum relative differences (23) calculated for: a) single-phase flow, b) two-phase flow. 

5 Conclusions 

The presented methods were applied to solve direct and inverse heat transfer problems in flow boiling 
in a vertical minichannel. These methods are suitable for determining two-dimensional temperature 
distributions in adjacent domains (protecting glass and heating foil). The two-dimensional liquid 
temperature distribution in the two-phase flow was calculated with the Trefftz method. Knowledge of 
the temperature of the heating foil and the liquid at the foil-liquid interface helped calculate the heat 
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transfer coefficient. Compared with the classical Trefftz method, the application of the FEMT method 
allowed making calculations using fewer Trefftz functions without compromising the accuracy of the 
results. In the FEMT, by placing the temperature measurements in the nodes of the finite elements all 
boundary conditions related to these measurements are satisfied exactly. 
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Abstract
This paper studies electrical impedance tomography (EIT) using Bayesian inference [1]. The resulting
posterior distribution is sampled by Markov chain Monte Carlo (MCMC) [2]. This paper studies a toy
model of EIT as in [3], and focuses on efficient MCMC sampling for this model.

First, this paper analyses the computation of forward map of EIT which is the bottleneck of each
MCMC update. The forward map is computed by the finite element method [4]. Here its exact compu-
tation has been made up to five times more efficient, by updating the Cholesky factor of the stiffness
matrix [5]. Since the forward map computation takes up nearly all the cpu-time in each MCMC update,
the overall efficiency of MCMC algorithms can be improved almost to the same amount. The forward
map can also be computed approximately by local linearisation, and this approximate computation is
much more efficient than the exact one. Without loss of efficiency, this approximate computation has
been made more accurate here, after a log-transformation has been introduced into the local linearisation
process. Later on, this improvement of accuracy will play an important role when the approximate
computation of forward map has been employed for devising efficient MCMC algorithms.

Second, the paper presents two novel MCMC algorithms for sampling the posterior distribution
in the toy model of EIT. The two algorithms are made within the ‘multiple prior update’ [6] and
the ‘delayed-acceptance Metropolis-Hastings’ [7] schemes respectively. Both of them have MCMC
proposals that are made of localized updates, so that the forward map computation in each MCMC
update can be made efficient by updating the Cholesky factor of the stiffness matrix. The algorithms’
performances are both compared to that of the standard single site Metropolis [8], which is considered
hard to surpass [3]. The algorithm of ‘multiple prior update’ is found to be six times more efficient; while
the delayed-acceptance Metropolis-Hastings with single site update is at least twice more efficient.

ICIPE2014 8th International Conference on Inverse Problems in Engineering, May 12–15, 2014, Poland
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1 Introduction

Electrical impedance tomography (ETI) concerns inferring the distribution of electrical property over a
body, with measurement of voltage and current on the boundary of the body [9]. EIT has many applica-
tions in various fields, and has been extensively studied during the past years [10].

This paper discusses the reconstruction problem of EIT using Bayesian inference with MCMC. The
Bayesian approach to EIT was pioneered by [1, 6]. The Bayesian approach results in a posterior proba-
bility distribution about the unknown electrical distribution. With samples of this distribution, we can not
only estimate the unknown electrical distribution, but also quantify the error of this estimate. Drawing
samples from this posterior distribution is however a non-trivial task and has to rely on the Markov chain
Monte Carlo (MCMC) method [2]. Though many MCMC algorithms work for sampling this posterior
distribution, few are efficient enough for practical use [3]. In [3], performance of various MCMC algo-
rithms are compared on sampling a posterior distribution for a toy EIT model. They concluded that the
classical single-site Metropolis [8] is actually hard to beat for this application, and more efficient MCMC
algorithms are required in order for the Bayesian approach to EIT to be used in practice.

This study follows the work in [3], and focuses on efficient MCMC sampling for EIT. We speed up the
computation in each MCMC update by updating the Cholesky factor of stiffness matrix in successive
calls to the forward map of EIT. We also employ two variants of Metrpolis-Hastings schemes[11], to
make novel and efficient MCMC algorithms. The paper is organized as follow. In section 2, we intro-
duce the toy EIT model that this paper focuses on, the posterior probability distribution resulting from
the Bayesian approach to this EIT model. MCMC algorithms will be employed for sampling this dis-
tribution. In section 3, we speed up the computation of a successive calls to the forward map of EIT
in the context of MCMC. This is done by updating the Cholesky factor of the stiffness matrix in the
finite element formulation. We also make local linearisation of forward map more accurate, by introduc-
ing a log-transformation into this process. In section 4, two novel and efficient MCMC algorithms have
been proposed and employed for sampling the posterior distribution in our toy EIT model. Finally, we
conclude the findings and discuss the future work.

2 A toy model of EIT

The EIT model discussed in this paper is shown in Figure 1. In this figure, phantom conductivity x is
distributed over a square region Ω. Assuming that the region is divided into a 24 × 24 grid of squares,
the true conductivity is constant on each square, and is either three (white colour in the figure) or four
(black colour in the figure) in some arbitrary unit. To infer this conductivity distribution, sixteen point
electrodes, numbered 1-16, have been evenly placed on the boundary ∂Ω of the region. Current is in-
jected through one of these electrodes and extracted uniformly through the boundary ∂Ω. The resulting
voltage at all of the electrodes are measured. This procedure is then repeated for sixteen times, with each
electrode being the injector of current for once. In the end, sixteen sets of measured voltages at all the
electrodes are obtained, and they are denoted as uE .

The measured voltages uE at all the electrodes depend on the conductivity distribution x over the region.
This dependence uE(x) is the forward map of EIT, given that the injected current is of a fixed pattern.
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Figure 1: The toy EIT model. Phantom conductivity is distributed over a square region. White and black
represent conductivity to be three and four in some unit. Sixteen point electrodes denoted as 1,2,. . . 16,
are evenly placed on the boundary of the region. Through these electrodes current are injected and the
resulting voltages are measured.

Evaluating uE(x) for some x involves solving the following boundary value problem (BVP):

−∇ · (x(s)∇u(s)) = 0 s ∈ Ω, (1a)

−x(s)
∂u

∂n
(s) = j(s) s ∈ ∂Ω, (1b)

∫

∂Ω
j(s)ds = 0, (1c)

∫

∂Ω
u(s)ds = 0. (1d)

u(s) denotes the potential at spatial point s. (1d) represents a way of selecting the potential reference
that ensure the solution of this BVP is unique. j(s) is the current pattern through the boundary ∂Ω of the
region. j(s) has to satisfy (1c) because of the current conservation. In this study, j(s) = δ(s − ek) −
1/|∂Ω|. δ(s − ek) is a dirac delta function. ek denotes the location of the k-th point electrode on the
boundary ∂Ω. |∂Ω| is the length of the boundary. For a conductivity distribution x, we solve this BVP
for u(s) which contains uE . This BVP is solved by the finite element method (FEM). In FEM, the region
has been divided into 24×24 squares. So the conductivity x is of 24×24 components. It is undetermined
to infer x with only 16× 15 measurements. However, the Bayesian approach can overcome this issue by
introducing a prior distribution for x.

In the Bayesian approach to our EIT model, the conductivity x is considered to be random. As in [3], an
example of the posterior distribution resulting from the Bayesian approach to this model could be:

π(x|unoise
E ) ∝ exp



β

∑

i∼j
v(xi − xj)



 I[2.5,4.5]n(x) · exp

{
− 1

2ς2
‖unoise

E − uE(x)‖2
}
. (2)

Here i ∼ j is defined to be a horizontal or vertical nearest neighbour as said in [3]. v(·) is the tricube
function of [12]:

v(t) =

{
1
s0

(
1− |t/s0|3

)3
, if |t| < s0,

0, otherwise,
(3)
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and I[2.5,4.5]n(x) is an indicator function restraining every component of x to be within the range
[2.5, 4.5]. n = 242 because x is a n-dimensional vector. unoise

E is the voltage measured at the elec-
trodes that is contaminated with additive noise. ς is the level of noise. β is a regularization parameter.
Here it is set to be 0.5 as in [3]. Samples from this posterior distribution can be used to produce estimate
for the unknown conductivity distribution. To draw samples from this distribution, the MCMC method
is employed.

3 Forward map computation

3.1 Exact computation

As said in section 2, evaluating the forward map uE(x) consists of solving the BVP (1) using the FEM
[4]. The FEM results in a sparse and positive system of linear equations:

Ku = f. (4)

Its solution is the potential u over the region that certainly contains uE(x). In (4), the stiffness matrix K
depends on the conductivity x as follows:

K =
n∑

i=1

xiKi + λccT . (5)

Here Ki for i = 1, 2 . . . , n are all sparse and symmetric matrices. They are all built on the same local
stiffness matrix, and only depend on the geometry of the mesh and the element function employed. c is a
n-dimensional column vector with its components either 0 or 1. For each i with 1 ≤ i ≤ n, ci = 1 if xi is
on the boundary of the region. Otherwise ci = 0. λccT is a penalty term that corresponds to the potential
reference (1d). f only depends on the current j through the boundary of the region. In this study, the
direct method from [13] is employed for the solution of this system.

In MCMC for EIT, forward map uE(x) has to be evaluated for a series of {x(i)}. Normally, the stiffness
matrix is formed for each x(i), then the resulting sparse system is solved by the Cholesky factorization. In
this study, we obtain the Cholesky factor of the stiffness matrix Ki+1 for x(i+1) by modifying on that of
xi as said in [5]. Suppose that x(i+1) differs from x(i) at only its k-th component, and x(i+1)

k −x(i)
k = δx.

Then
K(i+1) = K(i) + δxKk, (6)

according to (5). Recall that Kk is sparse, symmetric and of low rank. So (6) can be written as

K(i+1) = K(i) ± CCT . (7)

for some suitable C. Equation (7) indicates that the method in [5] can be employed to find the Cholesky
factor ofK(i+1) based on that ofK(i). When x(i+1) differs from x(i) at more than one component, x(i+1)

can be obtained from a series of successive one-component updates on x(i). Hence the Cholesky factor
of K(i+1) can be obtained from a series of updates on that of K(i).

Efficiency of our updating Cholesky factor method was measured on the toy EIT model (figure 1). In
FEM, the region was discretized into 24 × 24 grid of equal size. Bilinear rectangular element was em-
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ployed, and the resulting local stiffness matrix was

K4 =
1

3




2 −0.5 −1 −0.5

−0.5 2 −0.5 −1

−1 −0.5 2 −0.5

−0.5 −1 −0.5 2


 .

Given that uE(x) had been computed, uE(x + ∆x) was calculated by our updating Choleksy factor
method as well as in the standard way. All the computation was carried out in MATLAB, and the CPU-
time was recorded with the ‘profile’ command. According to the record, updating Cholesky factor method
was found to be about five more efficient than the standard method, when ∆x had only one non-zero
component. The updating Cholesky factor method could still be four and three times more efficient when
the non-zero component of ∆x was two and four. As ∆x had more non-zero components, updating
Cholesky factor method got less efficient.

3.2 Approximate computation

In MCMC for EIT, the forward map of EIT is sometimes computed approximately with local lineari-
sation. Approximate computation of forward map can be used to make efficient MCMC algorithms,
because it is much cheaper than the exact computation. The approximation of forward map has to be
as accurate as possible, in order for MCMC algorithms involving it to achieve maximum efficiency. Be-
cause of this, we modify the ordinary approximation of forward map with local linearisation, and make
it more accurate.

Normally, the approximation for uE(x+ ∆x) with local linearisation at x is

u∗E(x+ ∆x) ≡ uE(x) +
∂uE
∂x

∣∣∣∣
x

∆x. (8)

Here ∂uE/∂x is the Jacobian of forward map. Computing u∗E(x + ∆x) is well known to be much
faster than uE(x+ ∆x). In this study, a new approximation is made by introducing a log-transformation
into (8). Define ρ(x) = log x and ûE(ρ(x)) = uE(x). Let ∆ρ = log(x + ∆x) − log(x) so that
uE(x+ ∆x) = ûE(ρ+ ∆ρ). Then

û∗E(ρ+ ∆ρ) ≡ ûE(ρ) +
∂ûE
∂ρ

∣∣∣∣
ρ

∆ρ (9)

is our new approximation to uE(x+ ∆x).

The accuracy of the two approximations (8) and (9) was compared on our toy model (1), in terms of the
log-likelihood term: L(x+ ∆x) = − 1

2ς2
‖unoise

E −uE(x+ ∆x)‖2. The approximated log-likelihood term
L∗(x+ ∆x) = − 1

2ς2
‖unoise

E − u̇∗E(x+ ∆x)‖2 was computed with u̇∗E(x+ ∆x) being û∗E(x+ ∆x) and
u∗E(x + ∆x), respectively. The error ∆L = ‖L∗(x + ∆x) − L(x + ∆x)‖ of approximated likelihood
term, associated with approximation (8) and (9) was then compared.

In practice, ∆L was computed for each ∆x = (ξ, ξ, · · · , ξ) with ξ taking various values around zero.
∆L was plotted against ξ in figure 2. In this figure, the dashed and continuous curves correspond to
the ordinary local linearisation (8) and the local linearisation with log-transformation (9). As seen, the
continuous curve is always well below the dashed one. This indicates that our approximation (9) is more
accurate.
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Figure 2: Error ∆L of approximated log-likelihood based on two approximations of forward map uE(x+

∆x) when ∆x = (ξ, ξ, · · · , ξ). The continuous and dashed curves correspond to the local linearisation
with and without log-transformation, respectively.

4 Novel MCMC algorithms

4.1 Multiple prior block update

Our first novel MCMC algorithm is made in the ‘multiple prior updates, likelihood acceptance ratio’
scheme [6]. This scheme is a special case of the surrogate transition method [2]. Assume π(x) =

πp(x)πl(x) is the target distribution to be sampled. The multiple prior update scheme is the surrogate
transition method with πp(x) as its global approximation π∗(x) of π(x). Assume that the surrogate
Markov chain begins with state x and ends with state y. S(x, y) is the transition function from x to y.
Then the probability for the state y to be accepted in the main Markov chain converging to π(x) is

min

{
1,
π(y)S(y, x)

π(x)S(x, y)

}
= min

{
1,
πp(y)πl(y)S(y, x)

πp(x)πl(x)S(x, y)

}
= min

{
1,
πl(y)

πl(x)

}
. (10)

The second equation in (10) is because

πp(y)S(y, x) = πp(x)S(x, y). (11)

i.e. the surrogate chain is a reversible Markov chain converging to πp. Equation (10) indicates that the
proposal y almost always gets accepted when πl(y) ≈ πl(x).

In this study, the update in the surrogate Markov chain is made on a block of neighboring components
altogether, as suggested by [14]. However, the block update here leaves the mean value of state variable
invariant. Assume that x and x′ are the current and proposal state, respectively. The indices for all the
components in the i-th block is bi =

(
bi1, b

i
2, · · · , bim

)
. The update at this i-th block is:

x′bi = xbi + (Im − a · at)ε. (12)

Here xbi and x′
bi

are the components of current and proposal state that are in the i-th block, respectively.
ε ∼ N(0, σ2Im) and a = (1/

√
m, 1/

√
m, · · · , 1/√m). As seen (Im − a · at)ε has zero mean, so x′

and x has the same mean value. Since x and x′ also differs from each other at only few neighbouring
components, uE(x) ≈ uE(x′). Hence πl(x) ≈ πl(x

′). So proposal x′ will very likely get accepted
according to (10).

In practice, the multiple prior block update is mixed with single-site Metropolis ([8]) when sampling the
posterior distribution (2). The block update (12) maintains the mean value of the state variable, and the
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Figure 3: Traces of three representative pixels from Markov chains updated by multiple prior block
update and Single-site Metropolis.

Markov chain updated by this proposal alone is reducible. After Inclusion with single-site update, the
Markov chain will be desirably irreducible [2]. In practice, 90% of the moves in this mixture are the
multiple prior update, so that this mixture update inherit most of its characteristic. The block was chosen
at random at a time, and blocks can overlap with each other. This algorithm based on the 2×2 block was
found to perform the best. The optimal update in the surrogate chain was found to be about ten.

The performance of our multiple prior block update is compared with that of the single-site Metropolis
[8]. As in [3], figure 3 shows the traces of three representative pixels in the conductivity image from
these two algorithms. As seen, the three pixels mixed much better in our multiple prior block update.
This indicates that our multiple prior block update performs much better. The two algorithms are also
compared in terms of the mixing property of the middle curve in the three representative pixels. As said
in [3], the middle pixel is on the boundary of conductivity image, and transverse from low to high value
during the MCMC run. Its mixing property is an extremely important indicator for the performance of
MCMC algorithm.

In case of multiple prior block update, it took 10 × 10 ×m updates for the auto-correlation of the blue
pixel to go down to 10%; while it took 10 times more updates in case of single-site Metropolis. On the
other hand, the CPU-time for one Multiple Prior block update is about 1.7 times more than that of single-
site update. Overall, the multiple prior block update is about 10/1.7 ≈ 6 times more efficient than the
single-site Metropolis.

4.2 Delayed Acceptance Metropolis-Hastings

Our second efficient MCMC algorithm is made within the Delayed Acceptance Metropolis-Hastings
(DAMH) scheme [7]. As the surrogate transition method, the DAMH also uses an auxiliary probability
distribution to make the proposal move. The auxiliary distribution in DAMH, however can be a state-
dependent approximation of the target distribution. This makes DAMH distinctive.

Assume that π(.) is the target distribution to be sampled. The Markov chain to be designed to converge
to π is currently at the state x. Depending on x, π∗x(.) is an approximation of π(.). With the terminology
from [2], assume that T1(x, y) is an initial transition function for the Markov chain.

In Metropolis-Hastings (M-H) scheme [11], the proposal y 6= x from T1(x, y) has to be tested, in order
to be accepted as the state for the next step. The test involves an acceptance probability α and is: draw a
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sample from r ∼ U(0, 1). If r < α, accept the proposal. Otherwise, reject the proposal and the current
state remains to be the state of the next step.

In DAMH, the proposal y has to be subject to two steps of the above tests, in order to become the state
for the next step. The two acceptance probabilities in the two tests are

α1 = min

{
1,
T1(y, x)π∗x(y)

T1(x, y)π∗x(x)

}
, and α2 = min

{
1,
T2(y, x)π(y)

T2(x, y)π(x)

}
, (13)

respectively. Here

T2(x, y) = T1(x, y) min

{
1,
T1(y, x)π∗x(y)

T1(x, y)π∗x(x)

}
, y 6= x. (14)

The actual transition function based on the initial transition function T1(x, y) is:

A(x, y) = T1(x, y) min

{
1,
T1(y, x)π∗x(y)

T1(x, y)π∗x(x)

}

︸ ︷︷ ︸
stepI

min

{
1,
T2(y, x)π(y)

T2(x, y)π(x)

}

︸ ︷︷ ︸
stepII

, y 6= x. (15)

Assume that

π∗x(y)

π∗x(x)
≈ π(y)

π(x)
(16)

for all x and y that are close to each other. Then

α1 ≈ min

{
1,
T1(y, x)π(y)

T1(x, y)π(x)

}
, α2 ≈ 1. (17)

Equation (17) indicates that the acceptance probability in the first step of DAMH is approximately the
same as the that of M-H given the same initial transition function. The actual transition function in
DAMH is effectively almost the same as that of M-H given the same initial transition function. In other
words, DAMH produces almost the same amount of statistically independent samples as M-H given the
same initial transition function.

When the target distribution π(.) = π(.|unoise
E ) in (2), a candidate of π∗x(.) is

π∗x(z|uE) ∝ exp



β

∑

i∼j
v(zi − zj)



 I[2.5,4.5]n(z) · exp

{
− 1

2ς2
‖unoise

E − u∗E(z)‖2
}
. (18)

Here u∗E(z) is the local linearisation of the forward map at state x, as discussed in subsection 3.2. Ap-
parently, (18) satisfies the assumptions (16). What’s more, evaluating π∗x(y)/π∗x(x) has negligible cost
compared to that of π(y)/π(x). When computing π(y)/π(x) takes up almost all the CPU-time for each
update in MH and DAMH, the average CPU-time for each DAMH update is α1 times that of M-H given
the same initial transition function. This is because π(.) is only required to be evaluated α1 times on
average in each DAMH update; but every time in each M-H update. In DAMH, evaluating π(.) only
happens in computing α2, which is only required when the proposal gets accepted in the first step. Recall
that α1 is the probability for the proposal to get accepted in the first step. Therefore, π(.) is computed
α1 times on average in each DAMH update. Overall, the same initial transition function in DAMH is
expected to be 1/α1 times more efficient than in M-H.

In this study, DAMH with single site update was discussed for sampling the posterior distribution (2) of
interest.
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Figure 4: Empirical acceptance rates in the second step of DAMH with two approximations of forward
maps.
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Figure 5: Empirical acceptance rate at every sites in DAMH with single-site update and single-site
Metropolis.

First, our DAMH algorithm used two different approximations of forward map, as discussed in subsection
3.2. The performance of the DAMH with these two approximations was then compared. Figure 4 shows
the empirical acceptance rate at the second step of DAMH for the two approximations of forward map.
As seen, the second step of DAMH is close to one as expected in case of approximation with log-
transformation; while it is well below one in case of approximation with ordinary local linearisation.
Therefore, approximated forward map with log-transformation is a better approximation and enables the
DAMH algorithm to perform better.

Second, DAMH with single-site update and single-site Metropolis (single site update in M-H) are com-
pared on sampling the posterior distribution (2) of interest. Figure 5 shows the empirical acceptance rates
at every sites for these two algorithms: As seen, the acceptance rates at the second step of DAMH are all
close to 100%; while the ones in the first step of DAMH are all close to the acceptance rate of single-site
Metropolis (single-site update in M-H). This finding indicates that the DAMH with single-site update has
achieved the expected performance. In other words, single site update is about two times more efficient
in DAMH than in M-H.

5 Conclusion

In section 3, we speed up the exact computation of forward map of EIT, by updating the Cholesky factor
of the stiffness matrix [5]. As regard to the toy EIT model, our updating Choleksy factor method can be
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as many as five times more efficient than the standard computation. We also make the approximation of
forward map with local linearisation more accurate, by introducing a log-transformation into this process.

In section 4, we present two novel and efficient MCMC algorithms that perform much better than the
single-site Metropolis for sampling a posterior distribution of our toy EIT model. One algorithm is made
within the multiple prior update scheme. The surrogate chain in this scheme is updated by the constrained
block update that leaves the mean value of state variable invariant. This multiple block update was found
to be six times more efficient than the standard single-site Metropolis. The other MCMC algorithm is
DAMH with single-site update. This algorithm was found two times more efficient than the standard
single-site Metropolis.

As in [3], this study discusses MCMC sampling for a posterior distribution in the Bayesian approach to
EIT. This study equipped single-site Metropolis with efficient forward map solver, on condition that the
sparse system involved is solved by the direct method. We also present two novel and efficient MCMC
algorithms that are more efficient than single-site Metropolis, which is considered hard to surpass [3].

On the other hand, the sparse system in the forward map computation of EIT is solved by the direct
method in this paper. As EIT model gets larger and more practical, the resulting sparse system will
get larger, and the iterative method will be more suitable. Therefore, it is important to study efficient
computation forward map of EIT with iterative method for the sparse system. What’s more, the proposal
move in our efficient MCMC algorithms are still limited to a few components update. Future work should
also focus on devising efficient MCMC algorithms with multi-variant update.
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Abstract 

The determination of the temperature fields in a welded region has always been an obstacle to the 

improvement of welding processes. As an alternative, the use of inverse problems to determine the 

heat flux during the welding process allows a new analysis of the case. This article studies an 

alternative for the thermal analysis of the TIG (Tungsten Inert Gas) welding process on a 6065 T5 

aluminum alloy. For this purpose, a C++ code was developed, based on a transient three-dimensional 

heat transfer model. To estimate the amount of heat delivered to the plate, the Specification Function 

technique was used. Moreover, an analysis of the duration time of the electrode in positive (t+) and 

negative (t-) polarities was carried out. The methodology was validated by accomplishing lab 

controlled experiments. The aluminum samples lay on four conical head screws and submitted to a 

heat flux on a surface by the TIG process torch. The torch displaces in the length of the sample thus 

simulating a real process. All the temperature sensors were fixed by capacitive discharge on the same 

surface and on the opposite heated surface. Type K thermocouples were used to obtain the 

temperatures by using HP 75000 B data acquisition system (DAS) connected to a computer. The 

numerical results presented low deviation when compared to the experimental results, which in turn 

confirms the validation of the methodology for the study of the welding process presented. 

1 Introduction 

In metal welding, it is very hard to directly measure the heat flux applied to the welded joint during the 

process as the heat flux supplied by the voltaic arch displays a very high thermal gradient. However, 

the calculation of the transferred heat is fundamental to determine the thermal efficiency of the 

process. Thus, the development of a methodology is necessary to determine the parameters that 

represent the optimal welding process, for example, what current and what speed the torch moves are 

necessary to control the temperature of the material. The analysis of the welded joints may be carried 

out for example, by studying the influence of the mechanical properties. In [1] the authors utilized an 

aeronautic aluminum alloy AA7075-T6 submitted to welding by friction. After the load tests, the 

authors observed the presence of small deflection in the micro structure and a uniform distribution of 
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MgZn2 precipitate particles which are highly important for the uniformity of the tension on the welded 

joint. Other welding processes have been studied concerning the structural analysis of the welding. 

Aluminum fusion was analysed by [2] in a laser welding process. For this purpose, the authors used 

several laser welding processes. In this analysis, the hybrid laser MAG (Metal Active Gas) was 

observed to have presented better results in relation to other processes. In [3] two aluminum plates 

AA6061-T6 were welded with the aim of analysing the effect of the GMAW - Gas Metal Arc Welding 

process on the mechanical properties of the aluminum. In this analysis, the differences between the 

theoretical and the experimental model were 8%. It was also observed that the welding behaviour is 

directly influenced by the amount of heat supplied to the base material in the diverse regions.  

An alternative methodology for the analysis of the welding process is the resolution through inverse 

problem. One of the first articles using inverse problems in heat transfer was presented by [4], where a 

method, known today as Stolz method, was presented to estimate the heat flux applied to the surface of 

spheres during the tempera process having as main data, the temperature inside the samples. This 

method can also be extended to cylinders and plates. Stolz considered that the thermophysical 

properties were constant and that there was no internal heat generation, therefore, the problem could be 

treated as linear; thus Duhamel equations may be used for the elaboration of the method. This method 

presents good results for a great number of easily implemented. Based on the minimum square method 

and also on the Duhamel’s model, [5] developed the sequential Specification Function method. This 

method presents stable results, not very influenced by experimental noises. In this method, the present 

heat flux is calculated by using previous fluxes. The posterior fluxes are considered to be null and a 

fictitious flux is assumed which may be constant, linear or quadratic under a certain number of future 

times. Another technique that may be used is the conjugated gradient method with adjoint equation 

[6]. This method is based on an optimization process with iterative regularization. Hence, the results of 

the minimization of the objective function tend to stabilize according to the number of iterations. This 

technique may also be used for the solution of linear and non-linear inverse problems as well as in 

parameter estimation problems [7]. The optimization method also called Broyden–Fletcher–Goldfarb–

Shanno or BFGS is also used [8]. This is a non-linear optimization method obtained from the variation 

of the Newton method. From this method, [8] estimated the parameters of a continuous emission laser 

which aims to correct sight disorders.  

[9] applied the optimization techniques and the enthalpy method to solve three-dimensional inverse 

problem in a TIG welding process. The authors estimated the heat flux based on the solution of a 

three-dimensional transient heat transfer with mobile source. The thermal field in the region of the 

plate or at any instant was determined from the estimation of the heat rate delivered to the piece. The 

direct problem was solved by the Finite Difference method with implicit formulation. For the solution 

of the algebraic equation system, the authors used the Successive Over Relaxation method (SOR) and 

the inverse problem resolution thorough the use of the Golden Section technique. The experimental 

temperatures were obtained from accessible points on the workpiece and the theoretical temperatures 

were calculated from three-dimensional thermal model. A non-linear inverse problem to estimate the 

heat in a welding process by friction [10]. The authors developed an algorithm, based on the 

conjugated gradient method and on the discrepancy principle. This methodology was used to estimate 

an unknown time dependent variable for the heat generation on the interface of the cylindrical bars 

during a welding process by friction. The temperature date were obtained from the direct problem and 

used to simulate the measurement of the temperature.  

The inverse technique proposed in this work is based on a three-dimensional transient heat conduction 

model with moving heat sources. The Specification Function, which is an inverse problem technique, 

was implemented in a program to estimate the heat flux applied on the workpiece, from the 

experimental temperature records. The thermal field in any region of the plate or any time are 

determined from the estimation of the heat rate that is delivered to the workpiece. In addition, a new 

procedure is proposed to solve any experimental problem that appears in the aluminium welding 

application. In this kind of welding, when the voltaic arc is on, a very high level noise appears in the 
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experimental data signals if thermocouples are used to measure temperatures. In this case, practical 

procedures like electrical protection with Faraday Gail, use of electrical filters or grounding did not 

overcome the problem. In order to avoid this problem, this work presents a new experimental 

procedure: the temperature measurements just after the voltaic arc is cut off. The use of the measured 

temperatures together with the inverse technique allows the determination of the rate of heating 

necessary for welding as well as identification of the temperature field on the plate. The theoretical 

temperatures are calculated from the heat diffusion equation, which is solved numerically in three-

dimensional Cartesian coordinates by using the Finite Volume Method for space and the implicit Euler 

method for time discretization. The temperature field can then be obtained through the solution of the 

heat diffusion equation. The thermal excitation was a moving heat source in directions x and y. The 

remaining surfaces are subject to convective and radiation heat losses. 

2 Theoretical Development 

2.1 Direct Problem 

The thermal model presented in Fig. 1 may be described by the transient three-dimensional diffusion 

equation: 
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subject to the boundary conditions of convection and radiation 
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in the area defined by Axy , is the following boundary condition 
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and the initial condition 

 

 0)0,,,( TzyxT   (4) 

where T is the calculated temperature, i represents the number of flat surfaces (1 to 6), i is the normal 

surfaces, h is heat transfer coefficient by convection,  the thermal conductivity,  the thermal 

diffusivity, σ the Stefan-Boltzmann constant, ε the emissivity, T the room temperature and q”(x,y) the 

unknown heat flux. The solution of the temperature field is obtained through the numerical 

approximation of Eq. (1) by using the Finite Volume method. The linear system of algebraic equations 

is solved by using SIP - Strongly Implicit Procedure. 

Figure 1 presents a scheme model for the TIG welding process on an aluminum 6065 T5 sample. The 

heat flux q”(x,y), applied on the circular section area Axy ,is obtained through the use of the 

Specification Function method [5]. The heat flux moves in constant speed, u (x,y), in direction s. The 

movement of the heat source may be written as: 

 

     22
0 )()(),("),(" tyuytxuxyxqyxq   (5) 

where u(x) and u(y) are the speed components, u (x,y) in the respective directions x and y and t is the 

time. 

161



 E. S. Magalhães, C. P. Silva, A. L. F. Lima e Silva, S. M. M. Lima e Silva  

 

 

 
 

Figure 1. Three-dimensional representation of the welding process. 

2.2 Objective Function 

The application of the Specification Function requires an Objective Function to be minimized, defined 

by the square difference between the temperatures measured on the sample Y, and the temperatures 

calculated numerically T. Hence, it may be written as: 

 

  2

1 1
1,1, 

 
 

r

p

ns

j
pMjpMj TYF  (6) 

where F is the Objective Function, j is the counter for the number of sensors, nsens represents the 

number of temperature sensors, p is the counter for future times steps and r is the number of future 

times used.  

3 Experimental Procedure 

3.1 Emissivity Determination 

For the determination of the emissivity ε of aluminum 6065 T5, four controlled experiments were 

carried out in the Heat Transfer Laboratory (LabTC) at the Federal University of Itajubá (UNIFEI). 

The data acquisition Agilent 34980A, a digital power supply MCE 1051, an infrared thermometer 

Fluke 574, a 50x100x0.25 mm resistive Kapton heater, 2 aluminum 6065 T5 samples and 

thermocouples type K were used for these experiments. Figure 2 presents a picture of the experimental 

setting used for this experiment. The length of the full paper in its final layout should follow the rules 

given in Tab. 1. 

To accomplish the experiment, the samples are heated on one surface by the resistive heater connected 

to the power supply MCE 1051. The surface is subjected to loss due to convection and radiation until 

they reach the permanent regime. The temperatures of the samples are measured through the use of the 

data acquisition controlled by a PC. When the steady state is reached, the emissivity is checked by 

comparing the temperature measured by the infrared sensor FLUKE 574 and the temperatures 

indicated by the acquisition. The temperature of the sensor is adjusted to the temperature of the sample 
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through the variation of the emissivity of the material. Table 1 presents the mean value for each 

experiment. 

 

 
 

Figure 2: Experimental apparatus for the calculation of the emissivity 

 

Table 1: Experimental results for the thermal emissivity of the aluminum 6065 T5. 

Number of 

Experiments 

001 002 003 004 

ε 0.21 ± 0.02 0.22 ± 0.02 0.22 ± 0.02 0.20 ± 0.02 

 

In all the calculations for the temperatures carried out afterwards, the average of all the values obtained 

experimentally for the emissivity was adopted, therefore, the mean calculated value is ε = 0.21 ± 0.02.  

 

3.2 Experimental Setting for the Real Welding Process 

To accomplish this experiment, the following equipment were used: a data acquistion system HP 

75000 Series B controlled by a PC, 4 thermocouples type K for the measurement of the experimental 

temperatures, twelve 0.25 x 0.038 x 0.0065 (m) aluminum 6065 T5 plates, a xy coordinate table, a 

counter to attach  the aluminum plate to the coordinate table, an automated system to move the 

welding torch, an AC power supply and an acquisition system to measure the voltage and the electric 

current supplied for the welding. The thermocouples type K (Chromel-Alumel) are attached to the 

metal plate with the use of the capacitive discharge [11]. They must be positioned in the specific 

regions of the sample so that the voltaic arch does not interfere in the measuring of the temperature. 

The aluminum plate, the thermocouples, the counter and the TIG welding torch are presented in Fig. 

3a. It should be highlighted that the aluminum plate must be attached to the coordinate table through 

the possible smallest area, so that the boundary conditions may be considered as free convection and 

radiation on all the surfaces. Figure 3b shows the details of the plate attached by four conical head 

screws, covered with a layer of thermal isolator which minimizes the contact area between the screw 

and the plate and reduces fin effect during the heat transfer process. It is worth mentioning that the 

layer of thermal isolator is applied on only three screws. The fourth screws is responsible for the 

grounding of the plate submitted to the welding process. Limiting lines may be verified on the sample 

with the purpose of determining the beginning and the end of the welding process.  

Four t+ experimental conditions were tested and for each experiment 482 temperature points were 

collected. The velocity of the torch was of 62.5 mm/min. In the TIG welding process at AC, the time 
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the electrode remains in polarity t+ is responsible for the cathodic cleaning of the weld bead due to the 

electric field emission from the test-plate to the tungsten electrode [12]. It can be observed that the 

oxide layer reminiscent is isolate and refractory what turns difficult the welding in the negative 

polarity (t-). Despite the cleaner qualities, the positive polarity has lesser efficiency and useful life than 

the negative polarity. The other aim of this work is to contribute to study the influence of the polarity 

in the temperature field. In order to research this influence four different welding conditions were 

analyzed (Tab. 2). It shows the power generation as the voltage increases. Table 3 presents the 

positions for each thermocouple, the coordinate system is the same as in Fig. 1. 

 

 
 

Figure 3: Experimental assembly with the position of the thermocouples and the marks indicating the 

beginning and end of the welding process on the aluminum plate. 

 

Table 2: Welding Conditions. 

(t+) adjusted 

(ms) 

(t-) adjusted 

(ms) 

Welding speed (u) 

(mm/min) 

Current 

(A) 

Voltage 

(V) 

Power 

Generated (W) 

2 20 62.5 194 10.5 2037 

7 20 62.5 193 11.3 2181 

11 20 62.5 193 12.1 2335 

13 20 62.5 193 14.0 2702 

 

Table 3: Position of the thermocouple on the aluminum sample. 

Thermocouple 1 2 3 4 

x [mm] 238.0 245.0 237.0 244.0 

y [mm] 33.00 11.00 25.00 11.00 

z [mm] 6.500 6.500 0.000 0.000 
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4 Result Analysis 

For each condition of t+, three experiments were carried with the aim of assessing the repeatability of 

the estimated heat flux results. As mentioned before, for each experiment 482 temperature points were 

observed at a time interval, Δt, of 0.66 s. Figure 4a illustrates the temperature signals measured by the 

thermocouples T1, T2, T3 and T4 for the welding the forth condition presented on Tab. 2 (t+ = 13ms). 

High temperature measured by the thermocouple after the voltaic arch was turned off may be 

observed. Figure 4b presents a comparison of the temperature measured in the four conditions for 

positive polarity (t+) with the thermocouple in position 2 (Tab. 3). An increase in the temperature may 

be observed with the increase of positive polarity (t+). It may also be seen that for values of t+ greater 

than 11, there is no increase in the temperature signal. This may be explained by the fact that for high 

values of t+, the greatest part of the heat generated remains on the electrode, which is undesirable for 

both the efficiency of the process and the electrode lifespan [12]. 

 

 
 a) b) 

Figure 4: a) Evolution of the experimental temperature for condition of t+ = 13 ms and b) Comparison 

of the experimental temperature in position 2 for the four conditions of positive polarity (t+). 

 

Thermal properties values of AA 6065-T5 were considered constants for the numerical solution: 

thermal conductivity 209 W/mK and thermal diffusivity 86.2 x 10
-6

 m
2
/s [13]. Both the heat transfer 

coefficient by convection was also considered constant, h=20 W/m
2
K for all the surfaces and the 

emissivity of the material obtained experimentally, ε = 0.21 were considered constant. The inverse 

problem technique utilized was Specification Function with multiple sensors. The adjustment of the 

multiple sensors to the technique allows a better determination of the heat flux supplied to the surface. 

This technique aims to minimize the Objective Function (Eq. 6). Another factor to consider in the 

simulation process is the total welding time which includes the beginning (static source and arch on), 

the middle (mobile source and arch on) and the end (static source e arch off). A comparison between 

the calculated and experimental temperatures for position 2 (Tab. 3) and the welding conditions t+ = 

11 ms and t+ =13 ms are presented in Figs. 5a and 5b, respectively. The respective temperature 

residuals of Figs. 5a and 5b are shown in Figs. 6a and 6b. The heat fluxes estimated by the 

Specification Function technique for these two welding conditions are represented in Figs. 7.a and 7.b. 

By analyzing the temperature residuals of Figs. 6a e 6b, it may be observed that the software 

developed for this work presented satisfactory results. For these two cases, the maximum residual was 

approximately -8°C, which represents an error lesser than 5.0%. Several factors may be accounted for 

these differences. For example, the hypothesis of constant thermal properties and convection heat 

transfer coefficient. It may also be observed that the use of the discrete model, based on space and time 

for the movement of the heat source is appropriate for the analysis of the thermal phenomenon.  
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 a) b) 

Figure 5: Comparison of measured and calculated temperatures for a) t+ = 11 ms and b) t+ = 13 

ms. 

 

 
 a) b) 

Figure 6: Analysis of the residuals for a) t+ = 11 ms and b) t+ = 13 ms. 

 

 
 a) b) 

Figure 7. Estimated heat flux for a) t+ = 11 ms and b) t+ = 13 ms 

 

Figure 8 presents the temperature fields for t+ = 13 ms. It may be seen that the temperature gradient 

reaches its top at the point of the torch displacement. By analyzing Tab. 4, it may be observed that 

there is a power increase with the increase of t+. This occurs basically due to the voltage increase 

which goes from 10.5 V (t+ = 2.2 ms) to 14.0 V (t+ = 13.3 ms). This represents an increase of 33.0% 

in the voltage and almost the same percentage, 32.6%, occurs in the total power.   
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 a) b) 

 
 c) d) 

Figure 8: Evolution of the temperature field at instants: a) 6.6 s, b) 16.5 s, c) 26.4 s and d) 66 s. 

 

Table 4: Average heat rate for each test. 

Adjusted (t+) 

(ms) 

Obtained (t+) 

(ms) 

Total power 

(W) 

Average useful 

power (W) 

Thermal 

efficiency (%) 

2 2.2 2037 914.3 44.9 

7 6.9 2181 983.5 43.0 

11 11.3 2335 1073.4 46.0 

13 13.3 2702 1105.3 40.9 

5 Conclusions 

This paper presented a new methodology to determine the heat transfer rate on a aluminum 

6065-T5 plate, under a TIG welding process, from the observation of the thermal fields 

developed after the welding torch is turned off. This alternative procedure has enabled the 

measurement of the temperature, used in the inverse problem solution, just after the voltaic 

arc is cut off. This has eliminated one of the greatest obstacles to measure the experimental 

temperature during the welding of aluminum plates: electrical noises coming from welding in 

AC. The applied heat flux on the surface was estimated by the Specification Function. The 

similarity between the experimental and calculated parameters validated and proved the 
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efficiency of the software developed when applied to the solution of welding thermal 

problems. 
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Abstract 
This paper  is devoted to a theoretical and numerical study of the different ways of calculating the 
Fourier transform of a noisy signal where the boundary conditions at the lateral boundaries of the 
measurement interval are not precisely known. This happens in different characterization problems 
where an infrared camera is used for temperature measurements. In order to overcome this difficulty, 
the interval where the Fourier transform is defined (its support) is supposed to be larger than the 
measurement domain. So this virtual interval larger than the measurement interval is thus used. We 
show regularization by Truncated Singular Value Decomposition is  able to yield good estimates of 
this very ill-posed inverse problem. 
 
Introduction 
 
We consider here the problem of reconstructing the Fourier spectrum  of xN  noisy discrete 

temperature measurements iθ  made on a solid surface, that is for discrete abscissa 

] ] xi Ni,x to1for; =−∈ ll , in a 2D heat transfer case. The hh nN 2= harmonics of this spectrum 

are : 
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Estimation of this spectrum is required in several thermal characterization experiments where infrared 
thermography (IR) is used, such as thermal diffusivity measurement of a composite flat plate made of 
an anisotropic material with a front face flash excitation and rear face IR temperature measurement 
[1] or for estimating the heat fluxes at the different interfaces of a minichannel heated locally over its 
front face (either steady state or transient heating), using front or rear face IR temperature 
measurement [2].  
This stems from the fact that analytical solution of this type of heat transfer problem, can be obtained 
very easily using the Fourier integral transform over a finite space domain, for example through the 
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Thermal Quadrupoles technique [3]. Inversion of the corresponding model and experimental 
temperature distribution, written both in the Fourier domain, can be applied either to estimate 
thermophysical parameters of a sample (a parameter estimation problem) [1] or to recover temperature 
and fluxes at the different interfaces as well as the bulk temperature distribution of the fluid flow 
(inverse function estimation problem based on inverse heat conduction/convection) [2]. 
 
The main difficulty in this type of configuration is that the experimental boundary conditions at 

l±=x are generally not precisely known: heat flux in the x direction by both natural convection and 
radiation can occur in the anisotropic diffusivity characterization problem [1] and the channel wall 
length is larger than the measurement length l2 , which means that neither temperature nor heat flux 

are equal to zero at the two boundaries, especially at the downstream one if it is too close to the heated 
region  ( l=x if the fluid flows in the x direction) in the channel thermal characterization problem [2]. 

 
So, if eigenvalues l/n'n πα = , that correspond to the zero temperature or flux boundary conditions 

are chosen, the solution of the direct problem may be biased.  
 
This is why we have decided to define the eigenvalues L/nn πα = over a larger interval ] ]LL ;− , 

called here a ‘virtual’ interval, wider than the measurement interval ] ]ll ;− , see equation (1), where  

1v ≥= l/Lk  is a natural integer. If vk  becomes large enough, the virtual boundaries Lx ±=  are far 

enough from  the heat source, which lays inside the ] ]ll ;−  measurement interval, and the zero 

temperature or flux boundary conditions become valid and the nα eigenvalues become exact. 

 
The following part of this article is divided in two parts: in section 2, the spectrum estimation problem 
is studied without the notion of virtual length, that is for 1v =k and the virtual length case is studied 

in section 3, for 2v =k . In both sections a simple theoretical temperature distribution )(xθ for the ix  

points, that is a door function, with zero temperature at l±=x , which is later corrupted by a 

synthetic noise, is considered. In another work [4], the same technique has been applied on 
experimental IR temperature measurements for a flat minichannel in a transient heating case [4]. 
 

1 Estimation of the Fourier spectrum without any virtual length ( 1v =k ) 
 
We consider here the following symmetrical door function plotted in figure 1:  
 

( ) ] ]llll ;for/2)(-/2)()( −∈−+= xxHxHx hhmaxθθ    (2) 

 
where H is the Heaviside function with C2andmm12mm,532 °=== maxh. θll . The exact 

analytical spectrum of this function is: 
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exact

hnmax
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~
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   (3) 

 
An identically independently distributed noise iε of standard deviation C080 °= .σ  is added at each 

location  xxi N/x,Nixix ll 2∆where200to1for,∆ ===+−= : 
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i x εθθ += )(      (4a) 

 
Fig. 1 – Exact, noised and reconstructed temperature profile using ordinary least squares (kv = 1) 

 
 

This generates a synthetic temperature measurement vector, of size 1xxN : 

 

Nx
noised Iεεεθθ

2)(covand)(Ewhere σ==+= 0000    (4b) 

 
where E () is the expectancy of a random column vector, ()cov its variance-covariance matrix and  

and NxI  the identity matrix of size xN . 

 

The hN  harmonics of the temperature profile (3) can be gathered in a exact~
θ column vector of 

size 1xhN . 

 

Once the synthetic (pseudo-experimental) temperature profile noised
θ  known, the unknown spectrum 

θ
~

can be calculated in three different ways: 
 
1.1 Numerical quadrature 
 
This technique is the simplest one, it consists in calculating an approximation of the definition (1) of 

each harmonics n
~θ  through a numerical integration of the noised signal [5] : 
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Since only xN  data noised
iθ  are available, a number xhh NnN ≤= 2 of harmonics can be calculated. 
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This technique can provide good approximations of the harmonics of low order (low values of n ) 

but its precision decreases for high space frequencies, because of the presence of noise in the signal.  
 
1.2 Rectangular estimation 
 
Instead of using the approximation of an integral of a noised signal (5), it is better to consider 
estimation of the spectrum as an inverse problem. So, we can start from an exact model, that is the 
definition of the inverse Fourier transform, for an exact output signal θ  depending on a limited 

number of harmonics xhh NnN == 2 : 
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This equation can be put under a matrix/column vector form, if the subscripts of the n
~θ  harmonics are 

increased by a simple translation equal to hn , in order not to have any negative index in the 

components of the spectrum vector θ
~

, that is 
hnkk

~~
−= θ][ θ . This spectrum vector, a parameter vector 

to be estimated, as well as the corresponding model are: 
 

T
nnnn hhhh

~~~~~
]0[ 11 θθθθ −−+−= LLθ and    θSθ

~=    (7) 

 
where the coefficients of the square matrix S  of size xN  are 

hnk,iki S −=][ S .  

So, the ordinary least square solution is: 
 

θSθθrθrθθSθθ
~~~~

J
~

J
~̂ noisednoisedsquare

OLS −==== − )(with)()(where))((min(arg 21      (8) 

 

Here the problem is square, which means that the residual vector )( squareOLS
~̂

−θr is equal to zero. 

 
The inverse problem is here very well posed, since the condition number of matrix S  is very close to 

unity. The recalculated signal square
OLS

recalc ~
θSθ =  is plotted together with the exact signal θ  and with 

the noised signal noised
θ in figure 1: one can see that the fit is perfect. 

 
The spectral energy density of the exact temperature profile, as well as its estimated value that stems 
from the ordinary least square estimation (8) deduced from the noised temperature profile, are plotted 
in figure 2: the estimation is very good, in spite of the noise in the data. 
 
However, for different locations of the measurement points it may change and a natural solution 
would be to estimate an even number of harmonics α  lower than the number of measurements xN . In 

this case matrix S  would be replaced by a rectangular matrix αS , with a size αxxN (the 

2

α−xN
first column as well as the 

2

α−xN
 last columns of S  have been removed) and the ordinary 

least square solution would be: 
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ααααααααα θSθθrθrθθSSSθθ
~~~~

J
~

J
~̂ *noisednoised*T*rect

,OLS −==== )(with)()(where)())((min(arg 2  

(9) 
 

 

Fig. 2 – Spectral energy densities of temperature profile: exact  ( n
*
n

~~
θθ ) and estimated ( square

OLS
square*

OLS
~̂~̂
θθ )  

 

Matrix *
αS  is the adjoint of complex matrix αS , that is the transpose of its conjugate ( T*

αα SS = ).   
 
1.3 Truncated Singular Value estimation 
 
Instead of trying to reduce the number of unknowns, the xN≤α harmonics corresponding to the 

rectangular sensitivity matrix αS used in equation (9), it is possible to keep the total number of 

harmonics to be estimated equal to  xN , using regularization by Truncated Singular Value 
Decomposition  (TSVD) [6]. This regularization technique is based on the square matrix S whose 
Singular Value Decomposition (SVD) is: 
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and where the kkkw VU and, are the kth singular value, the kth left singular vector and the kth right 

singular vector respectively. The ordinary least estimator (8) can also be written: 
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The truncated version of this estimator is: 
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The interest of this estimator is to keep the number xN of estimated unchanged, while using a number 

of internal degrees of freedom α (the number of the inverse of the singular values 1−
kw  different from 

zero in (12)) lower than xN , with a decrease of the dispersion of the estimates since: 
 

))(cov(Trace
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where cov () is the varianc-covariance matrix of a column vector. 
 

The mean square residuals )(
1

θr
~

N
r

x
rms =  has been plotted as a function of α , for the 

rectangular estimation ( rect
,OLS

~̂~
αθθ = , for an even value of α ) and for the TSVD estimation 

( )TSVD~̂~
αθθ = in figure 3. 

 

 
 

Fig. 3 – Root mean square residuals for rectangular and TSVD estimation (kv = 1) 
 

One can notice in this figure that the residuals corresponding to the rectangular estimation are lower 
than the TSVD ones. 
 

The root mean square of the errors of the estimates θ
~̂

N
r

x

rms

1=  are plotted as a function of α , 

for the rectangular estimation ( rect
,OLS

~̂~
αθθ = , for an even value of α , where the α−xN  lacking 

harmonics have been given a zero value) and for the TSVD estimation ( )TSVD~̂~
αθθ = in figure 4. 

 
The error is lower for rectangular estimation and it is clear that regularization is not needed here, since 
the optimum value of α  is xN=α . 
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Fig. 4 – Root mean square error of the estimates of the harmonics for rectangular and TSVD 

estimation (kv = 1) 
 

2 Estimation of the Fourier spectrum with a virtual length ( 2v =k ) 
 
Exactly the same approach as in section 2 is followed here: the same xN noised temperature are 

constructed on the ] ]ll ;−  interval, but the integral Fourier transform (1) is defined on the  

] ]LL ;−  interval, with l2=L  and, as a consequence xN  new eigenvalues 
l2

ππα n

L

n
n ==  are 

used. They that are the halves of the preceding ones (case l=L ). This means that the space 

frequencies used for parameterizing the )(xθ profile are lower. 

 
The exact analytical signal as well as its noised version shown in figure 8 are exactly the same as the 
ones plotted in figure 1.  
 
The singular values of the sensitivity matrix S defined in equation (7) are plotted in figure 5. 
 

 
Fig. 5 – Singular values of the square sensitivity matrix S  (kv = 2) 
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It is very clear here that the inverse problem met here is severely ill-posed since the condition number 

of matrix S is ∞≈=== −
=

1715
2001 1055110451153)(cond ../w/w

xNS . This matrix is clearly 

singular and regularization is compulsory. If TSVD is used, it is obvious that the optimum value for 
the truncation parameter α will be in the region around α = xN /2 = 100 where the singular values 
show a sharp change of level. 
 
Comparison of the variations of the root mean square residual with the α regularization 
hyperparameter for rectangular and TSVD estimation is shown in figure 6. Rectangular ordinary least 
square estimation cannot follow the simulated measurements. The residuals of TSVD estimation show 
an absolute minimum, slightly above the level of the standard deviation of the noise, for α  between 
120 and 140.  

 
Fig. 6 – Root mean square residuals for rectangular and TSVD estimation (kv = 2) 

 
The root mean square of the errors of the estimates  are plotted as a function of α , for the rectangular 
estimation and for the TSVD estimation in figure 7, where the vertical scale is logarithmic. For values 
of α  lower than 120, the error is lower for the TSVD estimate, with a minimum slightly above α = 
100. This corresponds roughly to the value where the rms residual is slightly above the noise level 
(flat region between 80 and 145) in figure 6, which corresponds to the discrepancy principle [6]. 
 

 
Fig. 7 – Root mean square error of the estimates of the harmonics for rectangular and TSVD 

estimation (kv = 2) 
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The recalculated signal square
OLS

recalc ~
θSθ =  is plotted together with the exact signal θ  and with the 

noised signal noised
θ in figure 8 for 100=α : the fit is good. 

 
 

 
 

Fig. 8 – Exact, noised and reconstructed temperature profile using ordinary least squares (kv = 2) 
 

The corresponding spectral energy density is presented in figure 9: it shows that the estimation on a 
smaller x interval than the whole interval of width 2 L , even not perfect, is possible using TSVD 
regularization. 

 

Fig. 9 – Spectral energy densities of temperature profile: exact  ( n
*
n

~~
θθ ) and estimated ( square

OLS
square*

OLS
~̂~̂
θθ )  

Conclusions 

We have shown in section 3 of this paper that estimation of the Fourier spectrum of a temperature 
profile was possible using measurements on an interval smaller than the space interval where its 
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Fourier transforms are defined. This can allow to take into account ill-defined lateral boundary 
conditions in problems involving inversion of a temperature profile measured by infrared 
thermography. These problems are met for example in thermal charactetization of heat transfer in a 
flat minichannel with outside temperature measurements, where the model can be written analytically 
in a simple way using Fourier transforms of temperature and flux (Thermal quadrupoles method) . 
Future efforts will be devoted to test the same type of simulated TSVD inversion for cases where 
neither temperature nor  heat flux at one of the limits of the measurement interval is equal to zero: this 
happens for convection cases in the downstream area of the minichannel.  
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Abstract
In this work we investigate the problem of reconstruction of symmetric star shaped characteristic sources
in the modified Helmholtz inverse source problem. Uniqueness for the source centroid and effective
radius is proved. It is not difficult to proof that only one Cauchy data at the boundary contain all infor-
mation to be used in the reconstruction, see [1],and the lack of uniqueness is consequence of this. To
resolve it, we must also prescribe field values for points in the interior of the domain, which signifies
complete observability. The models for the inverse problem are typically systems of integral equations.
Their derivation are based on the first and the second Green’s formula. The first type are integral equa-
tions with the Dirichlet Green’s function as kernel and the second are formulated with a Reciprocity gap
functional based on moments with functions in the null space of the adjoint operator.

1 Introduction

In this work we investigate the reconstruction of characteristic sources in the modified Helmholtz model.
As typical models for applications are those models based on second order equations, that is, the Laplace,
Helmholtz and modified Helmholtz, wave and damped wave, heat and thermal wave inverse source prob-
lems. The central question on the inverse source problem for models with strongly elliptic operators and
Cauchy data at the boundary is uniqueness. It is not difficult to proof that only one Cauchy data at the
boundary contain all information to be used in the reconstruction, see [1],and the lack of uniqueness
is consequence of this. To resolve it, we must also prescribe field values for points in the interior of
the domain, which signifies complete observability. So, for boundary observability, these problems are
classified according to the class of source we expected reconstruct. The main types are:

• Points sources given by Dirac delta like distributions;
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• Regular sources f as harmonics functions or functions in a manifold defined by {A∗f = F}, where
F is some given function and A is the model operator;

• Characteristic sources of convex or star shaped type.

The paper is structured as follows: The Section 2 presents the mathematical formulation and integral
representation of the solution of the direct problem. The reciprocity gap equation is also introduced. The
symmetric star shaped support, in which the formula for centroid determination is obtained, is presented
in Section 3. We also show its uniqueness with respect to Cauchy data. An effective radius can also be
uniquely defined. Spherical harmonics series expansion for Reciprocity gap functional are determined
with the application of the Funk-Hecke Lemma in section 4. In Section 5 a numerical results for the two
dimensional case is presented. Finally, we conclude in Section 6 by pointing out the advances introduced
in the present work.

2 The Inverse Source Problem

2.1 Characterization of the problem

Let Ω = B1(0) ⊂ Rd, d ≥ 2, be the open unitary ball centred at the origin and Γ := ∂Ω. The inverse
source problem for the modified Helmholtz operator is, given Cauchy data (g, gν) ∈ H 1

2 (Ω)×H− 1
2 (Ω),

to find (u, f) ∈ H1(Ω)× L2(Ω) such that





−∆u+ κ2u = f, in Ω

u = g, on Γ

∂νu = gν , on Γ.

(1)

In this work, we are interested in reconstruct a source in the form f(x)χΩ0(x), where Ω0 ⊂ Ω is the
support of the intensity of the source, f .

2.2 Uniqueness results for special cases

It is known that is useless to change the input Dirichlet data, g, and the unique information available is
given by only one measurement, say, (g, gν), with g = 0, see [1].
The following lemma gives us a decomposition of the space L2(Ω) where we can take the test functions.

Lemma 1 Let H−∆+κ2(Ω) = {v ∈ L2(Ω); (−∆ + κ2)v = 0}. If κ2 and κ4 are not eigenvalues of the
Laplace and Bilaplace operators, respectively, then,

L2(Ω) = H−∆+κ2(Ω)⊕ (−∆− κ2)(H2
0 (Ω)).

Introducing a regular fundamental solution, v, to the modified Helmholtz operator and again using the
Cauchy data, we obtain the reciprocity gap equation, or orthogonality condition,

∫

Ω
v(x)f(x)χΩ0(x)dx+

∫

Γ
v(x)gν(x)dσx −

∫

Γ
∂νxv(x)g(x)dσx = 0, (2)

180



ICIPE2014, May 12–15, 2014, Cracow, Poland

where v ∈ H−∆+κ2(Ω) can be taken as

v(x) = eκω·(x−x0), (3)

where ω ∈ Sd−1 and x0 ∈ Rd are arbitraries.
Depending on shaped of the set Ω0 ⊂ Ω , we have uniqueness in the reconstruction of the source, that is,
if two sources generates the same Cauchy data in the boundary, then these sources must be the same.

Theorem 2 Let Ω1
0 , Ω2

0 ⊂ Ω be star shaped domains with Lipschitz boundary. Consider the inverse
problem (1) for κ = 0 with two sources fχΩ1

0
and fχΩ2

0
. Suppose that f(x) > 0 for x ∈ Ω. If the

Cauchy data for the two problems are the same, then Ω1
0 = Ω2

0.

Proof: See [3]. �

Theorem 3 Let Ω1
0 , Ω2

0 ⊂ Ω be convex domains with Lipschitz boundary. Consider the inverse problem
(1) with two sources fχΩ1

0
and fχΩ2

0
, where f(x) > 0 for x ∈ Ω. If the Cauchy data for the two problems

are the same and the potentials are equal on some ball B ⊂ Ω1
0 ∩ Ω2

0, then Ω1
0 = Ω2

0.

Proof: The proof is made by contradiction following the ideas of [3]. �

3 Symmetric Star Shaped Support

In this section we will be interested in define some integral operators related to the Reciprocity Gap Equa-
tion in order to study some properties of them, beside this we will investigate the series representation of
these operators.

Observe that if we choose the polar coordinates system to coincide with the centroid of the star shaped
source support, then the non linear integral equation, in polar coordinates, for the star shaped support
reconstruction can be obtained by substituting the regular solution (3) in the reciprocity gap integral
equation (2), for continuous f > 0,

∫

Sd−1

∫ R(θ)

0
exp(κρω · θ)f(ρ, θ)ρd−1dρdθ = h[g, gν , xc](ω), for ω ∈ Sd−1, (4)

where R(θ) for θ ∈ Sd−1 is the star shaped boundary parametrization and

h[g, gν , xc](ω) := −
∫

Γ
exp(κω · (x− xc))gν(x)dσx +

∫

Γ
∂νx exp(κω · (x− xc))g(x)dσx. (5)

is the boundary function with exponential kernel.

Note that, in the analysis functional approach, (4) defines the following operator

F [·] : Ld(Sd−1)→ L1(Sd−1)

by

F [R](ω) :=

∫

Sd−1

∫ R(θ)

0
exp(κρω · θ)f(ρ, θ)ρd−1dρdθ (6)

and (5) defines the operator

h[·, ·, ·] : H
1
2 (Γ)×H− 1

2 (Γ)× Rd → L1(Sd−1). (7)
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Theorem 4 There exist constants cκ and Cκ such that

cκ‖R‖dLd(Sd−1) ≤ ‖F [R]‖L1(Sd−1) ≤ Cκ‖R‖dLd(Sd−1), (8)

that is, the operator F [·] : Ld(Sd−1)→ L1(Sd−1) is bounded and coercive.

Proof: Firstly, note that for all bounded continuous function g with connected compact support Ω ⊂ Rd,

g(xmin)µ(Ω) =

∫

Ω
min

Ω
{g(x)}dx ≤

∫

Ω
g(x)dx ≤

∫

ω
max

Ω
{g(x)}dx = g(xmax)µ(Ω),

where µ(Ω) is the measure of Ω. So, considering some continuous path connecting xmin and xmax, for
example γ(t), t ∈ [0, 1] , there exists some mean value x ∈ γ([0, 1]), such that

∫

Ω
g(x)dx = g(x)µ(Ω).

In this way, defining g(x) = exp(κω ·x)f(x)χΩ0(x), where χΩ0 is the characteristic function of the star
shaped support of the source in (1), we have

F [R](ω) =

∫

Ω
g(x)dx =

∫

Ω
exp(κω · x)f(x)χΩ0(x)dx = exp(κω · x)f(x)

∫

Ω0

dx,

in which in polar coordinates gives us,

F [R](ω) =

∫

Sd−1

∫ R(θ)

0
exp(κρω · θ)f(ρ, θ)ρd−1dρdθ =

exp(κρω · θ)f(ρ, θ)

d

∫

Sd−1

Rd(θ)dθ.

Note that

‖F [R]‖L1(Sd−1) =
f(ρ, θ)

d
‖R‖dLd(Sd−1)

∫

Sd−1

exp(κρω · θ)dω.

In this way, since the exponential function is a continuous function, we have that there exists constants
cκ = cκ(ρ, θ) and Cκ = Cκ(ρ, θ), such that

cκ‖R‖dLd(Sd−1) ≤ ‖F [R]‖L1(Sd−1) ≤ Cκ‖R‖dLd(Sd−1),

where

Cκ :=
f(ρ, θ)

d
µ(Sd−1) max

ω∈Sd−1
{exp(κρω · θ)}

and

cκ :=
f(ρ, θ)

d
µ(Sd−1) min

ω∈Sd−1
{exp(κρω · θ)},

where µ(Sd−1) = 2 πd/2

Γ(d/2) is the d-dimensional unitary sphere surface area. �

3.1 The symmetric star shaped case

Firstly, note that, since f > 0 is a known function, we can take, without loss of generality, its value 1.
So, by using Taylor series expansion and boundedness, it is not difficult to show that

F [R](ω) =

∞∑

j=0

1

j!

∫

Sd−1

∫ R(θ)

0
κj(ω · θ)jρj+d−1dθ,
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that is,

F [R](ω) =
∞∑

j=0

κj

(j + d)j!

∫

Sd−1

Rj+d(θ)(ω · θ)jdθ. (9)

We can associate to F the already defined two others operators related to the cosh and sinh solutions of
the modified Helmholtz model, respectively,





Fc[R](ω) = 1
2 [F [R](ω) + F [R](−ω)] =

∫
Sd−1

∫ R(θ)
0 cosh(κρω · θ)f(ρ, θ)ρd−1dρdθ

Fs[R](ω) = 1
2 [F [R](ω)− F [R](−ω)] =

∫
Sd−1

∫ R(θ)
0 sinh(κρω · θ)f(ρ, θ)ρd−1dρdθ,

(10)

that is,

Fc[R](ω) =

∞∑

k=0

κ2k

(2k + d)(2k)!

∫

Sd−1

R2k+d(θ)(ω · θ)2kdθ (11)

and

Fs[R](ω) =

∞∑

k=0

κ2k+1

(2k + 1 + d)(2k + 1)!

∫

Sd−1

R2k+1+d(θ)(ω · θ)2k+1dθ. (12)

Definition 1 Let R : Sd−1 → (0, 1), R ∈ Ld(Sd−1), be some parametric representation of the star
shaped boundary support of the source. We say that this source has a symmetric support when R(θ) =

R(−θ), for all θ ∈ Sd−1.

Lemma 5 Let χΩ0 be a star shaped source with symmetric support and f ≡ 1. Then, for all ω ∈ Sd−1,
Fs[R](ω) = 0 .

Proof: Suppose that ω′ is some fixed direction in Sd−1. Let Sd−1
±ω′ = {θ ∈ Sd−1;±ω′ · θ > 0} and

Sd−1
0 = {θ ∈ Sd−1;ω′ · θ = 0}. Then Sd−1 = Sd−1

+ω′ ∪ Sd−1
0 ∪ Sd−1

−ω′ and for k ∈ N and , by (10), we have

Fs[R](ω′) =

∫

Sd−1

∫ R(θ)

0
sinh(κρω′ · θ)ρd−1dρdθ

=

∫

Sd−1
+ω′

sinh(κρω′ · θ)ρd−1dρdθ +

∫

Sd−1
−ω′

∫ R(θ)

0
sinh(κρω′ · θ)ρd−1dρdθ,

since µ(Sd−1
0 ) = 0. Note that, by support symmetry and by definition of the sets Sd−1

±ω′ ,

∫

Sd−1
−ω′

∫ R(θ)

0
sinh(κρω′ · θ)ρd−1dρdθ =

∫

Sd−1
+ω′

∫ R(θ)

0
sinh(−κρω′ · θ)ρd−1dρdθ

= −
∫

Sd−1
+ω′

∫ R(θ)

0
sinh(κρω′ · θ)ρd−1dρdθ.

Therefore, Fs[R](ω′) = 0. Since ω′ ∈ Sd−1 is arbitrary, we have that Fs[R](ω) = 0,∀ω ∈ Sd−1. �
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Theorem 6 (Centroid Determination) Suppose that the star shaped source has a symmetric support.
Then, for a given Cauchy datum (g, gν), the centroid, xc, can be calculated as solution of

ω · xc =
1

2κ
ln

( ∫
Γ e

κω·xgν(x)dσx −
∫

Γ ∂νxe
κω·xg(x)dσx∫

Γ e
−κω·xgν(x)dσx −

∫
Γ ∂νxe

−κω·xg(x)dσx

)
, (13)

where ω can be taken equal to e1, ..., ed, the canonical basis in Rd.

Proof: Note that, by Lemma 5 and (10), we obtain the functional equation for centroid calculation
∫

Γ
sinh(κω · (x− xc))gν(x)dσx −

∫

Γ
∂ωx sinh(κω · (x− xc))g(x)dσx = 0, (14)

that is, ∫

Γ
(exp(κω · (x− xc))− exp(−κω · (x− xc)))gν(x)dσx

−
∫

Γ
∂ωx(exp(κω · (x− xc))− exp(−κω · (x− xc)))g(x)dσx = 0. (15)

Observing that (15) is the same as

0 = eκω·(−xc)

(∫

Γ
eκω·xgν(x)dσx −

∫

Γ
∂νxe

κω·xg(x)dσx

)

− e−κω·(−xc)

(∫

Γ
e−κω·xgν(x)dσx −

∫

Γ
∂νxe

−κω·xg(x)dσx

)
,

we have that

e2κω·xc =

∫
Γ e

κω·xgν(x)dσx −
∫

Γ ∂νxe
κω·xg(x)dσx∫

Γ e
−κω·xgν(x)dσx −

∫
Γ ∂νxe

−κω·xg(x)dσx
,

for all ω ∈ Sd−1. This equation is invariant with respect to the euclidean group of orthogonal transfor-
mation in Rd, SOd. So

ω · xc =
1

2κ
ln

( ∫
Γ e

κω·xgν(x)dσx −
∫

Γ ∂νxe
κω·xg(x)dσx∫

Γ e
−κω·xgν(x)dσx −

∫
Γ ∂νxe

−κω·xg(x)dσx

)
,

for all ω ∈ Sd−1. This expression to calculated the centroid is well defined, since, by (4),∫
Γ e

κω·xgν(x)dσx−
∫

Γ ∂νxe
κω·xg(x)dσx and

∫
Γ e
−κω·xgν(x)dσx−

∫
Γ ∂νxe

−κω·xg(x)dσx are null if and
only if the source is null. �

Corollary 1 (Centroid Uniqueness) Let χΩ1
0

and χΩ2
0

be star shaped sources with symmetric support
in the modified Helmholtz model (1). If they produces the same Cauchy data at the boundary, then they
have the same centroid.

4 Special Function Approach

In this section, we are interested in study the boundary functional (5) based on some properties of the
modified Bessel function and the spherical harmonic space.
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Definition 2 Define the following integral representation of the modified Bessel function, see [4],

Iν(z) =
(z/2)ν√
πΓ(ν + 1

2)

∫ 1

−1
(1− t2)ν−

1
2 cosh(zt)dt , (16)

for |argz| < π and Reν > −1
2 . The d-dimensional regular spherical Bessel function is defined as

Idm(z) = (−1)d+m Im+d/2−1(z)

zd/2−1
. (17)

The following lemma is very useful in the next proofs.

Lemma 7 (The Funk-Hecke Lemma) Let f : [−1, 1]→ C be a continuous function. If m ≥ 0, then
∫

Sd−1

f(θ · ω)ψm(ω)dω = λψm(θ), (18)

for all ψm ∈ Hm(Sd−1), where λm = µ(Sd−1)
∫ 1
−1 f(t)Pm(d, t)(1 − t2)(d−3)/2dt, Pm(d, t) is the

d−dimensional Legendre polynomial andHm(Sd−1) is the spherical harmonic space of dimension m of
Sd−1.

Proof: See [2]. �

Theorem 8 Let R ∈ Ld(Sd−1). Suppose that the source centroid coincide with the origin of the coordi-
nate system and the Cauchy datum is referred to a system of coordinates in which the centroid coordinates
is xc. Then,

(2π)
d
2

(−1)m+d

∫

Sd−1

∫ R(θ)

0
Idm(κρ)ψm,p(θ)ρ

d−1dρdθ =

∫

Sd−1

h[g, gν , xc](ω)ψm,p(ω)dω, (19)

for all ψm,p ∈ Hm(Sd−1), p = 1, ..., Nd(m), where Nd(m) = dim(Hm(Sd−1)) .

Proof: The proof is based on the Funk-Hecke lemma and on Proposition 2.26 in [2]. �

Theorem 9 The boundary projection functional is given by
∫

Sd−1

h[g, gν , xc](ω)ψm,p(ω)dω =
(2π)

d
2

(−1)m+d

(
−
∫

Γ
Idm(κ‖x− xc‖)ψm,p(θc)gν(x)dσx

+

∫

Γ
∂νxI

d
m(κ‖x− xc‖)ψm,p(θc)g(x)dσx

)
, (20)

for all ψm,p ∈ Hm(Sd−1), p = 1, ..., Nd(m) , where Nd(m) = dim(Hm(Sd−1)) .

Proof: The proof is based on the Funk-Hecke lemma. �

Remark 1 We must point out that a regular solution for the modified Helmholtz equation is given by

{Idm(κρ)ψm,p(θ) ; m ≥ 0 and p = 1, ..., Nd(m)}.

So, if we introduce one of these test functions in the Reciprocity Gap Functional, we directly obtain a set
of equations based on moments with the d-dimensional regular modified Bessel function. These solutions,
as we have shown, express the projection of the functional resulting by substituting the exponential
functions of plane waves.
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Remark 2 Combining Theorems 8 and 9, we can derive a new system associated to the reciprocity gap
functional, that is,

∫

Sd−1

∫ R(θ)

0
Idm(κρ)ψm,p(θ)ρ

d−1dρdθ = h[g, gν , xc]m,p, (21)

for all ψm,p ∈ Hm(Sd−1), p = 1, ..., Nd(m), where

h[g, gν , xc]m,p = −
∫

Γ
Idm(κ‖x− xc‖)ψm,p(θc)gν(x)dσx +

∫

Γ
∂ωxI

d
m(κ‖x− xc‖)ψm,p(θc)g(x)dσx.

(22)

Once we have used the Cauchy data to reconstructed the source centroid, we can extract more information
about the source by calculating an effective radius. For this, we treat the Cauchy data supposing that it is
associated to a source with constant radius.

Definition 3 The effective radius associated to the symmetric star shaped support of source is given by
the solution, R, of the integral equation

∫ R

0
Id0 (κρ)ρd−1dρ =

h[g, gν , xc]0

µ(Sd−1)
1
2

. (23)

Lemma 10 (Effective Radius Uniqueness) If two symmetric star shaped sources generate the same
Cauchy data at the boundary, then they have the same effective radius.

We equivalently can use Taylor series to deduce the power series version of (4) for positive exponent.

Lemma 11 Let R ∈ Ld(Sd−1), 0 < R(θ) < 1, for all θ ∈ Sd−1. Then, for m > 0,

∞∑

k=0

π
d−1
2

2m
κm+2k

(m+ 2k + d)(2k)!

Γ(k + 1
2)

Γ(k +m+ d
2)

∫

Sd−1

Rm+2k+d(θ)ψm,p(θ)dθ

=

∫

Sd−1

h[g, gν , xc](ω)ψm,p(ω)dω, (24)

for all ψm,p ∈ Hm(Sd−1).

The parametric representation of a star shaped boundary is giving by R(θ) =

R0 +
∑∞

m=1

∑Nd(m)
p=1 Rm,pψm,p(θ), for θ ∈ Sd−1 . Note that since Lp(Sd−1) =⊕m

n=0Hn(Sd−1)⊕⊕∞n=m+1Hn(Sd−1)|Lp(Sd−1), for p ≥ 1 , we can decomposes R(θ) =

R0:m(θ) + R>m(θ) . Combining this decomposition with the symmetric support in (24), we
have ∫

Sd−1

Rm+2k+d(θ)ψm(θ)dθ =

∫

Sd−1

(R0:m(θ) +R>m(θ))m+2k+dψm(θ)dθ

=

∫

Sd−1

m+2k+d∑

l=0

(m+ 2k + d)!

(m+ 2k + d− l)!l! (R0:m(θ))m+2k+d−l(R>m(θ))lψm(θ)dθ.

Since 0 < R(θ) < 1, we are primarily interested in the first two terms of the expansion, that is, the
separation of m = 0 and m = 1 from the R(θ) series.
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5 Numerical Experiment

In this section we will study a two-dimensional numerical example involving a direct problem for two
symmetric star shaped sources inside a circle. In this way, a quadratic Lagrangian finite element imple-
mentation is used to produces a Cauchy data on the boundary with a different model. The reconstruction
operator, (6), and the reciprocity gap functional in the boundary, (5), are numerically evaluated taking
g ≡ 0 and test functions vn = |n|2|n|In(κR)

κ|n|
, |n| = 0, 1, ..., N , that is,

F κn (r) =

∫ 2π

0

[∫ r(θ)

0
ρ
|n|2|n|I|n|(κρ)

κ|n|
dρ

]
exp(inθ)dθ (25)

and

hκn(gν) =

∫ 2π

0
gν
|n|2|n|I|n|(κR(θ))

κ|n|
exp(inθ)dσ. (26)

Figures 1(a) and 1(b) shows typical values for this kind of data, for different values of κ.

The first characteristic source in the model is a symmetric star shaped source with boundary parametrized
with the following finite Fourier series r(t) = 0.5 + 0.05 sin(6t), t ∈ [0, 2π). This kind of source shape
is shown with blue contour in Figure 1(c) and is almost exactly reconstructed in red for the modified
Helmholtz parameters up to κ = 5. The values of the reciprocity gap functional calculated with the syn-
thetic Cauchy data are showed in Figure 1(a) and 1(b). This data put in evidence the |n| = 6 component
in the Fourier series of the shape. Data with 10% noise level are showed in Figure 1(d).

(a) Real part of the Reciprocity Gap Functional (b) Imaginary part of the Reciprocity Gap Functional

6 Conclusions

An integral formulation for the inverse source problem with the modified Helmholtz equation is de-
veloped. The Reciprocity Gap equation, which solves the inverse problem independently of the direct
problem, is formulated in polar coordinates for arbitrary d-dimensional problems. We proved that sym-
metric star shaped sources have centroid and effective radius uniqueness from the same Cauchy data.
Some mathematical properties of functionals associated with the problem is established. Furthermore,
the Funk-Hecke Theorem is used to established series representation of functionals and to approximate
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(c) Reconstruction of the Star Shape source in the first
model - no noise

(d) Reconstruction of the Star Shape source in the first
model - 10% noise

it. A numerical experiment for reconstruction in the two-dimensional case shows a example of appli-
cations of the methodology developed. In this way, further works can be done in the three dimensional
case, where it can be investigated with analogous tools.
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Abstract 
An analytical approach for computing the transient temperature and related sensitivity coefficients in a one 
dimensional, two-layer Cartesian body is described. In particular, we refer to an experimental apparatus for 
thermal property measurements of solid materials where one layer is the thin heater while the other is the 
sample of interest that can exchange heat on the backside. Once the temperature solution in both layers is 
obtained, the so-called ‘scaled’ sensitivity coefficients are calculated by using a semi-analytical technique that 
is computationally faster than fully numerical techniques available in the literature. A comparison with a 
simplified single-layer problem (where the heater is neglected) allows us to estimate the thermal disturbance of 
the heater on the scaled sensitivity coefficients of the specimen. Results are given in graphical form and shown 
a smaller or larger disturbance when changing the variables involved in the experiment.  

1 Introduction 

In the inverse problems such as parameter estimation, the sensitivity analysis of the temperature to the 
unknown parameters, such as thermal conductivity and volumetric heat capacity or thermal diffusivity, plays a 
fundamental role. It in fact allows a deep understanding of the phenomenon and provides insight into the 
estimation problem.  
The parameter estimation technique (as described in [1]) requires measured temperature values. It is essential 
that the measured temperature be sensitive to the parameters of interest: the more sensitive the temperature (or 
large the sensitivity coefficient) is, the more valuable the temperature measurements are [2]. For this reason, 
the experimental apparatus have to be properly designed. 
The sensitivity coefficients give a significant contribution to the optimal design of the experimental apparatus: 
on the one hand make possible a preliminary evaluation of the goodness of the experimental results (at least 
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from a qualitative point of view); on the other hand are directly involved in the estimation of the parameters 
when minimizing the ordinary least square norm [3-5]. A preliminary estimate can be made by observing the 
coefficients: to gain as much insight and information from the results as possible, it must be that the sensitivity 
coefficients with respect to the parameters of interest are uncorrelated and large in magnitudes. 
In an apparatus that is not well designed, additional materials in the experimental configuration (for instance, 
the thin heater giving up heat to the sample) can have a larger impact on the temperature and, hence, on the 
sensitivity coefficients than the material of interest (sample). For this reason, in the current paper the focus 
will mainly be on investigating how the additional materials can modify and, hence, disturb the temperature 
and sensitivity coefficients of the specimen, with direct consequences on the quality of the results. 
The heat conduction problem addressed is defined starting from the experimental design presented in [6], with 
the exception that the sample can exchange heat by convection/radiation with the surrounding ambient (air) 
through a heat transfer coefficient h. Two special cases can be considered: 1) h = 0 simulates a thermally 
insulated backside (boundary condition of Neumann type); and 2) h → ∞ simulates a specimen whose 
backside is in contact with a cooling plate, such as aluminum (boundary condition of Dirichlet type). To 
estimate the effect of the thin heater on the sample sensitivity coefficients, a heat conduction problem in a one-
dimensional two-layered slab is modeled and solved analytically by the well-established orthogonal expansion 
technique [7, chap. 8] based on the well-known separation-of-variable (SOV) method [7, chap. 2]. (For sake of 
completeness, multi-dimensional two-region solutions are discussed in [8, 9]). Once the temperature solution 
is obtained, the sensitivity coefficients are computed as partial derivative of the same temperature with respect 
to the parameters of interest and presented in a graphical form. Their computation is carried out in part 
analytically and in part numerically by using a first-order backwards difference; where the analytical part 
makes the computation very fast compared to fully-numerical techniques available in the parameter estimation 
literature. 
Then a comparison between the sensitivity coefficients of two- and one-layered problems is carried out. It 
indicates that the measured temperature is very sensitive to the properties of the heater when the thermal 
conductivity ratio is large, but is not very sensitive to the Biot number on the sample backside and to the 
contact resistance at the interface.  

2 Mathematical Formulation 

Consider an experimental apparatus for the thermal property measurements of an orthotropic solid specimen, 
as proposed in Ref. [6]. A thin layer of mica heater is located at the interface of two samples of the same 
material and thickness and gives heat up at surface of both samples. For sake of thermal symmetry, the three-
layer configuration (sample-heater-sample) reduces to the two-layer slab depicted in Fig. 1, where we assume 
that a time-independent heat flux is applied to the boundary x = -L1 in place of a distributed heat source. The 
first layer represents ½ mica heater assembly while the second one is the specimen that can dissipate heat by 
convection/long-wavelengths radiation at x = L2 with the surrounding air at temperature T∞. Both layers are 
initially at a uniform temperature Tin = T∞ and there is no heat generation within them. Also, a thermal contact 
resistance is present at the interface x = 0 between the two adjacent layers whose thermal properties are 
considered temperature-independent. 
The mathematical formulation of this transient, two-layer, linear, Cartesian heat conduction problem (denoted 
by X2C33B10T0; see the numbering system devised in [10]) is given in a dimensionless form by 
 

   

∂2 T1

∂ x2 = 1
α
∂ T1

∂t
                                                   (−L < x < 0; t > 0)                                                                 (1a)                             

   

∂2 T2

∂ x2 =
∂ T2

∂t
                                                      (0 < x <1; t > 0)                                                                     (1b) 
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Figure 1: Schematic representation of the experimental apparatus. The first layer represents the heater, while the second 

one represents the specimen. Between them, there exists a contact resistance Rc = 1/hc.  

   

k
∂ T1

∂ x
⎛
⎝⎜

⎞
⎠⎟ x=− L

= −1                                                           (t > 0)                                                                         (1c) 

   

k
∂ T1

∂ x
⎛
⎝⎜

⎞
⎠⎟ x=0

+ 1
Rc

T1(0, t )− T2(0, t )⎡⎣ ⎤⎦ = 0                       (t > 0)                                                                        (1d) 

   

k
∂ T1

∂ x
⎛
⎝⎜

⎞
⎠⎟ x=0

=
∂ T2

∂ x
⎛
⎝⎜

⎞
⎠⎟ x=0

                                            (t > 0)                                                                          (1e) 

   

∂ T2

∂ x
⎛
⎝⎜

⎞
⎠⎟ x=1

+ Bi2 T2(1, t ) = 0                                       (t > 0)                                                                           (1f) 

   
T1( x,0) = 0                                                             (−L < x < 0)                                                                   (1g) 

   
T2( x,0) = 0                                                           (0 < x <1)                                                                       (1h) 

 
The dimensionless variables appearing in the equations listed before are defined as: 

   
T =

T −T∞

q0L2 k2

,    
   
x = x

L2

,    1

2

LL
L

= ,    
   
t =

α 2t
L2

2 ,    
  
α =

α1

α 2

,    
   
k =

k1

k2

,    2 2
2

2

h LBi
k

= ,    
   
Rc =

k2Rc

L2
  (2) 

3 Solution 

The problem defined by equations (1) has a nonhomogeneous boundary condition of the 2nd kind at   x = −L
(driving term), as shown by Eq. (1c). Consequently, the SOV method cannot be applied directly. However, by 
using the principle of superposition for linear problems, the problem can be split up into a set of two simpler 
problems [7, Sect. 2-12]: 

• a nonhomogeneous steady-state problem defined by the temperature 
   
Ti,ss( x)  (with i = 1 or 2); 

• and a homogeneous time-dependent problem (called complementary transient) defined by the temperature 

   
Ti,ct ( x, t )  (with i = 1 or 2) and having 

   −
Ti,ss( x)

 as an initial temperature. 
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The two simpler problems stated above can be obtained by setting 
   
Ti ( x, t ) = Ti,ss( x)+ Ti,ct ( x, t )

 into Eqs. (1a)-
(1h). Their solution is given in the following paragraphs. 

3.1 Nonhomogeneous Steady-State Problem 

The temperature solution 
   
Ti,ss( x)

 is: 

   
T1,ss( x) = 1+ 1

Bi2
+ Rc −

1
k
x                      (−L ≤ x ≤ 0)                                           (3a) 

   
T2,ss( x) = 1+ 1

Bi2
− x                                                                (0 ≤ x ≤1)           (3b) 

3.2 Homogeneous Complementary-Transient Problem 

By applying the SOV-based orthogonal expansion technique [7, Chap. 8], the solution of the above 
homogeneous problem is: 
 

   
Ti,ct ( x, t ) = cne

−βn
2tψ i,n( x)

n=1

∞

∑                        (i = 1, 2)                                     (4) 

 
where nβ  is the n-th eigenvalue whose computation is discussed ahead; and 

   ψ i,n( x)  is the corresponding 

eigenfunction of the i-th layer which may be taken as 
 

   
ψ 1,n( x) = A1,n sin

βn

α
x

⎛
⎝⎜

⎞
⎠⎟
+ cos

βn

α
x

⎛
⎝⎜

⎞
⎠⎟    

   (−L ≤ x ≤ 0)                                           (5a) 

 

   
ψ 2,n( x) = A2,n sin βn

x( ) + B2,n cos βn
x( )

   
   (0 ≤ x ≤1)                                              (5b) 

 
The above coefficients may be derived by the inner and outer boundary conditions. After some algebra, we 
have 
 

   
A1,n = − tan

βn

α
L

⎛
⎝⎜

⎞
⎠⎟

,  
   
A2,n = −

k
α

tan
βn

α
L

⎛
⎝⎜

⎞
⎠⎟

,  
   
B2,n = 1−

βn

α
Rc
k tan

βn

α
L

⎛
⎝⎜

⎞
⎠⎟

 (6) 

 
Also, the constant nc  appearing in the general solution Eq. (4) may be derived by applying the initial 
condition. Bearing in mind the orthogonality property of the eigenfunctions [7, Eq. (8.23-a)], we have: 
 

   
cn = − 1

Nn

k
α

T1,ss( ′x )ψ 1,n( ′x )d′x
′x =− L

0

∫ + T2,ss( ′x )ψ 2,n( ′x )d′x
′x =0

1

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥      

(7a) 

 
where the norm  Nn  is defined as 
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Nn =

k
α

ψ 1,n
2 ( ′x )d′x

′x =− L

0

∫ + ψ 2,n
2 ( ′x )d′x

′x =0

1

∫
                     

(7b) 

 

Computation of the eigenvalues 

The eigenvalues appearing in the complementary transient solution, Eqs. (4)-(7), may be computed as roots of 
the so-called eigencondition that is a transcendental equation coming from the application of the outer and 
inner boundary conditions. For the problem addressed, it is given by:   
 

   

f (β ) =
β + Bi2 tan(β )
Bi2 − β tan(β )

f1(β )
  

−
α − Rcβ k tan β

α
L

⎛
⎝⎜

⎞
⎠⎟

k tan β
α

L
⎛
⎝⎜

⎞
⎠⎟

f2 (β )
  

= 0

                    
(8) 

The eigenvalues are computed by using the hybrid root-finder technique as described in [11, 12]. The starting 
point is that an eigenvalue is certainly located in the range between two successive asymptotes of the functions 

  f1(β )  and   f2(β ) . These asymptotes are located where the denominator of 1f  and 2f  becomes zero. In 

particular, we note that the denominator of the   f1(β )  function is the eigencondition for the single-layer 
problem X23, whose eigenvalues can be obtained straight in an algebraic explicit form [13]. In other words, 
the locations of the asymptotes for   f1(β )  are the same as the eigenvalues for individual layers. For 2f , 
however, it is immediate to find the asymptotes.  

Once the lower and upper bounds of each eigenvalue are established, the above hybrid computing technique 
provides the numerical value of that eigenvalue. 

3.3 Temperature Solution 

Applying the principle of superposition, the temperature of each layer is given by 
   
Ti ( x, t ) = Ti,ss( x)+ Ti,ct ( x, t ) . 

Therefore, bearing in mind Eqs. (4) and (6), we can write: 
 

   
T1( x, t ) = 1+ 1

Bi2
+ Rc −

1
k
x

⎛

⎝⎜
⎞

⎠⎟
+ cne

−βn
2tψ 1,n( x)

n=1

∞

∑                        (−L ≤ x ≤ 0; t ≥ 0)                                    (9a) 

 

   
T2( x, t ) = 1+ 1

Bi2
− x

⎛

⎝⎜
⎞

⎠⎟
+ cne

−βn
2tψ 2,n( x)

n=1

∞

∑                         (0 ≤ x ≤1; t ≥ 0)                 (9b) 

 
A computer code in Matlab ambient was written for computing the above temperatures. A related code in 
Mathematica ambient is available at the internet site Exact Analytical Conduction Toolbox, or ExACT [14]. 
However, it refers to a two-layer slab with perfect contact between layers (X2C13B10T00 [15]). EXACT 
should be useful to engineers and scientists engaged in code verification, inverse problems, indirect 
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measurements, and anyone with a need for precise numerical values obtained from verified algorithms in heat 
conduction/diffusion. National Science Foundation funds this project. 
However, for early times (less than the so-called deviation time td [10, 16, 17]), the temperature distribution of 
the first layer is not disturbed by the presence of the second layer. Hence, it behaves as a semi-infinite solid 
subject to a surface heat flux (X20B10T0) at its boundary with errors less than   10− A  (A = 1, 2, …, 10). The 
X20B1T0 solution is well-known and is given by [18]  
 

   
   
T1( x, t ) ≈ 2

k
α t ierfc

x + L

2 α t
⎛
⎝⎜

⎞
⎠⎟  

   
   
−L ≤ x ≤ 0; 0 ≤ t ≤ td =

1
10A α

(L− x)2⎛
⎝⎜

⎞
⎠⎟  

(9c) 

 
where   ierfc(z)  is the complementary error function integral.  

4 Sensitivity Coefficients 

Once the analytical solution of the thermal field is known, the scaled sensitivity coefficients for each layer can 
be obtained as partial derivatives of the temperature of the corresponding layer with respect to the model 
parameter η  of interest (e.g., 0q , 1k , 2k ,   C1 ,   C2 ,   h2 ,  Rc ) multiplied by the parameter itself:  

  
Sη ,i =η

∂Ti

∂η
⎛
⎝⎜

⎞
⎠⎟

         (10) 

 
The scaled sensitivity coefficient has hence units of °C and their calculation requires the use of the chain rule 
[19]. In a dimensionless form,  
 

   
Xη ,i =

Sη ,i

q0L2 / k2

=η
∂ Ti

∂η
⎛
⎝⎜

⎞
⎠⎟

         (11) 

 

4.1 Heat flux as a parameter 

If the parameter of interest is the heat flux applied to the boundary surface x = -L1, the corresponding 

dimensional scaled sensitivity coefficient is      

   

Sq0 ,i = q0

∂Ti

∂q0

= q0

∂
∂q0

Ti

q0L2

k2

⎛

⎝⎜
⎞

⎠⎟
= q0

q0L2

k2

∂ Ti

∂q0

⎛

⎝⎜
⎞

⎠⎟

=0


+ Ti
∂
∂q0

q0L2

k2

⎛

⎝⎜
⎞

⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
q0L2

k2

Ti     (12) 

In dimensionless form, they are: 
   
Xq0 ,1 = T1  and 

   
Xq0 ,2 = T2 .   

4.2 Thermal conductivity and volumetric heat capacity as parameters 
As    
T1  and    

T2  depend on the thermal properties of both heater and specimen, we will have eight coefficients, 
four for each layer, as shown in the following. 

• Thermal conductivity: 
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Sk1,i = k1

∂Ti

∂k1

⎛

⎝⎜
⎞

⎠⎟
= k1

∂
∂k1

Ti

q0L2

k2

⎛

⎝⎜
⎞

⎠⎟
= k1

q0L2

k2

∂ Ti

∂k1

⎛

⎝⎜
⎞

⎠⎟
           (i = 1 or 2)              (13a) 

 

   
Sk2 ,i = k2

∂Ti

∂k2

⎛

⎝⎜
⎞

⎠⎟
= k2

∂
∂k2

Ti

q0L2

k2

⎛

⎝⎜
⎞

⎠⎟
= k2

q0L2

k2

∂ Ti

∂k2

⎛

⎝⎜
⎞

⎠⎟
+ Ti

∂
∂k2

q0L2

k2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

          (i = 1 or 2)              (13b) 

where 
   
Ti = Ti

k , α , t , Bi2 , Rc ,βn( k , α , Bi2 , Rc )⎡⎣ ⎤⎦ , with    
k(k1,k2 ) ,    α[α1(k1),α 2 (k2 )] ,    

t [α 2 (k2 )] ,   Bi2 (k2 )  and 

   
Rc (k2 ) . By using the chain rule: 

   

∂ Ti

∂k1

=
∂ Ti

∂k
∂k

∂k1

+
∂ Ti

∂α
∂α

∂α1

dα1

dk1

+
∂ Ti

∂βn

∂βn

∂k
∂k

∂k1n=1

∞

∑ +
∂ Ti

∂βn

∂βn

∂α
∂α

∂α1

dα1

dk1n=1

∞

∑                (14a) 

   

∂ Ti

∂k2

=
∂ Ti

∂k
∂k

∂k2

+
∂ Ti

∂α
∂α

∂α 2

dα 2

dk2

+
∂ Ti

∂t
dt

dα 2

dα 2

dk2

+
∂ Ti

∂Bi2

dBi2
dk2

+
∂ Ti

∂ Rc

d Rc

dk2

+
∂ Ti

∂βn

∂βn

∂α
∂α

∂α 2

dα 2

dk2n=1

∞

∑

      +
∂ Ti

∂βn

∂βn

∂k
∂k

∂k2n=1

∞

∑ +
∂ Ti

∂βn

∂βn

∂Bi2

dBi2
dk2

+
n=1

∞

∑ ∂ Ti

∂βn

∂βn

∂ Rc

d Rc

dk2n=1

∞

∑            (14b)
 

Substituting Eqs. (14) in Eqs. (13) gives the scaled sensitivity coefficients with respect to the thermal 
conductivities in both layers. In dimensionless form, we have: 

   
Xk1,i = k

∂ Ti

∂k
+α

∂ Ti

∂α
+

∂ Ti

∂βn

k
∂βn

∂k
+α

∂βn

∂α
⎛
⎝⎜

⎞
⎠⎟n=1

∞

∑                               ( 1,2i = )              (15a) 

   

Xk2 ,i = t
∂ Ti

∂t
− Ti − k

∂ Ti

∂k
+α

∂ Ti

∂α
+ Bi2

∂ Ti

∂Bi2
− Rc

∂ Ti

∂ Rc

⎛

⎝⎜
⎞

⎠⎟

       −
∂ Ti

∂βn

k
∂βn

∂k
+α

∂βn

∂α
+ Bi2

∂βn

∂Bi2
− Rc

∂βn

∂ Rc

⎛

⎝⎜
⎞

⎠⎟n=1

∞

∑
        ( 1,2i = )                         (15b) 

• Volumetric heat capacity. In a similar manner, we obtain 

   
XC1,i = C1

∂ Ti

∂C1

⎛

⎝⎜
⎞

⎠⎟
= −α

∂ Ti

∂α
−α

∂ Ti

∂βn

∂βn

∂αn=1

∞

∑                             ( 1,2i = )               (16a) 

   
XC2 ,i = C2

∂ Ti

∂C2

⎛

⎝⎜
⎞

⎠⎟
=α

∂ Ti

∂α
− t

∂ Ti

∂t
+α

∂ Ti

∂βn

∂βn

∂αn=1

∞

∑         ( 1,2i = )                         (16b) 

4.3 Heat transfer coefficient and contact resistance as parameters 
Similarly to what was done in the previous subsection, we have: 
 
• Heat transfer coefficient 

   
Xh2 ,i = h2

∂ Ti

∂h2

⎛

⎝⎜
⎞

⎠⎟
= Bi2

∂ Ti

∂Bi2
+ Bi2

∂ Ti

∂βn

∂βn

∂Bi2n=1

∞

∑                            ( 1,2i = )               (17a) 
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• Contact resistance 

   
X Rc ,i = Rc

∂ Ti

∂Rc

⎛

⎝⎜
⎞

⎠⎟
= Rc

∂ Ti

∂ Rc

+ Rc

∂ Ti

∂βn

∂βn

∂ Rcn=1

∞

∑         ( 1,2i = )                         (17b) 

4.4 Thermal diffusivity as a parameter 
Similarly, we obtain: 
 

   
Xα1,i =α1

∂ Ti

∂α1

⎛

⎝⎜
⎞

⎠⎟
=α1

∂ Ti

∂α
∂α

∂α1

+
∂ Ti

∂βn

∂βn

∂α
∂α

∂α1n=1

∞

∑
⎛

⎝
⎜

⎞

⎠
⎟                   (18a)

   
Xα2 ,i =α 2

∂ Ti

∂α 2

⎛

⎝⎜
⎞

⎠⎟
=α 2

∂ Ti

∂t
dt

dα 2

+
∂ Ti

∂α
∂α

∂α 2

+
∂ Ti

∂βn

∂βn

∂α
∂α

∂α 2n=1

∞

∑
⎛

⎝
⎜

⎞

⎠
⎟                             (18b) 

 
The sensitivity coefficients with respect to the thermal diffusivity in both layers are: 

   
Xα1,i =α

 ∂ Ti

∂α
+α

∂ Ti

∂βnn=1

∞

∑ ∂βn

∂α
                                                                       (19a) 

   
Xα2 ,i = t

∂ Ti

∂t
−α

∂ Ti

∂α
−α

∂ Ti

∂βnn=1

∞

∑ ∂βn

∂α
                                                               (19b) 

By means of Eqs. (19), the sensitivity coefficients of Eqs. (15) and (16) can be rewritten in a more compact 
way as 

   
Xk1,i = Xα1,i + k

∂ Ti

∂k
+ k

∂ Ti

∂βnn=1

∞

∑ ∂βn

∂k
                                                                (20a)  

   
Xk2 ,i = Xα2 ,i −Ti

 − k
∂ Ti

∂k
+ Bi2

∂ Ti

∂Bi2
− Rc

∂ Ti

∂ Rc

⎛

⎝⎜
⎞

⎠⎟
−

∂ Ti

∂βn

k
∂βn

∂k
+ Bi2

∂βn

∂Bi2
− Rc

∂βn

∂ Rc

⎛

⎝⎜
⎞

⎠⎟n=1

∞

∑                        (20b) 

  
XCi ,i

= −Xα i ,i
                                                                              (20c) 

4.5 Computation of sensitivity coefficients 
The partial derivatives appearing in Eqs. (15), (16), (17) and (19) are calculated analytically with the exception 
of    ∂βn / ∂ k ,    ∂βn / ∂ α ,   ∂βn / ∂Bi2  and    ∂βn / ∂ Rc . These are computed numerically by using a first order 
backwards difference as, for multi-layer slabs, there are no explicit algebraic expressions of the eigenvalues 
such as for single-layer bodies [13].    
It is relevant to note that all the scaled coefficients of sensitivity discussed above sum to zero for all values of 
time and position: 

  

( Xq0 ,1 + Xq0 ,2 )+ ( Xk1,1 + Xk2 ,1 + Xk1,2 + Xk2 ,2 )+ ( XC1,1 + XC2 ,1 + XC1,2 + XC2 ,2 )

+( Xh2 ,1 + Xh2 ,2 )− ( X Rc ,1 + X Rc ,2 ) = 0
                        (21) 

The same is true for each layer considered individually: 

  
Xq0 ,1 + Xk1,1 + Xk2 ,1 + XC1,1 + XC2 ,1 + Xh2 ,1 − X Rc ,1 = 0                               (22a) 
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Xq0 ,2 + Xk1,2 + Xk2 ,2 + XC1,2 + XC2 ,2 + Xh2 ,2 − X Rc ,2 = 0                               (22b) 

Furthermore, it can be demonstrated that, for each layer, the following equations are valid: 

   
Xq0 ,i = Ti

                                                                                           (23a) 

   
Xk1,i + Xk2 ,i = t

∂Ti


∂t
−Ti
                                                            (23b) 

   
XC1,i + XC2 ,i = −t

∂Ti


∂t
                                                         (23c) 

They are exactly the same as the ones found for one-layer slabs [19]. 

5 Results 

By using the numerical values of the experimental apparatus proposed in Ref. [6] for the thermal property 
measurements of an orthotropic carbon specimen, as given in the table below, 

Table 1 – Thermal properties 
 

layer k [W m-1 °C-1] C [J m-3 °C-1] L [mm] 
1st layer (mica heater) 0.14 2.03 x 106 0.44 

2nd layer (carbon sample) 3.4 1.42 x 106 9.14 
 

 
the dimensionless variables defined by Eq. (2) are: 

  L = 0.048 ,       k = 0.041,      α = 0.0288 ,       R


c = 0.05        (24) 

In particular, the numerical value of the dimensionless contact resistance comes out from Rc = 1.34 x 10-4 °C 
m2 W-1 [20]. As the most critical parameter is the thermal conductivity, only its related sensitivity coefficient 
will here be taken into account.  
Figure 2a shows a comparison between sensitivity coefficients of the sample at x = 0 for Bi2 → ∞, namely 

  
Xk1,2  

and 
  
Xk2 ,2 , with (two-layer) and without (one-layer) heater. It can be noted that the greater the thermal 

conductivity of the heater (   k = 10  vs.    k = 0.1), the lower the temperature sensitivity of the sample to its 
conductivity. In the one-layer transient problem (denoted by X21B10T0) the heater is completely neglected 
and, hence, the only layer is the specimen of interest. For sake of brevity, the solution of the X21B10T0 
problem is not given here but it is available along with a related computer code in Matlab ambient for its 
computation at the internet site ExACT [21]. 
Figure 2b analyzes the effect of the contact resistance on both 

  
Xk1,2  and 

  
Xk2 ,2  calculated at x = 0 for Bi2 = 0. 

The former is nearly constant when the contact resistance varies, while the latter is more influenced by   
Rc . 

The sensitivity coefficients for    R


c = 0.05  are not plotted in Fig. 2b as they are practically the same as the ones 
given for    R


c = 0 . The temperature sensitivity of the sample to its conductivity reduces for large values of the 

contact resistance. A curve for the one-layer configuration (denoted by X22B10T0) is plotted on the same 
figure as a reference case. A computer code of the X22B10T0 problem is available in Ref. [22]. 
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(a) (b) 

  
 

Figure 2: Dimensionless thermal conductivity scaled sensitivity coefficients of the sample at x = 0 vs. time for different 
values of a) thermal conductivity ratio   k  (for Bi2 → ∞ ) and b) contact resistance   

Rc  (for Bi2 = 0). 

 
(a) (b) 

  
 
Figure 3: Dimensionless thermal conductivity scaled sensitivity coefficients of the sample versus time at x = 0 for  

(a) 2 0Bi =  and (b)   Bi2 →∞ . 
 

(a) (b) 

  
 

Figure 4: Dimensionless scaled sensitivity coefficients of the heater with respect to the thermal conductivity at x = -L1  
as a function of time for (a) 2 0Bi =  and (b)   Bi2 →∞ . The asymptotic behavior of 

  
Xk1,1  is plotted too. 
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Figure 3 shows the dimensionless scaled sensitivity coefficients of the sample at x = 0 with respect to k1 and 
k2, namely 

  
Xk1,2  and 

  
Xk2 ,2 , for two different values of the Biot number,   Bi2 = 0  (Fig. 3a - X2C32B10T0) 

and   Bi2 →∞  (Fig. 3b - X2C31B1T0; backside of the sample perfectly cooled). It is relevant to note that, for 

  Bi2 →∞ , the 
  
Xk2 ,2  coefficient is larger in magnitude. Therefore, except for early times, the sample 

temperature sensitivity to the thermal conductivity of the mica heater is small in comparison to the thermal 
conductivity of the same sample. A comparison with the one-layer configuration (only sample) is given too.  
Finally, Figure 4 shows the sensitivity of the heater temperature calculated at x = -L (mica heater mid-plane) 
for two special cases: 2 0Bi =  (Figure 4a) and   Bi2 →∞  (Figure 4b). For both cases, the temperature 

sensitivity of the heater 
  
Xk1,1  

to its thermal conductivity is of the same order of magnitude as the sensitivity to 

the thermal conductivity of the specimen, 
  
Xk2 ,1 . Therefore, the thermal conductivity of the mica heater is as 

important as the thermal conductivity of the carbon sample and this aspect is not ideal for estimating the 
thermal conductivity of the specimen.  
As for early times (less than the deviation time) the temperature distribution of the heater may be evaluated 
accurately by using Eq. (9c) in place of Eq. (9a) (that requires many eigenvalues), the sensitivity coefficients 
of Fig. 4 have been evaluated (with errors less than   10− A ) through the following algebraic expressions 
(instead of Eqs. (15a) and (15b) for i = 1, respectively) 
 

   

Xk1,1 ≈ −
T1

2
+
x + L
2 k

⎛
⎝⎜

⎞
⎠⎟

erfc
x + L

2 α t
⎛
⎝⎜

⎞
⎠⎟

q1

  
= −
T1

2
+
x + L
2 k

⎛
⎝⎜

⎞
⎠⎟
q1 ,      

  
Xk2 ,1 ≈ 0     for     

   
0 ≤ t ≤ td =

(L− x)2

10A α
 (25) 

where    q1 = q1 / q0  is the conductive heat flux within the heater when it behaves as a semi-infinite solid. Also, 
as Fig. 4 refers to the location   x = −L , the first of the two equations listed before simplifies to 
 

   
Xk1,1 ≈ − 1

k
α t
π

       for      
   
0 ≤ t ≤ td =

4L2

10A α
= 0.016     (26) 

where an accuracy of A = 2 (1 %) was considered. Hence, equation (26) represents the asymptotic behavior of 
Eq. (15a) when i = 1 for small values of the time. 

6 Conclusions 

The sensitivity analysis treated in this paper suggests that it is preferable to have the sensor for the temperature 
measurement embedded in the specimen, that is, at the interface between heater and specimen, rather than 
embedded in the heater. The experiment will in fact not be affected by the presence of the heater, regardless of 
its properties. On the contrary, if the temperature is measured in the heater, additional materials in the 
experimental configuration can have a larger impact on the temperature than the material of interest. 
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Abstract 

The homogenization theory is a powerful approach to determine the effective thermal conductivity 
tensor of heterogeneous materials such as composites, including thermoset matrix and fibers. Once the 
effective properties are calculated, they can be used to solve a heat conduction problem on the 
composite structure at the macroscopic scale. This approach leads to good approximations of both the 
heat flux and temperature fields in the interior zone of the structure. However, this approach provides 
a rather bad description of the heterogeneous fields close to the boundary. Consequently, the accuracy 
of the homogenized solutions in the vicinity of the boundary requires some additional correcting terms 
in order to account for edge effects. In the field of heat conduction, the solutions of classical inverse 
problems aim to determine unknown thermal properties and/or unknown heat flux boundary 
conditions from measurements which are most often located on the boundary of the sample. When 
these problems are formulated for heterogeneous media, the solution of the inverse problems is 
computed for estimating or by using the effective thermal properties. So the question of modeling the 
edge effects becomes important in order to perform reliable error analysis in such problems. In this 
paper, we will investigate the influence of edge effects on the solution of inverse heat conduction 
problems within heterogeneous periodic media, for which boundary measurements are used as 
additional data. Basic results concerning the homogenization approximation and the determination of 
correcting terms based on multi-scale asymptotic expansions will be first briefly presented, then the 
analysis of edge effects are performed and illustrated in the case of the classical “laser flash” 
experiment. 

1.-Introduction 

A usual approach to predict the thermal behaviour within complex heterogeneous media, consists in 
determining the effective thermal properties and/or temperature fields through homogenized heat 
transfer modelshomogenization theories.  From an experimental point of view, specific devices such 
as classical transient laser flash (LF) [1], hot wire [2] methods (among others), or a specific hot disc 
method [3] can be used to estimate these effective properties.  
The heat transfer modelling according to a multi-scale analysis [4]-[6] is complementary to the 
experimental approach and quite powerful. It aims on one hand to determine the effective thermal 
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properties from data known at the scale of the components, and on the other hand to have a better 
understanding of the “edge effects” [7]-[9] which may perturb the temperature field of the 
homogenized heat conduction model close to the boundaries of the spatial domain. Consequently in 
the estimation process of effective properties from experiments, which would result on the comparison 
of experimental surface temperatures with the solutions of homogenized models, more insight have to 
be done in the analysis of these “edge effects”, to know when they can be neglected or not. More 
generally in the inverse analysis of experimental data, it is well-known that modelling errors should 
imply biased estimation of the unknown model parameters [10].  
In a previous work [11], devoted to the heat conduction steady state analysis within heterogeneous 
periodic structures, it was shown how correcting terms can be introduced in the multi-scale asymptotic 
method to take into account these “edge effects”, for homogenized 3-D heat conduction model. These 
results were extended to transient heat conduction [12] by using a space-time homogenization 
approach. Such approach was also studied in [13-14]. However, the introduction of additional terms to 
correct the edge effects in transient state was not considered.  
In this paper, Wwe recall herefirst how these transient correcting terms can be introduced and 
calculated, depending on the classical boundary conditions in the heat transfer problem considered, 
and how correcting terms have also to be added to take into account “short time” effects. New 
numerical results are presented in the case of a periodic structure which models a simple UD (uni-
directional) composite material, but the method is quite general and could be used for more complex 
periodic heterogeneous structures, like in plain weave fabric composites [15]. 
The last section is devoted to the discussion of numerical results of the heat transfer modelling in a LF 
experiment. The “heterogeneous solution” is compared to the homogenized one, computed with and 
without correcting terms, and to the analytical homogeneous solution. The spatial average temperature 
rise on the back face is measured as a function of time, and compared to the response of the 
homogenized problem in order to determine the effective thermal diffusivity of the sample. The bias, 
which results on the estimated value of the thermal diffusivity when edge effects are neglected in the 
homogenized model, is evaluated. The influence of the ratio between the size of the periodic cell and 
the size of the sample, so called the scale factor, is studied numerically for a UD structure. 
 
 
2  Problem statement -Heat conduction in the heterogeneous medium 

Let us consider a piece of heterogeneous periodic material, figure 1, defined in a bounded domain 
Ω  . The macroscopic coordinates of a point of Ω are denoted , , ,  in a Cartesian 

coordinate system 0, , , . The boundary ∂Ω is subdivided in four distinct parts Ω , 
in order to consider  the different usual kinds of boundary conditions associated to the heat conduction 
problem: 

 A Fourier condition on  : the normal outward component  .  of the heat flux is fixed by an 
external temperature  and a heat transfer coefficient . 

 A Neumann condition on  : the normal outward component  .  of the heat flux is fixed    

 A Dirichlet condition on  : the temperature is fixed  

 A periodic condition on  
The initial condition is fixed by the field , Ω, which is uniform or not.  

 
The heterogeneous fields in the spatial domain Ω , are denoted respectively  (temperature) and    

(heat flux density). These fields over the time interval 0,  satisfy the following set of transient heat 

conduction equations together with the different kinds of boundary and initial conditions:  
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,
 , 0 Ω 0,

 , ,                          Ω 0,
, 0              Ω

 , .           0,

 , .             0,

,             0,

0,

 

 
 
 
 
(1)

where n is the outward normal unit; ,  and  are respectively the density, the heat capacity and the 

thermal conductivity tensor of the heterogeneous medium which is assumed to have a periodic 
structure.  

The periodic cell (see the figure 1), is denoted ∏ 0, , and , ,  are the 

coordinates of a cell point. The scale factor  is the ratio between the size of Y and the size of  Ω. Tthe 
microscopic coordinates are thus defined from .  
Each component ; , 1,2,3   of the thermal tensor and the parameter  are cell-periodic 

and depends on the local variable   (microscopic scale) in the cell domain Y. 

 
 

 

Figure  1: The spatial domain   of the heterogeneous periodic medium and the associated 
periodic cell Y 
 

3  Multi-scale asymptotic expansion method 

It is assumed that the thermal conductivity of each components of the heterogeneous structure have the 
same order of magnitude, which means that the thermal contrast is not too large. The same assumption 
is done for the heat capacities. The influence of large contrast is not considered here and , it should 
lead to more developments, as described for example in [6]. Assuming that the scale factor ε is small 
enough, the asymptotic expansion method leads to expand the temperature  , under the classical 
following form: 
 

, , , , , , . , , . ; Ω,    (2) 
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To compute the effective  thermal conductivity tensor K* and T1(x,y,t), the new variables 
components , 1,2,3 of the variable y may then be introduced at the 
microscopic scale, as the solution of the cell problem (i=1,2,3): 

 
0

  
 

(3) 

therefore it can also be shown that the function  does not depend on the microscopic 
variable, and  satisfies the “homogenized” macroscopic scale heat conduction equation:  
 

,
, 0 Ω 0,

, 0              Ω  

 
(4) 

 

 
 

while the function , ,  can be written as: 

, ,
,

 
(5) 
 
 

And the heat flux, at the order k =0, is given by: 
 

, , .  ,  (6) 
 

where the effective thermal properties of the homogenized medium satisfy: 

1
| |

and , | |
, i,j 1,2,3

 

(7a) 
 
(7b) 

It was discussed in a previous work [11] how periodic homogenization . , at the order 

1, provides good approximations of the heterogeneous solutions   far enough from the 
boundary ∂Ω of the spatial domain. However, this approximation is not satisfactory anymore close to 
the boundary. This is first due to the loss of spatial periodicity. The second reason is that Neumann or 
Fourier conditions are only satisfied in a weak sense.  
Consequently, in the vicinity of the boundary, correcting terms of “edge effects” have to be added. 
More generally in the transient state, the asymptotic expansion method developed above, provides a 
solution which satisfies the initial condition at the macroscopic scale, but does not guaranty that the 

initial condition of the functions , , 0 , 1, are equal to zero. Then correcting terms of 
“short time effects” have also to be introduced. 

 
Finally, the temperature   may be expanded (at the order 1 , under the new following form 

, . , , , , , , , , , … ; 
 
(8) 

which involves the correcting terms  and  ,  for short time and spatial boundary layer effects, 

respectively. 
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The spatial variations of , are exponentially decreasing [16] and vanish far enough from the 

boundary   : the superscript values m=1,2,3 corresponds to one of the three different kinds of 
boundary condition usually associated to the heat conduction problem, see equations (1). The vicinity 
of the boundaries  , ,    is defined as a strip    into the spatial domain Ω, in the normal direction 

to  [11]. By substituting this new asymptotic expansion in the heat conduction equation, and by 
identifying the powers of , we get a series of “spatial boundary layer” problems. At the order 1, 
it comes: 

, , , , , , ,  ,  
(9) 

 
Consequently, the “edge effect” correcting term at the order 0, for associated to the 
approximation of the heat flux density can be written: 
 

 , , , , , ,  (10) 

 
The functions  , , i=1,..,3; m=1,..,3, are the solutions of the following set of equations: 
 

,
, 0 0,

, 0 , 0     

 ,

 

(11) 

 
Like in the steady state analysis [11], depending on the condition chosen for determining the 
temperature field on the boundary   (Fourier, Neumann or Dirichlet conditions), the boundary 

condition for computing   on   takes different forms on 0, : 
   

 Neumann or Fourier conditions (m=1 or 2): 

, .

, .

1
| |

.  

(12a)

 Dirichlet condition (m = 3): 
, , (12b) 

 
Furthermore, it was shown [11] how the depth of the “heat conduction boundary layer” (in the steady 
state), may be determined by solving numerically a specific eigenvalues problem set on , 
depending on the kind of the boundary condition on  . For the above example, in the vicinity of 

  the exponential decreasing in space of ,  in the  direction, can be written [16]: 

 

 .   (13) 

 
And where the parameter   is given by the lowest solution of an eigenvalues problem,   is the 
associated eigenvector on the sub-domain . Hence the depth  of the spatial boundary layer close 
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to   where the correcting term ,  does not spatially vanish can be estimated by 

 
. More 

mathematical developments and numerical results can be found in [11]. 

 

The short time correcting terms  are determined, according to a double asymptotic scale in the time 
range (as in the spatial domain) [17]-[20], by introducing a “fast time” variable . . At the 

order 1, according to developments [12] similar to the above approach for , , they may be 

computed as follows: 

, , ,
,

,  
(14) 

and the “short time” correcting term at the order k 0, for associated to the approximation of the heat 
flux density can be written: 

 , , , , ,  (15) 

 
where the new variables z y, τ , i 1,2,3 are solutions of the transient periodic cell problems 
 

,
, 0 0,

, 0
 

(16) 

 

 
The correcting terms   are exponentially decreasing in time over the entire spatial domain, and 
vanishes after “short times”. 

 

4  Application to the modelling of a laser flash experiment  

The laser flash [1] device is used to perform classical thermal experiments aiming to determine 
experimentally the effective thermal diffusivity of materials, heterogeneous or not. The data 
processing is based on the inverse analysis of the temperature rise measured on the back face of the 
sample which results of a heat pulse on the front face. To characterize heterogeneous structures, some 
“homogenized solution” of the transient heat conduction problem has to be compared to the 
measurements. Then it is important to take into account these « short time » and « spatial edge » 
effects, in the heat transfer modelling of the experiment (or at least to have them in mind) in order to 
avoid biased estimation.  

 

4.1- The numerical measurements from the “heterogeneous solution”   

The thermal characterization of a UD structure is considered (see figure 2). The initial state is 
supposed to be uniform, 0; the heat losses are modelled by a Fourier condition on both 
faces, with a heat transfer coefficient 100 . .  and the external temperature 0 
and. In practice, this  h value should be not so high, but it has been chosen here to emphasize the “edge 
effects”. Adiabatic condition is assumed on the others boundaries. 
Three different values of the thickness sample are considered ( 3, 5, 10 ), to study the influence 

of the scale factor (=0.33; 0.2; 0.1, respectively): 3, 5, 10 . The heat pulse (duration = 0.001s, 

2. 10 . ) is imposed at the front face of the rectangular sample. The resulting 

measurements  are simulated on the back face. They are obtained by a spatial averaging of the 
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solution ,  and plotted on the figure 3 (black lines). It is observed how the maximal temperature 
rises (time, magnitude) depends on the thickness of the sample.  
 

 

Figure 2: The UD medium  and the associated periodic cell 

   0.1 . .   

10 . .  

1  . .  

5 10 . .  

Fiber 
volume 
ratio 

Ω
|Ω|

0.64 

Cell 
size (l) 

1  

 

Table 1: Thermal and geometrical data 
for the UD periodic structure‐  

 

4.2- The temperature response with the space-time expansion method. 

Due to the symmetry of the periodic cell, the homogenized medium is isotropic and the effective 
thermal properties computed with the data given in table 1, are found to be: 

 conductivity tensor : 0.333 0
0 0.333

  . 1. 1 ;   and ⁄ 10 

 heat capacity: 
1

| |
3.54 105 . 3. 1 ; and  ⁄ 5 

 diffusivity components: // 9.41. 10 .   

The homogenized solutions .   are computed according to the multi-scale space-time 

expansion method and the first order correcting terms  ,  is added or not. In this example, the 

correcting term   for “short-time” effects can be neglected. The spatial average of these solutions on 
the back face are shown on figure 3  and compared to the heterogeneous solutions. The deviations 

which are observed without ,  (red lines) are well corrected when this term is considered (blue 

lines).  
 

4.3- The estimation of the thermal diffusivity 

In the LF experiment, the value of the effective thermal diffusivity component a// of the 

heterogeneous medium is estimated by matching the back face temperature measurements to the 
response of a homogenized heat conduction model.  If no correcting terms (especially due to edge 
effects) are considered in the homogenized solution, a modelling error is done as illustrated on figure 

3, and a biased estimation value a//  is expected. 

The matching process which aims to get  //  from the measurement data  is developed for three 

cases, in order to observe the influence on the thickness sample. Details of the method can be found in 

[1]. It allows to determine the parameter a//   for which the exact 1-D analytical homogeneous 

solution  gives the best fit to . To verify the method, it is first applied to the data (red lines) 

without the correcting terms . . For the three cases, the effective value //

9.41 0.05 6 .  is well estimated. Then the method is applied to the data of the 

207



 A. Matine, N. Boyard,  Y. Jarny    
 
 
heterogeneous model . Three different estimated values a//  of the thermal diffusivity 

component a//  are found, and the resulting bias ∆a a// a//  are summarized in table 2. 

 

 
L=3mm ; =0.33 

 

 
L=5mm ; =0.2 

 

 
L=10mm ; =0.1 

 

 

 
Figure 3: Left: The homogenized  temperatures on the back face, computed with and without the 
correcting terms, and compared to the heterogeneous solution (influence of the scale factor). Right:‐ 
Deviations due to the correcting terms‐ Influence of the scale factor. 
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Thickness 
 

Scale factor 

 
Estimated value 

//  ( .  
Bias 

∆ // //  

∆

//
 

0.01 0.1 9.70e-6 0.28e-6 2.97% 
0.005 0.2 10.54e-6 1.13e-6 12% 
0.003 0.33 12.51e-6 4.1e-6 43% 

Table  2:  Biased  estimations  of  the  thermal  diffusivity  component    // - Influence  of  the 

thicknessscale factor. 

 
From these numerical experiments, three main results have to be underlined: 

 the homogenized solution .  without correcting terms  is uniform on the back face, 
and its spatial average is identical to the 1-D analytical homogeneous solution  computed with 

// , the “true” value determined from the effective properties 

 the homogenized responses , .  computed with the correcting terms ,  

(and the  “true” value //),  are quite identical for the three cases to the solutions   given by 

the heterogeneous model,  

 the 1-D analytical homogeneous solution   fits rather well the heterogeneous ones , but  

the thermal diffusivity  //  has to be chosen depending on thickness, which has no physical 

meaning. 
It is observed in table 2, that the values of //  are always overestimated, compared to the effective 

value a//.  These results illustrate how the approximation of the heterogeneous model by a simple 

homogeneous one, that is a homogenized model without correcting terms, is not correct. Obviously the 
approximation becomes acceptable, for large enough thickness of the sample, that is for low value of 
the scale factor, here for 0.1.  

 

7  Conclusions 

A space-time homogenization approach of a transient heat conduction problem in a periodic composite 
material has been developed according to a homogenization approach based on asymptotic expansion 
method. It leads to solve two kinds of problems, i.e. at the macroscopic and the microscopic scales. 
These results are available for any 3-D periodic heterogeneous structure, when the thermal contrast 
remains relatively low. 
Following this approach, it was shown how the effective thermal diffusivity of such material may be 
biased, when it is estimated by fitting the experimental temperature rise from a laser flash experiment 
with the homogenized temperature computed without correcting terms. The influence of the scale 
factor has been illustrated. A good separation of scales is also required to ensure a good diffusivity 
estimation. 
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Abstract 
A solution for the non-linear inverse heat conduction problem (IHCP) in a two-layer medium is proposed 
and tested through numerical experiment. The temperature histories are considered to be known at two 
points on one layer and the heat transfer rate at the end of the layer exposed to a thermal environment is 
to be determined. A step-by-step solution is proposed for solving this problem based on the minimization 
of the sum of the squared errors between the computed and known values and by using of Tikhonov 
Regularization for stabilizing the solution. The solution is cast in digital filter form which allows a near 
real-time heat flux estimation in the multi-layer problem. The filter coefficients are determined for 
different temperatures. These data are used to train an artificial neural network (ANN) which calculates 
the filter coefficients based on the temperature at each time step. The ANN here serves to interpolate the 
filter coefficients to account for the temperature variation of the material properties. The proposed 
method is tested via numerical model developed in ANSYS and also the results are validated with the 
exact solution for constant properties. The filter algorithm can be used easily for near real-time heat flux 
estimation in industrial applications. 

1 Introduction 

The problem of estimating unknown surface conditions (temperature or heat flux) using internal 
temperature measurements is known as inverse heat conduction problem (IHCP. The IHCP is an ill-
posed problem due to the lack of continuous dependence of the solution on the data. A small error in 
input data can significantly affect the outputs. Therefore, an appropriate regularization method needs to 
be applied to convert the ill-posed problem to a nearby well-posed problem which can be solved. Several 
techniques have been proposed and applied for solving IHCPs which can be found in references namely 
Beck [1], Alifanov [2], Ozisik and Orlande [3] and Murio [4]. Some of these  
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methods include the least-square method with regularization, the sequential function specification, 
conjugate gradient method and numerical approaches [1].   
Heat conduction in multi-layer mediums has been discussed in several papers. Ozisik [5] studied 
conduction in one dimensional composite media using orthogonal expansions, Green’s functions and 
Laplace transform. De Monte [6] studied the transient response of one-dimensional multilayered 
composite conducting slabs to sudden variations of the temperature of the surrounding fluid. An 
analytical method for solving multi-layer heat conduction problems using Laplace transform and 
separation of variables is developed by Lu et al. [7]. They show that the result from their proposed closed 
form solution is in good agreement with numerical techniques.  Haji-Sheikh and Beck [8] studied the 
temperature field in multi-dimensional, multi-layer bodies for the boundary conditions of the first, 
second and third kind. A solution for transient heat conduction through a one-dimensional three-layer 
composite slab is proposed by Sun and Wichman [9].  
A few studies discussed the solution of IHCPs in multi-layer medium. Al Najem and Ozisik [10] 
conducted an inverse heat conduction analysis using a splitting-up procedure and nonlinear least-squares 
technique for the whole time domain and estimated the surface condition in composite layers. Ruan et 
al. [11] used least square method and Beck's future time method for 1-D and 2-D geometries and 
calculated the unknown boundary cooling condition and contact heat transfer coefficient for 
solidification of alloys. The design of optimal transient heat conduction experiments on composite 
orthotropic materials is studied by Taktak et al. [12]. Al-Najem [13] developed a method of analysis for 
determining surface conditions from the knowledge of the time variations of the temperature at the 
insulated boundary. He used two segmented polynomial in time for the unknown surface temperature. 
An inverse solution is then developed over the whole time domain using the splitting-up procedure. 
The necessity for real time heat flux measurement in variety of industrial applications attracted a lot of 
attentions to develop real-time solutions for IHCPs. A filter solution based on the idea of training neural 
networks is studied by Kowsari et al. [14]. Ijaz, et al. [15], used a Kalman filter to solve a two-
dimensional transient IHCP. Feng et al. [16] used Laplace transforms to relate the measured conditions 
at one end of a domain to the unknown conditions at the remote surface.  Woodbury and Beck [17] 
studied the structure of the Tikhonov regularization problem and concluded that the method can be 
interpreted as a sequential filter formulation for continuous processing of data. They show that the 
computed heat fluxes using the whole domain solution and the filter coefficient solution are virtually the 
same for the constant-property solutions. 
 
While in most of the IHCP studies the remote boundaries is assumed as an insulated surface or cooled 
with a known heat transfer coefficient, e.g. [15, 18, 19], this is not always the case in practice. Woodbury 
et al. [20] developed a filter based solution to incorporate the temperature measurement history from a 
second subsurface sensor as a remote boundary condition in an IHCP solution. In real world problems, 
the material thermal properties can greatly vary during the heating/cooling process due to significant 
temperature changes. This paper presents a filter based solution for two-layer mediums when the 
material thermal properties are temperature dependent. For this purpose, two IHCPs are solved (one for 
each layer) and a coupled solution is determined and tested to estimate the unknown heat flux at the 
surface of the front layer. The solution is then written in a digital filter form and filter coefficients are 
calculated for different temperatures and corresponding material thermal properties. An artificial neural 
network is then developed and trained to interpolate the filter coefficients at every time step. The 
proposed solution is then verified through several numerical experiments using exact solutions and 
ANSYS simulation. The filter solution of the IHCP has several advantages including simplicity, 
continuous operation and application to moderate nonlinearity [21] which makes it an appropriate 
approach for real time heat flux estimation in industrial applications. 
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2 Problem Description 

A two-layer slab is considered to demonstrate the application of the proposed approach. A schematic of 
a two-layer slab is shown in Fig. 1. The temperature measurement histories are available for x=x1 and 
x= x2 on layer 2 while no specific temperature/heat flux measurement is available on layer 1. The heat 
flux at the remote surface of the first layer (x=0) is unknown and to be determined by the proposed 
solution. An IHCP is solved for each layer, starting from the one with known temperature measurements 
(layer #2 in here), and the heat flux is estimated at the interface with the next layer.  

 

Figure 1: Schematic of the two-layer problem 

3 Solution Scheme 

A schematic of the problem is given in Fig. 1. The solution is started in the second layer, where two 
temperature measurements are available at x1 and x2=L1+L2 and q1 is the unknown heat flux. After 
solving the first IHCP, the heat flux and temperature are both known at the interface (q1 and T1). These 
values will be used as boundary conditions to solve the second IHCP associated with the first layer, 
where q at x=0 (q0) is unknown. The analysis of each layer is explained in detail as below. 

3.1 Second Layer 
The analysis starts with the second layer. The solution for the IHCP when the temperature measurement 
is given at two sub-surface locations is given by Woodbury et al. [20]. A similar approach is utilized in 
here to analyze the second layer. It is considered that the two temperature measurements histories are 
available at x=x1 and x= L1+L2 (L1≤x1 ≤ L1+L2) on the layer 2: 

1( , ) ( )T x t Y t=       (1) 

1 2( , ) ( )T L L t y t+ =      (2) 
The initial temperature is considered to be zero, 

( ,0) 0T x =       (3) 
The objective of the first IHCP is to estimate the heat flux (q1) at the interface between the two layers: 

     
1(0, ) ( ) ?Tk t q t

x
∂

− = =
∂     (4) 

Solving the IHCP for the second layer results in determining the heat flux at the interface with the first 
layer which then will be used as a boundary condition for solving the second IHCP. 
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The temperature at x1 (L1≤x1≤ L1+L2) is a function of the surface heat flux q1(t) and the temperature at x= 
L1+L2. This problem is known as X21B10T0, which is herein shortened to X21 for reference [22]. The 
notation denotes a Cartesian geometry subjected to a type 2 condition at the first boundary and a type 1 
condition at the second boundary, and that the first boundary has a step change in value while the second 
boundary is homogeneous, and that the initial condition is also homogeneous.  
The connecting curves between the heat flux components, qi and qi+1, and also between the adjacent 
components, yi and yi+1 are considered as constant between points (step function): 

1( )  ,     i i iq t q t t t += < <       (5) 

it i t= ∆         (6) 
A solution for the X21 case with a constant heat flux, qc, at x = L1 is 

2 221
2 2 2

22 2 21

cos
( , ) 1  exp

m
X

m
c mm

x
LT x t x t

Lq L L L
k t

β
αβ

β
α

∞

=

 
      = − − −       

∆

∑    (7) 

where ( 1 / 2) ,   1, 2,...m m mβ π= − = .  
Analogous to the above equations for a constant heat flux, the equation for a constant temperature, TC, 
at x= L1+L2 is denoted X12B10T0 and shortened herein to X12: 

2 212
2 2
2 21

sin
( , ) 1 2 exp  X

m
m

x
m LT x t t

L LT mc t

β
αβ

β
α

∞

=

  
      = − −  

 
∆

∑    (8) 

The temperature at any location x1 (L1≤x1≤ L1+L2) caused by the heat flux q1 at x = L1 and the temperature 
y at x = L1+L2 is 

, , 1,
1 1

M M

M q M y M i M i i M i
i i

T T T q yφ η− −
= =

= + = ∆ + ∆∑ ∑     (9) 

whereφ and η are the response basis functions for the two cases.  That is,  

21 12( , ) ; ( , )X X

c c

T Tx t x t
q T

φ η∂ ∂
= =

∂ ∂
     (10) 

The φ∆ ’s can be found as [1]: 

0 1 1 2 1 1,   ,  ... ,   i i iφ φ φ φ φ φ φ φ+∆ = ∆ = − ∆ = −    (11) 
Equation 9 can be described by the matrix equation of  

= +T Xq Zy        (12) 
where 

1 1
1 1 1

2 1 2 1
2 2 2

3 2 3 2

1 2 1 1 2 1

0 0 0 0 0 0
0 0 0 0

,   ,  0 0 ,  y ,  Z 0 0

n n n
n n n n

X Z
T q y

X X Z Z
T q y

X X Z Z

T q y
X X X X Z Z Z Z− −

   
        
        
        = = = = =
        
        
           

T q X

 

 

 

  

       

 

 

         (13 a,b,c,d,e) 
The components of the X and Z matrices are related to the response basis functions by 
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1 1,   i i i i
LX Z
k

φ η− −= ∆ = ∆     (14) 

where ∆φi is defined in Eq. 11, and ∆ηi is defined analogously. 
The columns in the X matrix of Eq. 12 are the same as the sensitivity vectors in parameter estimation. 
The first column is for q at t1, the second for q at t2 and so on. Using whole domain Tikhonov 
regularization, the estimated value heat flux vector at the interface, 1q̂ can be given as: 

1
1 2 2 2 2ˆ [ ] ( (T T T

Tα
−= + − −q X X H H X Y Zy) = F Y Zy)    (15) 

where the Tα is the Tikhonov regularization parameter [1]. Here the subscript 2 for X and F refers to 
Layer 2. Note that this equation is dimensional. F2 has the same definition as the filter matrix of Ref 
[17]. The value of 1q̂  from Eq. 15 will be used as a known boundary condition for the IHCP associated 
with the first layer. The heat flux at the remote surface (x=0) is the unknown parameters in the second 
IHCP. 

3.2 First Layer 

The temperature at any location x1 (0≤x1≤L1) is a function of the surface heat fluxes q0(t) and q1(t). The 
results from the middle layer analysis determine q1(t). A solution for the X22 case with a constant heat 
flux at x = 0 and zero heat flux at x=L1 (this is denoted the X22B10T0 case) is [22]: 

22 ( )
max2

2 2122
12 2 2

11 1 1 1

cos( / )( , ) 1 2 exp /
/ 3 2

m
mX

m
mc m

x LT x t t x x t L
q L k L L L

βα β α
β=

= + − + − −∑  (16) 

Note the same solution applies for a zero heat flux at x=0 and a constant heat flux at x=L1 through a 
simple change of variables such as ξ = L1– x. Analogous to Eq. (9), the temperature response at x1 
(0≤x1≤L1) can be found due to the heat flux histories q0(t) and q1(t). For assumed piecewise constant 
variation in these heat fluxes, the temperature can be computed from  

0 1, , 0 1
1 1

M M

M q M q M i M i i M i
i i

T T T q qϕ θ− −
= =

= + = ∆ + ∆∑ ∑     (17) 

where   22 1 22 1 1
1 1

( , ) ( , )( , ) ; ( , )X X

c c

T x t T L x tx t x t
q q

ϕ θ∂ ∂ −
= = −

∂ ∂
          (18a,b) 

The step basis function representation used here (and also others) for temperature given in Eq. (17) can 
be described by the matrix equation of  
 

1 10 0= +T X q X qL L      (19) 
where 

1
1 01 1

2 1
2 02 2

0 3 2 1

0
1 2 2 1

0 0 0 0
0 0 0

,    ,  ,    0 0

L

L
L

n n Ln
n n n

X
T q q

X X
T q q

X X X

T q q
X X X X X− −

 
       
       
       = = = =
       
       
        

T q q X







  

    



 (20a,b,c,d) 

The components of the X0 and 
1LX matrices are related to the response basis functions in Eq. (18) similar 

to the relation of X and Z in Eq. (14) to Eq. (10). 
The whole domain Tikhonov regularization method is used to solve the IHCP. Later the filter 
coefficients are found from the solution. The IHCP solution for Layer 1 starts with a matrix form for the 
sum of squares with an added regularization term given by   
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1 10 0 1 0 0 1 0 0( ) ( )T T T
L L TS α= − − − − +1 1T X q X q T X q X q q H Hq   (21) 

This is minimized with respect to the parameter vector q0. The symbol 1T is the temperature vector at L1 
and q1 is the known heat flux (from the solution of the IHCP in Layer 2) at x = L1. The initial temperature 
is zero. The Tα  symbol is the Tikhonov regularization parameter. 

The estimated value of the heat flux vector, denoted 0q̂ , is then given by 

( ) ( )1 1

1
0 0 0 0 1 1 1ˆ [ ]T T T

T L Lα −= + − = −1 1q X X H H X T X q F T X q   (22)
  

3.3 Coupling of the Solutions  

To achieve a single expression for a two-layer IHCP, Eq (15) is substituted in Eq (22). An expression 
is: 

( ) ( )1 1 10 1 1 1 2 2 1 2 1 1 2ˆ L L L= − − = − +1q F T F X F T F Zy F I X F T F X F Zy    (23)
  

where T1 is the temperature at the interface and can be found from Eq. 12: 
  1 2 1= +T X q Zy  

By substituting 1q in the above equation T1 can be found as: 

( )1 = 2 2 2 2T X F Y + Z - X F Z y     (24) 
Substituting Eq. 25 in Eq. 23, an expression is: 

( ) ( )ˆ    
   1 10 1 2 2 L 2 2 2 1 2 2 L 2 2 2q = F X F - X F X F Y + F Z - X F Z + X F X F Z y   (25) 

Equation 25 can be used directly to calculate the heat flux at the remote surface on the first layer by 
using two sets of temperature measurements from the second layer.  

3.4 Filter Form of the Solution 

The concept of the filter algorithm is that the solution for the heat flux at any time is only affected by 
the recent temperature history and a few future time steps. Equation (25) can be written in filter form as: 
  

0ˆ f g= +q Y y       (26) 

( ) ( ),f row g row   = =   1 11 2 2 L 2 2 2 1 2 2 L 2 2 2F X F - X F X F     F Z - X F Z + X F X F Z   (27) 

where f and g have the same characteristics as filter coefficients, which arediscussed in detail in Ref 
[17]. The meaning of “row()” in Eq. (27) designates a row in the middle of the indicated matrix.  Note 
that these filter coefficients are not the same as filter factors suggested by Hansen [23]. 
All the f-filter coefficients can be found at one time by setting all the Y and y components equal to zero 
except the fm  component of Y is set equal to one (Ymf=1).  The solution of the IHCP with this data gives 
the f coefficients. To get the g-filter coefficients (those for the y vector), the same procedure is followed 
with now all the components of Y and y equal to zero except ymf=1. 
Assuming x1=L1, the dimensionless time step of 0.0052 (0.1 s) and for first order Tikhonov regularization 
with parameter Tα = 0.0001, and material properties given in Table. 1, the 150th rows of the matrices in 
Eq. (27) (the f and g filter coefficients) are plotted in figures 2 and 3. 
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Table 1: material properties 

 Layer 1 (Inconel) Layer 2 (Ceramic Fiber) 
Thickness, m 0.01 0.02 

T= 300 K K= 14.9 W/m-K, α=3.9e-6 m2/s K= 0.046 W/m-K, α= 3.2e-7m2/s 
T= 450 K K= 17.4 W/m-K, α= 4.2e-6m2/s K= 0.065W/m-K, α=3.9e-7 m2/s 
T= 800 K K=22.6 W/m-K, α=4.9e-6 m2/s K=0.13 W/m-K, α=6.9e-7 m2/s 
T= 1000 K K=25.4 W/m-K, α=5.3e-6 m2/s K=0.19 W/m-K, α=7.9e-7 m2/s 
T= 1200 K K= 28.2W/m-K, α= 5.57e-6m2/s K=0.27 W/m-K, α= 1.2e-6.m2/s 

 

Figure 2: filter coefficients (f) for different temperatures 

 

 

Figure 3: filter coefficients (g) for different temperatures 

 
As can be seen, the filter coefficients can greatly vary as the temperature changes.  
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3.5 Filter Coefficients for the Case of Temperature Dependent Materials 

 If the material properties are temperature dependent, the filter coefficients are changing through the 
heating/cooling process as the temperature varies (as shown in Fig. 2 and 3). Therefore, it is necessary 
to find the filter coefficients at each time step with a particular temperature and use them accordingly. 
This can be done by finding the filter coefficients for a set of temperatures and linearly interpolate 
between those at each time step. However, this technique turned out to be time consuming. Therefore, a 
fast and accurate method is developed to find filter coefficients at each temperature by using Artificial 
Neural Networks (ANNs). ANN’s are computational models inspired from human brain system which 
has been successfully used in several engineering applications namely time series prediction, pattern 
recognition, function approximation, classification and more. They have also been used to solve direct 
and inverse heat conduction problems [24, 25, 26, 27, 28].  
ANN consisted of a set of interconnected neurons that can evaluate outputs from inputs by 
feeding information through the network and adjusting the weights. In the present work (test case 2), a 
feed forward multi-layered network is used which consists of a layer of input neurons (including 
temperature data and time step), a layer of output neurons (filter coefficients) and two hidden layers. 
Data enter the network through the input nodes and going through a non-linear transformation. The 
output data are subsequently generated by the output nodes.  The inputs of the network are the 
temperature and the time step. Since the filter coefficients beyond mp+mf are all zero, the interpolations 
performed only for the time steps 1 through mp+mf. A schematic of the architecture of a three-layered 
neural network used in this work to calculate f filter coefficients is shown in Figure 4. A similar 
structure is used to calculate g filter coefficients. 
 

 
Figure 4: Neural network structure 

4 Results and discussion 

The developed method is verified via numerical experiments and ANSYS simulation. The verification 
of the method is described in this section. To verify the developed filter solution, a two layer slab is 
modeled in ANSYS. The material properties of the layers are given in Table 2. 

Table 2: Material properties for test case 1 

Parameter Layer 1 (Steel) Layer 2 (Aluminum) 
Density, kg/m3 7833 2702 
Specific Heat, J/kg.K 465 903 
Conductivity (k), W/m.K 54 237 
Thickness (L), m 0.01 0.02 

 
To validate the ANSYS model, the results from ANSYS simulation is compared with exact solution 
[29] for constant material properties. The created model is meshed and the loads are applied on the 

 
W 

b 
+ ……   

W 

b 
+ …...  

 

Inputs Hidden Output Output 

 
 

218



 ICIPE2014, 12-15 May 2014, Cracow, Poland   

geometry similar to the X1C11B10T0 case. A step change in temperature is applied at the front surface 
and the back surface temperature is kept at zero.  
 
 The sensor locations are at x=L1 and x=L1+L2. The temperature data is also generated using the solution 
for the direct problem for a step change in temperature at the surface (X1C11B10T0) and used as inputs 
for the filter solution (Eq. 26) to determine the heat flux at the surface. The calculated heat flux by the 
filter solution, ANSYS simulation and exact solution are compared in Fig. 5 and a good agreement can 
be observed between all three set of results.  
 

 
Figure 5: heat flux estimation for test case 1 

It should be noted that the values of mp and mf are considered as 60 for this test case. Afterwards, a 
random error (0.5% of the temperature) is added to data and the heat flux is calculated. The calculated 
heat flux when error presents in the data is plotted in Fig. 6. It can be observed that the results are still 
in a good agreement with the exact solution. It should be noted that the first test case only examined the 
developed approach for constant material properties. The next test case has taken into account the 
temperature dependent material thermal properties. 
 

 
Figure 6: heat flux estimation for test case 1 with 0.5% error added to temperature data 

In a second test case, a triangular heat flux profile is applied to the surface of the two-layer slab. It is 
assumed that geometry of the two-layer medium is similar to the previous test case. The material 
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properties, however, are changing with temperature as it is shown in Table 1. The temperature histories 
are then obtained at the desired surfaces using ANSYS and used as inputs for the filter solution. The 
calculated temperature profiles are shown in Fig. 7. 

 
Figure 7: Temperature profile for the second test case 

 Using filter coefficients for constant material properties, the heat flux profile is estimated and shown in 
Fig. 8. The Tikhonov parameter is considered as 0.0001and the time step is 1 second.  
 

 
Figure 8: heat flux estimation using filter method-assuming constant thermal properties 

 
As can be seen, the actual heat flux is significantly different from the estimated heat fluxes by the 
proposed method. The closest estimation is the one which uses average temperature of 864 K which still 
significantly off during the first 50 seconds, when the temperature is below the average 
temperature. This can clearly show the importance of accounting for variation of thermal properties 
due to temperature changes.   
Next, using the developed neural networks, the filter coefficients are found for each time step based on 
the temperature. Each of the developed ANN’s for f and g includes 2 hidden layers, 31 inputs (1+mp+mf) 
including one temperature and 30 time steps and 30 outputs (mp+mf) including the non-zero filter 
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coefficients. The network trained using 10 set of samples. (T=300,400,…,T=1200). The heat flux is then 
calculated using Eq. 26 and compared with the given heat flux at the surface in Fig. 9. As can be seen, 
the heat flux profile is very close to the heat flux from the ANSYS model and can do significantly better 
than the calculated heat flux by the filter coefficients from average temperature.  
  
 

 
Figure 9: Heat flux estimation using filter solution and neural networks 

 
5 Conclusion 

A method for solving one dimensional non-linear IHCP in two-layer mediums with temperature 
dependent material thermal properties is developed and successfully tested. The method is discussed for 
a two-layer slab when the temperature measurement history is given in two interior locations of one 
layer. An IHCP is solved for each layer based on the minimization of the sum of the squared errors 
between the computed and known values and by using of Tikhonov Regularization (TR) for stabilizing 
the solution. The developed algorithm is then written in filter form. The filter form solution allows near 
real time heat flux estimation which can be used in several industrial applications. The proposed 
solutions are then validated by numerical experiments. Two numerical test cases are developed in 
ANSYS, the first one with constant thermal properties and the second one with temperature dependent 
thermal properties. The heat flux at the surface is obtained using the proposed solution and compared 
with the ANSYS simulation and also exact solution. For the second test case, two neural networks are 
developed to estimate the filter coefficients f and g at each time step and its corresponding temperature. 
The filter coefficients are then used to calculate the heat flux at the surface by using the proposed 
solution. The results from the proposed solution is in a very good agreement with the ANSYS simulation. 
The results showed that when the temperature varies significantly, accounting for variation in thermal 
properties of the materials can greatly improve the accuracy of the estimated heat flux.  
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Abstract 
The study is motivated by necessity to optimize multilayer vacuum thermal insulation (MLI) of 
modern high-weight spacecraft. The modern approaches to the design of space structures assume 
broad application of physical models and computational methods. The latter is impossible if 
information on physical properties is insufficient. In many cases, both theoretical prediction and direct 
measurements of radiative properties of composite materials is very problematic. There is only one 
way to overcome these complexities. It is the use of some indirect measurements. Mathematically, 
such an approach is usually formulated as a solution of the inverse problem: to retrieve the properties 
from the measurements of thermal characteristics of the insulation. The experiments in thermo-
vacuum facilities are used to re-estimate some radiative properties of metallic foil / metallized polymer 
foil and spacer. The specimens of a real MLI of the BP-Colombo satellite (ESA) were examined in the 
experiments. The retrieved values of the effective emissivity can be used directly for heat transfer 
calculations in the case of similar thermal conditions. Therefore, it is important to use the identified 
parameters to validate and improve theoretical models. The latter is considered as an objective of our 
further work. 

1. INTRODUCTION 

The present study is a part of a work on optimization of passive thermal control systems (TCS) for 
space vehicles. The specific of the external heating of space vehicles during the flight enables us to 
consider some variants of passive TCS based on screening the vehicle surface from the direct solar 
radiation, the solar radiation reflected by the planets, and also from thermal radiation of closely spaced 
planets. Various multilayer insulations (MLI) are widely used to solve this engineering problem [1]. 
This type of vacuum insulations has obvious advantages such as high thermal resistance at a relatively 
low density and convenience of their use for the surfaces of complex shape (Fig.1). 
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Fig. 1  A photo of the MLI sample. 
 
A typical MLI looks as a set of thin metal screens of thickness about 5–9 µm with spacers between 
them. The spacer prevents a contact between the screens. Simple estimates show that the use of several 
layers (screens with spacers) may lead to a significant reduction of heat flux to the protected surface. 
MLI’s with 10–30 shielding layers are usually used. The material choice for MLI depends on the 
expected level of temperature. The PET (polyethylene terephthalate) film coated with aluminum, 
silver, or gold can be used for screens at working temperatures of MLI up to 423 K. The aluminum foil 
with spacers of fiberglass is used at higher temperatures up to 723 K. At temperatures greater than 723 
K, the foil is made of copper, nickel or steel and the spacer is made of quartz fibers. The surface 
density of ten screens of PET film is in the range of 0.2–0.3 kg/m2, whereas the use of metal foils 
increases this value up to 1 kg/m2 [1]. However, regardless of used materials, the principle of the MLI 
work is the same. 
 
The traditional MLI thermal model [2] is very simplified. This model is based on the gray 
approximation and does not take into account the effects of both semi-transparent fibrous spacers 
between the foils and possible oxidation of aluminum foil. However the present-day computational 
models for radiative heat transfer in a single layer of the vacuum insulation are insufficient to solve 
this problem because the experimental data for the wide-range infrared radiative properties of 
materials are not quite reliable. Moreover, our preliminary estimates showed that the known physical 
effect of near-field radiative transfer between two closely spaced layers of aluminum foil may lead to a 
significant increase in the radiative flux. A theoretical prediction of this effect is very sensitive to the 
distance between the foils, and it is problematic to obtain accurate quantitative results for various flight 
conditions. In addition, the role of a highly-porous fibrous spacer between the foils (see Fig. 2) has 
been estimated in our recent papers by neglecting the near-field effect.  
 

         
а      b 

Figure 2: Photographs of typical materials used for spacers between two foil layers: 
a – material of a very low density, b – relatively dense material. 

226



                                                     ICIPE2014, 12-15 May 2014, Cracow, Poland   
 

 
Obviously, the estimate of the spacer effect should be revised in a general theory taking into account a 
small thickness of the gap between the foils. This theoretical study is in the very beginning now. 
Therefore, the role of the inverse problem solution in obtaining the radiative flux at realistic conditions 
is considered as an important stage of the work. For brevity, we do not give here the complete 
mathematical problem statement, which can be found in our previous papers. At the same time, it 
should be noted that we are focused on identification of the conventional effective emissivity, which is 
the key integral parameter (over the spectrum) used to determine radiative heat transfer in the vacuum 
insulation of a spacecraft. 

2. PHYSICAL MODEL AND EXPERIMENTAL FACILITY 

The objective of the experimental study is to estimate total thermal resistance of the MLI blanket, 
which is a screen-vacuum thermal insulation elaborated for the temperature range from 300 to 900 K. 
Obviously, the accurate measurements for vacuum insulations are not simple. The space vacuum in the 
laboratory installation is not the only condition of successful measurements. The other problem is a 
very high thermal resistance of the MLI. We had no possibility to develop a specific method and use 
an additional facility to minimize an error of these measurements. Therefore, a previously developed 
vacuum installation TVS-1 is employed. Let us consider the experimental facility and the scheme of 
the temperature measurements. The MLI sample of size about 150×150×5 mm was placed in the 
experiment module EM-2 (see photo in Fig. 1 and scheme of the MLI in Fig. 3).  

 
 

Figure 3:  A scheme of the tested multilayered thermal-insulating blanket. 
 
A scheme of temperature measurements with a set of thermocouples is presented in Fig. 4. The 
thermocouple 1T  is installed in the heated ceramic fabric. Two thermocouples 6T  and 7T  are installed 

 
Heating surface 

First layer: Ceramic fabric 

Layers 2–7: aluminum foil + fibreglass 
spacer 

Layers 8–21: aluminized Upilex + 
fibreglass spacer 

Layer 22: aluminized Kapton 
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on the copper plate at the cold surface of sample A ( 7T  is the standby thermocouple) and similar 
thermocouples 8T  and 9T  – in the copper plate at the cold surface of sample B ( 9T  is the standby 
thermocouple). An electric heater made of a refractory stainless steel foil of 0.1 mm thickness is used. 
Elements of the insulating holder are arranged around the sample. The thermocouple conductors, 
covered by the glass-sleeve, are lead out through special ducts at the elements of holder. The setting 
frames press densely the sample in the insulating holder to the heater, and 5 mm in depth holders 
provide non-stress merit of the samples (preserve the initial thickness). The experimental module EM-
2 is placed into a vacuum chamber of installation TVS-1. Also thermocouple 2T  is installed on the 
steel wall of installation cooled by water. 
 
 

 
 

Figure 4:  A scheme of temperature measurements:  
1 – heating element of module EM-2 (steel foil); 2 – copper slab on specimen A; 3 – protection on 

specimen A; 4 – specimen A; 5 – specimen B; 6 – voltage measuring points on the heating element; 7 
– copper slab on specimen B; 8 – protection of specimen B; 9 – elements of insulating holder of MLI; 

10 – elements of insulating slab. 
 

3. MATHEMATICAL MODEL 

As was mentioned above, an improved theoretical model has been recently developed by the authors 
[3, 4]. A MLI is considered as the set of couples of screens and a spacer made of semi-transparent 
highly porous fibrous material between them. The resulting mathematical problem statement can be 
found in [4] and it is not reproduced below. At the same time, the main assumptions and special 
features of this approach should be briefly discussed. It was assumed that: (1) There is no any thermal 
contact between the screens and spacer, and thermal radiation is the only heat transfer mode to be 
considered; (2) The radiative flux in normal direction can be determined as a solution of a 1-D 
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problem neglecting small 2-D effects; (3) The isothermal metal screens are totally opaque for thermal 
radiation; (4) Both transmittance and reflectance of radiation by highly porous fibrous spacers can be 
determined on the basis of independent scattering hypothesis [5]; (5) The Mie theory for randomly 
oriented cylinders can be employed to calculate spectral radiative properties of a spacer [6, 7]; (6) One 
can use transport approximation without taking into account the details of angular dependence of 
radiation scattered by fibers [7, 8]; (7) The monodisperse approximation for the spacer’s fibers can be 
used in engineering estimates [7]; (8) The polarization effects can be neglected; (9) The thicknesses of 
oxide films on both surfaces of the aluminum foil are the same as those in the manufacturing, and no 
subsequent changes of these oxide layers in space is expected. 
 
The spectral dependences of radiative properties of all substances are taken into account. Nevertheless, 
the resulting mathematical formulation is rather simple because it is based on balance equations for the 
spectral radiation fluxes [4]. The model suggested in [3, 4] includes an approximate description of the 
effect of a thin but dense oxide film formed at the surface of an aluminum foil at normal atmospheric 
conditions. Infrared optical properties of fused silica have been studied during many years, and the 
optical constants we need for calculations are well known [9]. The temperature dependences of the 
optical constants of fused silica and are rather weak and can be neglected in the calculations. The 
model presented in this section is based on the method of papers [3, 4] generalized to the case of a 
transient problem for numerous layers of MLI. The resulting equations take into account a set of 

21=L  isothermal opaque screens with one additional layer corresponding to copper plate placed at the 
outer side of the MLI. The fibrous spacers located between the first and the last layers are not considered 
as separate elements of MLI, but their effect on radiative heat transfer is taken into account as described in 
paper [4]. Thermal radiation from the layer of ceramic fabric is treated as an external radiative flux. There 
is also a radiative heat transfer between the copper plate and the steel wall of the chamber. This wall was 
cooled by water to avoid its heating during the experiment. As earlier, we assumed that heat transfer 
between the layers is a result of the far-field thermal radiation and there is no direct thermal contact 
between the layers. The resulting mathematical formulation of the problem is as follows: 

( )∫
λ

λ
λλ λ−=δρ
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min
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where  
cLcL

cLeff
cL, εε−ε+ε

εε
=ε    

scsc

sceff
sc, εεεε

εεε
−+

=  are the effective emissivities of the neighboring 

elements. Index “a” refers to the heated fabric, indices “l” and “L” refer to the screens of MLI (l = 
1,..,6 – for aluminum foil, l = 7,..,20 – for aluminized polymer Upilex, and L – for aluminized Kapton), 
indices “c” and “s” refer to the copper plate and steel wall of experimental facility, respectively. 
 
Spectral radiative flux through a layer of MLI, which consists of two screens and a spacer made of 
semi-transparent highly porous fibrous material, is expresses as follows: 
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where λλ εε ,1l,l , +  are the spectral emittances of the screens at temperatures Tl and Tl+1, )T(Bf λλ π=  

is the blackbody spectral radiative flux, )(TBλ  is the Planck function, Rλ and Tλ are the spectral 
hemispherical reflectance and transmittance of the spacer. 
 
Both transmittance and reflectance of radiation by highly porous fibrous spacers can be determined on 
the basis of independent scattering hypothesis and Mie theory for infinite homogeneous cylinders. 
Characteristic of highly porous fibrous spacer can be determined by the relation: 

 ( ) trQ~p141RTU −−=−=
πλλλ  (3) 

where p  is the surface porosity of a spacer, trQ~  is transport efficiency factor of extinction. The values 
of efficiency factors for cylindrical particles at arbitrary illumination of fibers are calculated using 
known relations of Mie theory. It should be noted that model (1)–(3) includes some uncertainties in 
material properties, And the spectral emittance of heated fabric λε ,a  is the main of them. Therefore, the 
latter value should be identified to complete the computational model. 
 

3. INVERSE PROBLEMS ALGORITHM 

In a general case, the heat transfer is determined by (1) the parameters of interaction with an 
environment (experimental facility and heater), (2) the radiative heat transfer in MLI, (3) thermal 
properties, densities and thickness of the MLI layers, as well as by the system's initial temperature. As 
was noted, the material properties in the model (1)–(3) have some uncertainties in, and the spectral 
emittance of heated fabric λε ,a  is the main of them. The results of temperature measurements in the 
cooper slab (1d) can be considered as additional information, which is not necessary to solve direct 
heat transfer problem. 
 ( ) MmfT mmc ,1,exp ==τ  (4) 

Strictly speaking, the retrieval of functions λε ,a  is related with to a minimization of the residual 

functional characterizing the deviation of temperature ( )mcT τ  calculated for certain estimates of λε ,a  

from the measured temperature mf  in the corresponded metric. The following functional can be 
considered to characterize the least-square deviation of experimental and calculated temperatures: 

 ( ) ( ) ( )( ) ττ−τ=ε ∫
τ

λ dfTJ
max

0

2
c,a  (5) 

To solve the inverse problem, the conjugate gradient method of minimization as the base of iterative 
regularization method [1] can be used. According to the approach suggested in [2], the unknown 
coefficient can be approximated by a set of basic functions (in particular, peas-waste functions or B-
splines): 
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The gradient of the minimized functional is computed using the solution of an adjoint problem: 
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where lψ  is the solution of the following adjoint problem: 
 

( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( ) ,d

RT122RT1RT1
dTdfdTdfRT1

RT122RT1RT1
RT1

dt
d

c

,2,1,2,1,1,2

,22,11,2l,1

,1,a,1l,a,a,1

,1,a1
111

max

min

λ⎟
⎟
⎠

⎞

−+εε−εε+−+ε+−+ε
τΨ−τΨ−+εε

−⎜
⎜
⎝

⎛

−+εε−εε+−+ε+−+ε

−−+εε
=

Ψ
δρ−

λλλλλλλλλλλλ

λλλλλλ

λ

λ λλλλλ+λλλλλλλ

λλλ+λ∫
 

 ( ) ,0max1 =Ψ τ  (8a) 
 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( ) ,d

RT122RT1RT1
dTdfdTdfRT1

RT122RT1RT1
dTdfdTdfRT1

dt
d

c

,1l,l,1l,l,l,1l

,1l1l,ll,1l,l

,1l,l,1l,l,1l,l

,ll,1l11,l,1ll
lll

max

min

λ⎟
⎟
⎠

⎞

−+εε−εε+−+ε+−+ε
τΨ−τΨ−+εε

−⎜
⎜
⎝

⎛

−+εε−εε+−+ε+−+ε
τΨ−τΨ−+εε

=
Ψ

δρ−

λλλ+λλ+λλλλλλλ+

λ++λλλλ+λ

λ

λ λλλ−λλ−λλλλ−λλλ

λλ−−λλλλ−∫

 

 ( ) 0maxl =τΨ , 20,...,2=l   (8b)
 ( ) ( ) ( )( )

( ) ( ) ( )( )
),TT(4

d
RT122RT1RT1

dTdfdTdfRT1
dt

d
c

3
L

3
c

eff
c,L

,1L,L,1L,L,1L,L

,LL,1L1L,L,1L
min

max

−σ+

λ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+εε−εε+−+ε+−+ε
τΨ−τΨ−+εε

=
Ψ

δρ−

ε

∫
λ

λ λλλ−λλ−λλλλ−λλλ

λλ−−λλλλ−L
LLL

 ( ) 0maxL =τΨ  (8c)
 ( ) ( )( ),2)(4)(4 33

,
33

,
ττσσ

τ
ψ

ρ εε fTTTTT
d

d
dc ccs

eff

sccL
eff

cL
c

ccc −+−+−=−          ( ) 0max =Ψ τc  (8d) 

 

4. COMPUTATIONAL RESULTS 

An application of inverse problem methods for heat transfer problems, is related with a specific testing 
of the developed algorithms. The most universal approach hereby is a computational experiment, 
which is made in the following way: first a direct heat transfer problem in the specimen should be 
solved, on the assumption that all characteristics of material are known. Using the obtained values of 
temperature in the supposed points of thermosensors installation, then "experimental" data necessary 
for solving an inverse problem are formed, and after that an inverse problem on determining of λε ,a  is 
solved. Random errors in the "experimental" data are formed as follows 
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 ( ) ( ) ( )( )τωδττ fff += 1~
  (9) 

where ( )τf~  is the exact value, ω  is a random value of normal distribution with a mean value equal 
0.0 and a dispersion equal 1.0, 05.0f =δ  is a relative error. The computational results at conditions 
of experimental heating are presented in Fig. 5. The emissivities of oxidized copper plate surface and 
steel surface were taken equal to 0.6 and 0.45, respectively. As to parameters of fibrous spacers, the 
fiber radius was taken equal to 3=a µm and the surface porosity – 8.0=p . The wavelength range 
from 2min =λ µm to 20max =λ µm was used while integrating over the spectrum since this range 
makes the main contribution to the integral radiative flux. 
 
A comparison of the calculated and “measured” temperatures of copper slab as a result of inverse 
problem solving for different approximations (6) is presented in Fig. 6 and in Table 1. The estimated 
values of λε ,a for different approximation are presented in Fig.7. As one can expect, the minimal set of 
the approximation parameters provides the best accuracy and stability of inverse problems solving. 
Though in the case of approximation by peace-waste functions with N=2 we used the a-priori 
information about the spectral boundary of two-band model of spectral properties of quartz fibers [10] 
(with the “boundary” wavelength about 6.5 µm), but the estimate of this value can be obtained from 
other approximations (Fig. 7, curves 2-4). 
 

Table 1: The deviation of the calculated temperatures and measured temperatures 

Approximation Least-squares tem-
perature deviation (K) 

Temperature 
deviation (%) 

Maximum 
deviation (K) 

Maximum 
deviation (%) 

1 1.24 4.1 2.5 7.1 
2 1.16 4.3 2.3 7.5 
3 1.21 4.7 2.4 6.2 
4 0.37 2.4 1.2 4.3 
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Figure 5: Temperature of MLI layers calculated for the stages of initial heating: 
the numbers of MLI layers are specified in panels of the figure. 
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Figure 6: Comparison of theoretical predictions and experimental data for temperature of copper plate: 
1 – “experimental”, 2–4 – aproximations (2) by cubic B-splines at N=5, (3) by cubic B-splines at 
N=3, (4) – by peace-waste functions at N=36, (5) by peace-waste functions at N=2. 
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Figure 7: Reconstruction of λε ,a : 1 – “exact” value, 2–5 – estimations using (2) cubic B-splines at 
N=5, (3) cubic B-splines at N=3, (4) peace-waste functions at N=36, (5) peace-waste functions at N=2. 

 

5. CONCLUSIONS 

An identification procedure for mathematical model of the multilayer thermal insulation (MLI) of 
space vehicles with the use of the MLI sample of the BP-Colombo satellite (ESA) showed that a 
theoretical model developed recently by the authors can be used to estimate thermal properties of the 
insulation at conditions of space vacuum. The above comparison enables us to use the developed 
method to analyze wide-range spectral properties of the MLI. A further study of the external pressure 
effect on radiative transfer in single layers of MLI is expected to be interesting both theoretically (to 
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observe possible near-field effects) and practically (to predict variation of the heat shielding properties 
of the MLI at conditions of a planetary atmosphere). 

ACKNOWLEDGMENTS 

The authors are grateful to the Russian Foundation for Basic Research for the financial support of this 
study (grant 13-08-00022-a). This work was also supported by the Russian president grant for 
Scientific Team NSh- 6343.2014.8. 
 

REFERENCES 

[1] Alifanov, O.M., Inverse Heat Transfer Problems, Springer-Verlag, Berlin, 1994.  

[2] Alifanov, O.M., Nenarokomov, A.V., and Gonzalez, V.M., Study of multilayer thermal insulation 
by inverse problems method, Acta Astronautica, 65, (2009). 

[3] Gritsevich, I.V., Dombrovsky, L.A., and Nenarokomov, A.V., Heat transfer by radiation in a 
vacuum thermal insulation of space vehicles, Therm. Proc. Eng., 5(1), (2013), pp. 12-21. (in 
Russian) 

[4] Gritsevich, I.V., Dombrovsky, L.A., and Nenarokomov, A.V., Radiative transfer in vacuum 
thermal insulation of space vehicles, Comput. Therm. Sci., 2014, in press. 

[5] Tien, C.L. and Drolen, B.L., Thermal radiation in particulate media with dependent and 
independent scattering,  in “Annual Review of Numerical Fluid Mechanics and Heat Transfer”, 
New York: Hemisphere, (1987), v. 1, pp. 1-32. 

[6] Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, New 
York: Wiley, (1983). 

[7] Dombrovsky, L.A. and Baillis, D., Thermal Radiation in Disperse Systems: An Engineering 
Approach, New York: Begell House, (2010). 

[8] Dombrovsky, L.A., The use of transport approximation and diffusion-based models in radiative 
transfer calculations, Comput. Therm. Sci., (2012), 4(4), pp. 297-315. 

[9] Kitamura, R., Pilon, L., and Jonasz, M., Optical constants of silica glass from extreme ultraviolet 
to far infrared at near room temperatures, Appl. Opt., (2007), 46(33), pp. 8118-8133. 

[10] Dombrovsky, L.A., Quartz-fiber thermal insulation: Infrared radiative properties and calculation 
of radiative-conductive heat transfer, ASME J. Heat Transfer, (1996) 118(2), pp. 408-414. 

 

234



Automated Hybrid Singularity Superposition and Anchored Grid 

Pattern BEM Algorithm for the Solution of the Inverse Geometric 

Problem

Marcus W. Ni, Alain J. Kassab*, Eduardo Divo

Department Mechanical and Aerospace Engineering

University of Central Florida, Orlando, Florida, USA

e-mail: alain.kassab@ucf.edu

Key words: Inverse geometric problems, Simplex optimization, Anchored grid pattern, Boundary 

element methods

Abstract

A method for solving the inverse geometrical problem is presented by reconstructing the unknown 

subsurface cavity geometry using boundary element methods, a genetic algorithm, and Nelder-Mead 

non-linear simplex optimization. The heat conduction problem is solved utilizing the boundary 

element method, which calculates the difference between the measured temperature at the exposed 

surface and the computed temperature under the current update of the unknown subsurface flaws and 

cavities. In a first step, clusters of singularities are utilized to solve the inverse problem and to identify 

the location of the centroid(s) of the subsurface cavity(ies)/flaw(s). In a second step, the 

reconstruction of the estimated cavity(ies)/flaw(s) geometry(ies) is accomplished by utilizing an 

anchored grid pattern upon which cubic spline knots are restricted to move in the search for unknown 

geometry.  Solution of the inverse problem is achieved using a genetic algorithm accelerated with the 

Nelder-Mead non-linear simplex. To optimize the cubic spline interpolated geometry, the flux 

(Neumann) boundary conditions are minimized using a least squares functional. The automated 

algorithm successfully reconstructs single and multiple subsurface cavities within two dimensional 

mediums. The solver is also shown to accurately predict cavity geometries with random noise in the 

boundary condition measurements. Subsurface cavities can be difficult to detect based on their 

location. By applying different boundary conditions to the same geometry, more information is 

supplied at the boundary, and the subsurface cavity is easily detected despite its low heat signature 

effect at the boundaries. Extensions to three-dimensional applications are mentioned.

ICIPE2014 8th International Conference on Inverse Problems in Engineering, May 12–15, 2014, Poland
Eds: I. Szczygieł, A.J. Nowak, M. Rojczyk
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1 Introduction

Forward problems are defined as well posed, and require five specifications which are as follows: 

governing equation for field variable, physical properties, boundary conditions, initial condition(s) 

and system geometry [2]. The inverse geometrical problem is one of many inverse problems that arise 

in engineering today. This problem is broadly classified into the inverse problem category. The 

inverse problem differs from the forward problem in that one of the forward problem specifications is 

unknown, and there is at least one over specified condition. In most cases, including the inverse 

geometric problem, this over specified condition arises at the boundary, which lends itself to the 

boundary element method (BEM). 

Subsurface cavity detection and geometry reconstruction methods using BEM have been well 

documented within the past decade [1], [3]. These methods are non-intrusive, and have been 

successfully proven to detect sub surface cavities, as well as predict its shape. In these problems the 

governing equation, physical properties, boundary conditions, initial conditions and external geometry 

are known, leaving the internal cavity wall geometry unknown. The boundary conditions at the cavity 

walls are also considered to be known as adiabatic, or very close to adiabatic. This can be attributed to 

the extremely low thermal conductivity of the material or void within the cavity. Radiation would 

have an effect on these subsurface cavity boundary conditions at high temperatures; however, 

radiation has been omitted because the temperature ranges should be kept relatively low.

An efficient way to detect cavity shape and location was proposed by E. Divo in 2004 [2]. In 

his article, the inverse geometric problem is stated much like the one in this article. The use of point 

source clusters is employed to search for subsurface cavities in 2-D and 3-D geometries by 

minimizing the first order boundary condition at the exposed surface. The efficiency of his model 

comes from lack of grid reconstruction. Rather than actually reconstructing the cavity walls during the 

optimization, a search for the adiabatic condition is run with the optimized cluster location and shape 

in place to act as the void within the medium. The shape is simplified to be elliptical to lower 

optimization parameters, and the technique has proven to be successful. Application of these 

techniques requires thermal imaging of the exposed surface with the use of infrared scanners as shown 

in Figure 1. At this point the boundary conditions at the exposed surface are over specified, and the 

internal cavity location and shape is unknown.

Figure 1: Problem setup using IR scanner to measure thermal footprint at the exposed boundary [2].

It is also possible to utilize elastics rather than heat conduction to search for these cavities. Kassab et 

al [3] presents a solution using elastostatics and the boundary element method. Rather than 

minimizing the Neumann or Cauchy boundary conditions of the heat transfer problem, the strains and 

deformations at the exposed surface boundaries are minimized. This paper also proposes a variety of 

differently shaped anchored grid patterns (AGP) that adapt to the shape of the internal cavity [3]. 

Another solution to this inverse problem is to use the method of fundamental solutions (MFS) rather 

than the boundary element method (BEM), proposed by A. Karageorghis [5]. In one of these methods, 
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Karageorghis utilizes a moving pseudo-boundary technique to detect void location and boundary 

location. The heat conduction equation and Neumann boundary condition minimization are also 

utilized similar to this article’s approach. High resolution of these cavity boundaries are obtained by 

using radial polar parameterization, which simply searches for points radially around the cavity center

[5], [8]. This technique requires a high number of parameters to be optimized which can lead to longer 

calculation times and instability. Karageorghis also proposed a solution to cavity detection within 

plane linear elastic bodies. The same MFS and radial polar parameterization technique is used; 

however, the boundary conditions to be minimized are described by the elastic properties of the 

medium. Boundary deformity, and strain levels are minimized to optimize the cavity location and 

shape [7].

In this article, a higher resolution algorithm for cavity shape is proposed by using an anchored 

grid pattern to map a cubic spline that wraps itself around the cavity. The boundary element method is 

used to solve the forward heat transfer problem at each step of the overall inverse problem that in turn 

employs simplex optimization techniques. To run these experiments numerically, the cavity is 

imposed and the boundary conditions are calculated based on this implication. In essence, the 

boundary element calculations are being compared to the analytical Laplace equation solution for the 

test problems (rather than actually using a thermal measuring device).

The automated algorithm for reconstruction of cavity geometry starts by searching for its general 

location using clusters of sources/sinks that satisfy the heat flux (Neumann) boundary conditions. 

These cluster(s) must locate themselves within the cavity or outside of the medium to satisfy the 

Laplace equation. The boundary element method is used to solve the forward problem, while the 

genetic algorithm optimizes the location of these source/sink clusters. Once the cavity location is 

determined, the same steps are used to predict the geometry’s shape using cubic spline interpolation. 

By using an anchored grid pattern, the cavity is shaped using eight splines, to which the surface is 

attached [1]. This pattern is placed at the center of the detected cavity, adiabatic boundary conditions 

are applied to this cubic spline surface, and the spline lengths are optimized to satisfy the heat flux 

(Neumann) boundary conditions. This application has also been extended to include multiple cavities, 

and multiple boundary condition sets (MBCS). MBCS uses two or more boundary conditions sets that 

are applied to the same geometry set. This method increases the number of boundary conditions

without increasing the number of boundary elements along the surface. In a lab setting, measuring 

points are limited, so MBCS becomes useful in increasing the resolution without lab expense. The 

concept of multiple boundary condition sets (MBCS) optimization was used to effectively enhance 

sensitivity and detect complicated geometrical shapes and locations. This study has been successful in 

adding shape resolution to the Efficient Singularity Super Position Technique [2], and should be 

extended to 3-D geometries using these same techniques

2 Solution Procedure

To begin to understand the solution to the geometric problem, a layout for the automated algorithm is 

presented. First, the forward problem is solved using boundary elements with the source/sink clusters 

to imitate subsurface cavity behavior. Second, the clusters are moved to the cavity location with the 

help of the genetic algorithm method. Once the cavity is located, an anchored grid pattern replaces the 

clusters, and a new surface is created to guess at the cavity geometry. These anchored grids are then 

optimized with the Nelder-Mead simplex method until the Neumann boundary conditions, that have 

been over specified, agree with the boundary element solution.

1) Set up problem parameters and initial guesses for the cavity location

2) Solve forward problem using BEM 

3) Optimize the cavity location using the genetic algorithm
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4) Use optimized location for central spline knot of cubic interpolation and set up initial 

guesses for the cavity geometry

5) Solve forward problem using BEM

6) Optimize the cavity geometry using the Nelder-Mead simplex.

2.1 The forward problem solver: Boundary Element Method

As stated previously, the general equation to be solved is the homogeneous Laplace equation, 

equation 1, 

The boundary element method solves for T(x, y) numerically by discretizing the boundary into several 

elements. Green’s second identity is applied and a free space test function, T*, is introduced to the 

* *

1 1
( ) ( )

j j

N N

j j
C i T i Tq d T qd (2)

The temperature for the given point “i“ has been solved by integrating over the surface elements 

labeled “j“, where N is the number of surface elements. “C” is termed the jump coefficient, which is 

determined as 0.5 for completely smooth elements. Since T and q are constant over the element, they 

are taken out of the integral, and the test functions are labeled accordingly as shown in equations 3 

and 4. 
*

j
ijH q d (3)

*

j
ijG q d (4)

Once the elements have been discretized, equation 2 can be written in the standard form as equation 5 

[8].

1 1

N N

ij j ij jj j
G q H T (5)

This formulation does not take into consideration point sources; however, the point sources can be 

simply added to the right hand side of this equation. Equation 6 shows the added point sources to the 

general equation, where {B} is the source vector shown in equation 7 [12].

[ ]{ } [ ]{ } { }G q H T B (6)

2 2

1 4

Ns j

i i j i jj

Q
B x x y y (7)

The standard procedure to solve equation 6 is to move all the unknown boundary conditions to the 

same vector and use matrix multiplication to simplify. This simplification leads to equation 8, and is 

easily solved using pivoting methods for multiple sets of equations.

[ ]{ } { }A x b (8)

2 ( , ) 0T x y (1)
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The solution for “{x}” represents the unknown boundary conditions that are being solved for. Using 

this solution and equation 2 the entire solution is formed.

2.2 Geometry reconstruction: Cubic spline interpolation

To reconstruct the subsurface cavity geometry, a cubic spline interpolator generates a surface around a 

central point provided by the efficient hole finding optimization [2]. The first step is to define the 

anchored pattern as to which the cubic splines will attach themselves. Eight splines are defined to be 

positive, be equally separated and extend from the central knot as shown in Figure 2. The ends of 

these splines define the cubic spline endpoints, and continuity conditions define the shape. Since the 

angles between each spline are fixed and the shape is periodic, polar coordinates are used to define the 

locations along the cubic splines. According to Pollard and Kassab [1], the location along the cubic 

spline surface can be defined by equation 9,

3 3 2 2
1 1 1

1 1( ) M
6 6 6 6

i i i i i i i i
i i i i

i i i i

M M
r M r r (9)

along the polar coordinate system. The “i” corresponds to the intervals between each spline, adding up 

to eight in this case. The spacing between each spline is defined as - (i-1), which is 

considered to be fixed in these problems. The continuity conditions state that the first and second 

derivatives at the spline endpoints are continuous from interval to interval. The periodic condition 

states that the first location is equal to the last location. These conditions lead to a set of tri-diagonal 

equations shown in equation 10, 11 and 12. This simple set of equations is solved during the 

optimization using the Thomas algorithm.

1 2 12M M d (10)

1 12 2,3,...,7i i i i i iM M M d i (11)

8 8 82M d (12)

The coefficients are defined by Pollard and Kassab’s cubic spline anchored grid pattern [1].

Figure 2: Cubic spline interpolation representation.
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2.3 Geometry optimization technique: Nelder-Mead simplex

The inverse problem requires an iterative method that aids in the search for the subsurface cavity 

geometry by minimizing a least squares functional (LSF) comparing the second order (Neumann) 

boundary conditions. Since the forward problem is computationally expensive for complete grid 

reconstruction, the Nelder-Mead simplex method is ideal due to minimal forward problem 

calculations per iteration. The first step in any optimization technique is to define how the unknown 

parameters are altered to minimize the function/problem being analyzed. The simplex method is 

defined by the number of unknown parameters that are of interest. The “simplex” is a geometrical 

figure with N + 1 points and N dimensions, where ‘N’ is the number of parameters. For example, in a 

two dimensional problem the simplex is a triangle, and in a three dimensional problem the simplex is 

a tetrahedron [10]. As for the solution marching logic, the simplex can be manipulated by expansion, 

contraction and reflection. These three tools are utilized to move the solution with the highest residual 

error around the solutions of low residual error to find a new minimum. In essence, the simplex is 

moved in a downhill manner until a tolerance between solutions is reached. 

The single cavity problem with known internal boundary conditions requires nine initial 

guesses of eight parameters. These eight parameters define the shape of the internal cavity. The cubic 

spline creates high resolution without the drawback of unknown parameter increases. Calculation time 

is thereby reduced, and the simplex optimization becomes more stable. To minimize these unknown 

parameters a least squares functional is defined by comparing the Neumann boundary conditions at 

the surface. Equation 13 defines this functional, where {r} is the array containing all of the spline 

lengths of the AGP, qc and qm are the BEM calculated and IR measured flux of each boundary 

element respectively. Nsc is the scale factor and Ne is the number of boundary elements at the surface.

21

1
({ }) ( )

Ne

c mNsc ii
LSF r q q r (13)

setup using educated guesses. These limits may include, but not limited to, geometrical boundaries 

and anchored grid pattern sizing.

Logic behind choosing the initial N + 1 guesses is also addressed during the optimization 

technique. The user provides one educated initial guess for the geometric solution to the problem. The 

optimizer then chooses the remaining initial guesses by scaling the geometry, and randomly adding 

mutations to the scale. The cavity geometry must fit within the medium, so a method for checking 

geometry stability is proposed. Points along the cavity wall must be contained within the medium, so 

it can be said that the angles made between each boundary element along the exposed surface will add 

hen the point is located within the medium and zero when the point is located 

beyond the medium.

Figure 3: Left - Inside. Right - Outside.
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To calculate these angles appropriately, the connections between the points of the exposed surface 

and cavity walls are treated as vectors. Simple vector algebra states that the angle between any two 

rays can be expressed by equation 14.

1

1

cos( )
| || |

i i
i

i i

r r

r r (14)

The convergence criteria of the simplex method consists of parameter comparison, and LSF residuals. 

As the simplex marches downhill, the N + 1 parameter sets begin to converge to a single set. Once the 

changes between each set reaches a tolerance set by the user, the optimization stops, and the solution 

is analyzed. If the solution did not yield a low residual between the Neumann conditions, the 

weighting parameters for the contraction, expansion, and reflection tools are tweaked. Once the 

residual condition is satisfied, the solution to the inverse geometry problem is found. 

Multiple boundary condition sets (MBCS) can also be used to increase the resolution of the 

exposed surface without having to add more boundary element locations to the geometry. In a simple 

example, two boundary condition sets are used as shown in Figure 4. Two identical geometries are 

imposed with separate boundary conditions to increase the number of boundary conditions being 

minimized. This is a much more efficient method as compared to just increasing the number of 

boundary elements. Essentially two sets of boundary conditions are used to solve one inverse 

geometric problem. The new LSF looks quite similar to equation 13 with the exception of a second set 

of boundary conditions. Equation 15 defines the MBCS minimization functional.

2 21 1

1 1
1 2

({ })
Ne Ne

c m c mNsc Nsci ii i
SET SET

LSF r q q q q
(15)

This technique is not restricted to two sets, and can be extended further with the implication of speed 

loss due to increased calculation times. Each set requires an additional forward problem solution per 

iteration.

Figure 4: Multiple boundary condition sets experiment.

3 Results

3.1 Single cavity reconstruction

The single cavity experiment involved realistic boundary conditions of both temperature and heat flux 

values.  An irregular shaped cavity was imposed with a very low constant heat flux at the surface. The 

outer boundary is insulated on the top and bottom walls, whereas the temperature is imposed at the 

left and right surfaces of the outer boundary. The cavity location is found using point source 

techniques. Once the location is found, the surface generator takes over and optimizes the cavity 
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geometry. The optimizer is initialized with two initial guesses as shown in Figure 5. The AGP splines 

are then used to generate the cavity surface and section into boundary elements.

Figure 5: Geometry and initial guess locations

After several iterations, the unknown cavity surface was found. The final solution is shown in Figure 

6 (Left), which is observed to have high accuracy. In practical applications where experiments provide 

the over-specified conditions required to solve the inverse problem, the exact boundary conditions 

cannot be measured perfectly. To simulate these conditions noise was added to the exact boundary 

conditions on the exterior surfaces (the boundary conditions that would be measured with 

instrumentation). Figure 6 (Right) depicts the solution with 1% noise added to both the flux and 

temperature boundary conditions. The noisy data causes some deviation from the exact geometry, but 

the solution still successfully captures the correct shape and location.

Figure 6: Final solution: No noise (Left), Noise (Right)

3.2 Multiple cavity reconstruction experiment

In this two cavity experiment the 8 parameter problem has now been increased to 16 geometrical 

parameters. The problem being solved is shown in Figure 7 (Left). These particular boundary 

conditions are chosen to create a temperature field that will show large differentiations on the 

boundaries due to interior cavities. The internal cavities are found using the simplex method and are 

shown in Figure 7 (Right). The calculated cavities are a close match to the test geometry that was set 

up as an experiment, but there are some deviations due to the approximations incurred from constant 

element BEM. This error can be reduced by creating higher resolution geometries, or applying MBCS.
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Figure 7: Experiment setup (Left), Solution (Right)

3.3 MBCS using environmentally realistic boundary conditions

Multiple boundary condition setups help to alleviate the error incurred by using star shaped anchored 

grid patterns. As discussed in the ‘solution procedure’ section, multiple boundary condition setups can 

be used to increase the resolution of the exposed boundary without adding more boundary elements. 

In this case a more realistic boundary condition setup is used. Up to this point the boundary conditions 

that have been applied to the test geometries have been chosen to create distinct heat signatures which

are easily detected at the surface. If the cavity location or shape does not cause significant heat 

signature differences it may be difficult to locate. Hence, MBCS is proposed to solve this problem. 

These techniques can be extended to actual experiments, which would involve convective boundary 

conditions rather than imposed Cauchy conditions. The experimental setup involves the same 10x10 

unit square; however, the cavity has been moved to the corner to limit the sensitivity of the cavity’s 

effect along some of the square’s boundaries. Figure 8 (Left) displays the four different boundary 

condition setups that are used in this experiment. In all four setups a heat flux is applied to one side, 

while the other three sides are subjected to convection conditions at room temperature. 

Figure 8: Setup (Left), Two set solution (Top Right), Four set solution (Bottom Right)
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Simply put, a heater is placed on one side of the square while the rest of the sides are free to interact 

convectively with its surroundings. The heater is then moved to the next side and the rest of the sides 

interact convectively. This procedure increases the sensitivity of the cavities effect on the boundaries, 

even with difficult cavity locations or poor boundary conditions. First, setup 1 and 2 are used to 

compute the cavity geometry using MBCS. Figure 8 (Top Right) provides the results from this two 

boundary set problem. As the results indicate, the cavity geometry is successfully predicted at all 

edges except for top left side of the diamond. This error is a result of poor boundary condition setup 

with respect to the location and shape of the cavity. To prove the effectiveness of MBCS beyond two 

boundary condition sets, setups 1 to 4 are used to calculate the cavity geometry. Figure 8 (Bottom 

Left) depicts the four boundary sets solution and the result speaks for itself. The cavity geometry is 

predicted with high accuracy due to increased resolution provided by the four sets of boundary

conditions. Separately, each boundary condition set is inefficient in its use for optimization; however, 

when all four sets are combined the needed information is exceeded.

3.4 Notch Cavity Reconstruction MBCS Trial

Cavity geometries with non-circular shapes are also of interest when detecting unknown cavities. The 

star shaped anchored grid pattern (AGP) comes into question when the shape of the cavity has sharp 

edges, turns or corners. Figure 9 outlines the geometrical setup used to test the star shaped AGP 

against notch shaped cavities. The block is a 10x10 unit structure with 40 boundary elements along 

the exposed surface.

Figure 9: First boundary condition setup (Left), Second boundary condition setup (Right)

Figure 10: Solution for first setup (Left), MBCS solution for both setups (Right)
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The shape optimization in this first case did not accurately predict the shape of the notch. This error is 

due to the AGP shape itself. As the splines are trying to find their way to the correct solution, they end 

up crossing the actual cavity walls twice due to the sharp corner of the notch. The AGP was 

successful in following the general shape of the notch, especially on the right side of the notch where 

there is no sharp corner. Figure 10 (Left) depicts the calculated cavity over the actual cavity. Error 

incurred by using star shaped anchored grid patterns is reduced by using multiple boundary condition 

setups. Figure 10(Right) suggests the MBCS final solution to the cavity geometry is more accurate.

The star AGP correctly identifies the right portion of the notch, but has severe issues with the corner 

section of the notch. The interpolator compensates by cutting in and out of the correct geometry, but 

does not predict the sharp corner of the notch.

4 Conclusion

An automated algorithm for detecting cavities and reconstructing their shape has been successfully 

tested and used in hypothetical experiment setups. Constant elements were also proven to be accurate 

enough to detect the shape of the cavity through optimization by increasing the resolution of the 

boundary elements. The system performed to expectations by successfully increasing the resolution of 

subsurface cavity geometry prediction. Multiple boundary condition set optimization also succeeded 

in increasing the resolution of the problem without adding boundary elements to the surface. 

Complicated cavity geometry and location difficulties have proven to be avoidable with MBCS. These 

techniques can be extended to 3-D geometries, and shows promising calculation speeds due to the low 

parameter counts being optimized. 
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A Meshless Method for Creating 3-D Wind Fields using Sparse 

Meteorological Data 
D. W. Pepper1, C. Rasmussen2 and D. Fyda3 

 

Abstract  
 

We consider the problem of developing an efficient numerical method for creating 3-D 

wind fields utilizing sparse meteorological tower data. Node points are placed within a 

region of interest based on topological features. Meshless methods do not require 

connective mesh generation. The method was implemented using MATLAB. 

Meteorological data consisting of wind speeds and directions are obtained from 

instrumented towers located within a domain and used to create a temporary, interpolated 

data set to all nodal points. The meshless method, based on the Kansa technique, creates a 

mass-consistent, 3-D wind field. The meshless method yields close approximations to 

results obtained with other numerical techniques. 

Keywords:  Mesh-free method, 3-D wind field 

 

1. Introduction 
 

Constructing 3-D wind fields is important in weather forecasting, wind energy 

assessment, and wind turbine siting. However, generating accurate (or realistic) wind 

fields can be difficult. The primary reason is that measurements of atmospheric flow are 

generally sparse and insufficient to resolve important flow phenomena. Linking 

meteorological data with numerical approaches is fairly routine, and has been employed 

for many years. The majority of numerical models used in meteorological simulations are 

based on finite difference and finite volume techniques, and more recently finite element 

methods with adaptation (Pepper and Wang, 2009).  

Meshless methods are now becoming popular, due principally to their abilities to deal 

with complex geometrical problems with inhomogeneous or variable properties, the use 

of general-purpose algorithms, and no mesh requirement. There has been a growth of 

research interest for applying meshless (or mesh-free) methods for obtaining approximate 

solutions of differential equations (see Atluri and Zhu, 1998; Balachandran et al, 2009). 

In meshless methods there is no need of computing mesh elements induced by the 

selected nodes in the domain. The meshless method uses a group of nodes to derive 

solution without the need of connectivity relationship among them. In many situations 

where explicit mesh generation is difficult, the meshless method is emerging as an 

alternative to finite element analysis. The node placement problem for mesh-free 

applications is addressed in Atluri and Zhu (1998); Choi and Kim (1999); Gewali and 

Pepper (2010).  
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Mass consistent models for creating 3-D winds have been used for many years, and 

have been found to be effective for modeling atmospheric dispersion as well as for wind 

energy assessment studies. Such modeling techniques are discussed in Lange (1978), 

Sherman (1978), Goodin et al. (1980), Pepper (1991), Ratto et al. (1994), Finardi et al. 

(1998), Montero and Sanin (2001), and Pepper and Wang (2007). The problems 

stemming from most of the earlier applications deal with the coarse meshes and 

inabilities to deal effectively with refinement where terrain and/or velocities vary 

dramatically. The application of a mass consistent approach essentially poses a least-

squares problem in the computational domain, i.e., minimizing the differences between 

observed and adjusted values.  

In this study, a meshless approach is used to create a 3-D wind field over the Nevada 

Test Site, which is located northwest of Las Vegas, NV. Initial topological data is 

obtained from Digital Elevation Map (DEM) data, developed by the USGS. Numerical 

results are validated using meteorological data recorded in 1993 from 15 towers, and the 

wind fields are compared with model output from an hp-adaptive finite element model 

(see Pepper and Wang (2009)). When compared to the use of mesh-dependent schemes, 

the meshless method is more computationally effective and efficient.  

1. Mass Consistent Wind Field 

A diagnostic mass consistent model is derived from the continuity equation and 

incorporation of actual field data. The term “diagnostic” was used by Pielke (1984) to 

discuss different mesoscale meteorological models. Early research work on mass 

consistent models was undertaken by Sherman (1978) and later applied by Pepper (1991). 

The main idea of the technique is to match simulation values with measured 

meteorological data, using weighted averaging around the (usually) sparse data points to 

fill in values to all the nodes within the computational domain.  

A surface wind field is constructed from measured data by interpolation over the 

initial mesh using inverse squared weighting (1/r2，where r  is the radial distance 

between the grid points and the tower locations). A fixed radius, R , is specified which 

indicates the distance beyond which the influence of a station’s value is no longer felt 

(Goodin, et al., 1979; Kitada et al., 1983, Pepper, 1991).  

The velocity at a grid point within an upper layer is calculated using the velocity at 

the grid point which has the same horizontal level as the tower layer. The top layer 

velocity is obtained using log-linear interpolation.  

Vertical wind velocity is not a commonly observed variable in meteorology and its 

estimation appears as one of the more difficult problems for modeling studies. The 

vertical velocity is an integral component in many diagnostic and prognostic problems. In 

this study, vertical velocities are calculated at all node locations from the equation of 

continuity using the horizontal wind observations and accounting for the divergence 

correction, i.e. 
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where wvu ,,  are velocities in x, y, z direction 

A 3-D mass-consistent model was first used to generate wind fields for the ADPIC 
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pollutant transport model developed at Lawrence Livermore National Laboratory by 

Lange (1978). Early research work was conducted by Sherman (1978), who developed a 

mass-consistent model for wind fields over complex terrain and Dickerson (1978) who 

developed the mass-consistent atmospheric model for regions with complex terrain. The 

basis of their technique stems back to an objective analysis approach using a Sasaki 

variational technique (Sasaki, 1958). This technique was later applied by Mathur and 

Peters (1990) for application in air pollution modeling and by Pepper (1991) using a 

finite element approach to predict mesoscale wind fields over Vandenberg Air Force 

Base. Montero et al. (2005) developed genetic algorithms for improved parameter 

estimation with local tetrahedral mesh refinement in a wind model. The selection of 

parameters and computational methods implemented by different mass consistent models 

are discussed by Ratto et al. (1994). We elected to use this approach in lieu of other 

techniques because of its simplicity and ease of implementation with adaptivity. Warner 

et al (1983) describes the use of observed winds versus predicted winds employing a 3-D 

dynamic model to predict medium range atmospheric transport, along with short comings 

in accuracies attributed to each technique. Schaefer and Doswell (1979) discuss issues 

attributed to the interpolation of a vector field for atmospheric simulations; their analysis 

was based on finite differences and regional scales.    

In this model, an Euler-Lagrange method is used in an integral function that 

minimizes the variance of the difference between the observed and analyzed variables 

(Sasaki, 1958). The function can be written as 

       
2 2 22 2 2

1 0 1 0 2 0, , ,
u v w

E u v w u u v v w w d
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  (2) 

where 
000 ,, wvu  are observed velocity value in zyx ,,  direction,   is physical domain 

(dΩ ≡ dxdydz), 
i  are Gauss precision moduli where αi

2≡ 1/(2σi
2) ( i are observation 

tower errors and /or deviations of the observed field from the desired adjusted field). For 

horizontal directions, the Gauss precision moduli are assumed identical, since apparent 

distinctions exist between horizontal and vertical directions, but not between x and y 

coordinates (see Sherman, 1978). These moduli are important in determining 

nondivergence wind fields over irregular terrain. Sherman (1978) suggested that (α1/α2)2 

should be proportional to the magnitude of the expected (w/u)2. Using this relation and 

studies from Kitada et al. (1983), the 3-D flow fields tested for the minimum residual 

divergence occurred at about (α1/α2)2 = 0.01. In this study, the values of α1 and α2 and 

were taken to be 0.01 and 0.1 respectively.  

The corresponding Euler-Lagrange equations whose solutions minimize equation (2) 

are given as (see Sherman, 1978; Kitada et al., 1983; Pepper, 1991 and Ratto et al., 1994) 
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where is the Lagrange multiplier. Substituting equations (3-5) into the continuity 

equation (assuming air density is constant in the computational domain4),  
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a Poisson equation for  , ,x y z can then be obtained of the form 
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 (7) 

The ratio of α1/α2 allows one to adjust between horizontal or vertical influential 

preference.  

The gradient ∂λ/∂n in general is not zero and adjustment of the observed velocities 

from equation (3)-(5) can be obtained. A non-zero adjustment of the velocity normal to 

the boundary implies mass entering or leaving the volume. The boundary condition λ =0 

is appropriate for open or “flow-through” boundaries. When ∂λ/∂n = 0 on the boundary, 

the adjusted values of the normal velocity are the same as the observed value. Setting 

∂λ/∂n = 0 on the boundary doesn’t affect the normal velocity on the boundary. If the 

observed normal velocity is zero, there will be no transport of mass through the boundary. 

Therefore, ∂λ/∂n = 0 is used for closed or “no-flow-through” boundaries. 

The diagnostic procedure produces a mass consistent wind field which is realistic and 

fairly accurate that can then be refined to account for microscale topographic flow 

features. Sherman (1978) and Dickerson (1978) found that the use of the Sasaki (1958) 

technique was within a factor of 2 around 50% of the time and within an order of 

magnitude about 90% of the time. They used a fairly coarse mesh density at the time of 

their results. We wish to emphasize that the application of adaptation, as a minimum, can 

provide more detailed visualization and help in assessing the dynamics of the flow.   

2. Meshless Approach 

PDEs are traditionally solved using such methods as finite difference (FDM), finite 

volume (FVM), finite element (FEM), boundary element (BEM), and spectral (SM) 

techniques. Complex geometries are generally found with varying boundary conditions.  

This makes using traditional methods difficult as they require detailed mesh generation.  

For such situations, a meshless method may be better suited as it does not require this 

initial step. Figure 1 shows the difference in nodal spacing for a meshed vs. meshless 

approach (using random nodal positioning). Optimal placement of node points is 

addressed in more detail in Gewali and Pepper (2010).  

                                                      
4 Since the velocities are low in this case, we assumed a constant density; however, variable density can be 

added to account for vertical temperature variation if warranted (see Sherman, 1978).  
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Figure 1. Structured meshed domain versus meshless domain with random spacing. 

Although the roots of the development of meshless methods began in the 1970’s, 

it is only in the last 15+ years where they have begun to see wider use. They have 

attracted notice for their ease in implementation, compared to the more traditional 

techniques, such as finite difference, finite volume, and finite element, that rely on a 

mesh consisting of interconnected node points to calculate values of interest. Although 

there are a variety of meshless method implementations, most have one property in 

common: they need not rely on a structured or unstructured mesh (there are some that 

claim to be meshless, but still rely on an mesh foundation). Strengths of a non-structured 

mesh become apparent when the problem of complex geometries or time-varying 

boundaries is considered. 

 An extensive explanation of the procedure involved in implementing a meshless 

method is discussed in Liu (2003). To begin, the problem domain must be conceptualized 

and represented with nodes scattered across the domain and boundary. The nodes are 

generally not distributed in a uniform manner and are denser in regions of greater change 

(Gewali and Pepper, 2010).  Next, shape functions are used to relate the influence of each 

node to the other nodes in the domain. This is particularly necessary when the nodes are 

especially unevenly distributed. Shape functions are generally referred to as the support 

domain for the node of interest and there can be weighted influence. The support domain 

can take a circular or rectangular shape. The field variable, e.g. U, is then interpolated 

using the displacements at its nodes within the support domain. The shape functions can 

be used to write a PDE in nodal matrix form, and assemble global matrices for the entire 

problem domain.  All that remains is to solve the matrices to obtain PDE solutions.     

 There are various categories of meshless methods. These include smoothed 

particle hydrodynamics method, reproducing kernel particle method, meshless Petrov-

Galerkin method, local radial point interpolation method, finite point method, and the 

finite difference method with arbitrary irregular grids. Each of the methods has benefits 

and drawbacks. In this study, radial basis functions (RBF) were used as this did not 

require special consideration for nodal placement.     

 

2.1 The RBF Method 
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One of the simplest implementations of a meshless method is the RBF method.  

Specifically, Kansa’s approach (2005) is followed in this study. In this method, a basis 

function relates the influence of surrounding nodes on the node of interest. The nodes 

closest to the node of interest have the greatest influence. Nodes increasingly farther 

away have decreasing influence. 

First, for a one-dimensional (1-D) problem, the distance d between radial 

position r is defined as: 

                                                 (8) 

Different basis functions ϕ have been proposed and can be viewed in Table 2.1: 

 

Table 2.1 – Typical Radial Basis Functions 

Item Name Expression Shape Parameters 

1 Multiquadrics (MQ) 
 

c, β 

2 Gaussian (EXP) 
 

C 

3 Thin Plate Spline (TPS) 
 

η 

4 Logarithmic RBF 
 

η 

 

The most commonly used basis function is the MQ as proposed by Hardy (1971) 

with an exponent of β = +0.5. The MQ form shown in Table 2.1 is a general form with 

the exponent β as another parameter to be optimized.  If the exponent is set at -0.5, this 

gives the inverse MQ form.  As seen from the table, there are two shape parameters to be 

tuned: c and β.  The shape parameter c varies with position and is defined in section 2.4.   

The Gaussian RBF gives an exponential function of the distance. The shape 

parameter in this RBF controls the decay rate. The thin plate spline (TPS) is a special 

case of the MQ as it only has one shape parameter to optimize rather than two. Finally, 

the logarithmic RBF can also be used with one shape parameter to optimize.   

The MQ form has been widely used in constructing approximate solutions to 

PDEs. Therefore, the following analysis will be conducted using the MQ approach.  

Upon substitution of the distance formula, the basis function ϕ is described as: 

                                                                   (9) 

where N is the total number of nodes. 

Upon defining the domain Ω, the continuous function U(x) is: 

                                                                                                  (10) 

where αj is a series of coefficients. These coefficients must be determined at each 

continuous function value. 

In order to solve partial differential equations (PDEs), we apply a linear operator 

( ) on the interior  to the continuous function as defined above.  This gives  

                                                                                             (11) 

From this relation, the linear operator (the PDE) must be applied to the basis 

function. This requires calculation of the first and second derivatives of the basis 

functions. Applying the boundary operator ( ) on the boundary  as: 
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                                                                                            (12) 

Dirichlet, Neumann, or Robin conditions can be used for the problem.   
 

2.2 Radial-Polynomial Basis 
 

The use of pure radial functions tends to be inconsistent and so for further accuracy, 

polynomials added to the basis functions can ensure consistency. However, addition of 

the polynomials complicates the solution matrices making them difficult to implement. 

They are, however, accounted for in the following manner: 

                          (13) 

where pk(x) is a polynomial of degree k, and the expansion is subject to the constraint: 

                                             (14) 

This constraint guarantees unique approximation (see Liu, 2003). The interior operator 

and boundary operator have similar expansions: 

  

                   (15) 

                   (16) 

   

These are also subject to the constraints: 

                                          (17) 

                                          (18) 

As stated previously, the addition of polynomials can be beneficial for increasing solution 

accuracy. It does, however, increase the computation time and complexity of 

implementation.   Also, the solution still relies on well-chosen shape parameters. 
 

2.3 Shape Parameters 
 

In the previous discussion, the shape parameter c was introduced.  The shape parameter is 

critical for determining the accuracy of PDE solutions when applying the radial basis 

functions. Because of this, considerable attention has been given for determining values 

of the shape parameter and some formulations can be seen in Table 3.2. 
 

Table 2.2 –Shape Parameter Formulations 

Number Shape Parameter, c 

1 [40]  
2 [41] 

 
3 [42] 

 
4 [43] 

 
5 [39] 

 
   

Most of the shape parameter formulations (1,2,4) rely on the distance d and number of 

nodes, N. Other formulations show a changing shape parameter based on the node 
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position. In summary, the shape parameter can depend on many factors including (see 

Roque and Ferreira, 2009): number and distribution of nodes, the basis function, and 

computer precision.    

Kansa (2005) made use of the fifth formulation and that was the formulation used 

for this solution procedure. Different shape parameter constants were used for the interior 

 and the boundary . For the interior, the parameter C1 was defined as the ideal 

shape parameter for the domain and C2 determined the amplitudes of C1 depending on 

whether j is even or odd. The constant C2 should be varied between 0.25 to 0.33.  For the 

boundary, the constant C2 should be varied between 0.49 and 0.55.    

2.4 The Euler-Lagrange Equations 

To illustrate the application of the meshless method with RBF, eqn (7) can be expressed 

as 

                                              
2

f ( ),

g( ),

  

  

 x x

x x
                                                     (19) 

where x=(x,y,z) and f(x) and g(x) denote the divergence of the observed velocity values. 

Now approximate λ assuming 

                                                       
N

j

j 1

j( ) (r )


   x                                                        (20) 

where r is defined, assuming MQ as the basis function, as 

                         2 2 2 2 2 2

j j j j j
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Likewise, the derivatives can be expressed as 
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Substituting into the original equation set, one obtains 
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which produces an NxN linear system of equations for the unknown λj. Figure 2 shows an 
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arbitrary domain with randomly placed node points and the circle of influence 

surrounding each node.  

 

Figure 2. Node placement and circle of influence 

3. Simulation Results 

The Nevada Test Site (NTS) is a massive outdoor laboratory established in 1950 as the 

United States’ continental nuclear weapons testing area. The location of the NTS is 

shown in Fig. 3 (a), near the southern part of Nevada and beginning about 65 miles 

northwest of Las Vegas. The NTS is defined by West longitude 115.50 to 116.50, and 

North latitude 36.50 to 37.50. A total of 26 (currently 15 operational) towers were placed 

within the NTS to support nuclear testing in the early 1950’s. An unstructured surface 

mesh with the locations of the towers is shown in Fig. 3 (b). A set of four terrain 

following layers (10m, 50m, 300m and 1000m) was used to construct the initial node 

positions based on data from the USGS DEM (digital elevation map). This domain 

consists of 3750 nodes - a 3-D view of an equivalent mesh generated by an hp-adaptive 

finite element model is shown in Fig. 4 (a). In the Fig. 4(b) 2-D view, the wind velocities 

obtained at the tower locations are incorporated as nodal points within the domain. The 

hp-adapted finite element model subsequently resulted in a mesh consisting of 10,392 

elements and 12,508 nodes with a horizontal fine mesh resolution is 950m. 

 

 

 

 

 

 

255



      

Figure 3. (a) Nevada Test Site and (b) location of meteorological towers 

 

      

Figure 4. (a) 3-D equivalent mesh and (b) measured wind velocities 

 

Three-dimensional, mass consistent wind fields were constructed utilizing the data 

obtained from the tower network. The recorded averaged measured data for each tower 

during the time interval 1:00am to 1:45am on Jan. 1, 1993 was used with 15 minute 

intervals. Wind speeds and directions associated with the fifteen towers during this period 

of time are shown in Table 3.1, where r refer to the wind speed magnitude (m/s) and   

refer to the wind direction (the angle between the wind vector and the horizontal direction 

in counter clock direction). The averaged wind velocity vectors at each tower location are 

shown in Fig. 4 (b). 
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Mass consistent wind fields generated by the meshless method are compared to the 

hp-adapted finite element results for the 10m and 50m levels in Figs. 5(a,b) and 6(a,b). 

As can be seen, the meshless results appear close in values and pattern compared with the 

high resolution finite element model. While both methods produce realistic wind fields, 

the computational work utilizing the meshless approach was significantly less, and was 

run using Matlab on a PC, versus the finite element model running on a supercomputer 

and employing FORTRAN.  

            
 

Figure 5. (a) Meshless results for 10 m level and (b) hp-fem results 
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Figure 6. (a) Meshless results for 50 m level and (b) hp-fem results 

  

3. Conclusion 

A meshless method has been used to create a mass consistent, 3-D wind fields utilizing a 

Sasaki variational approach and sparse meteorological tower data. Wind fields are 

presented for the Nevada Test Site. Model results obtained with the meshless method are 

in good agreement with results obtained from an hp-adaptive finite element model. The 

application of the meshless method permits the rapid construction of localized high 

resolution wind field estimates in regions where conventional numerical methods would 

require large storage and computational times. The method appears useful in refining 

meteorological tower locations and quickly determining potential wind turbine sites in 

wind energy assessment studies.  

Meshless methods are cost efficient – this is well documented in the literature. The 

application of a meshless approach for meteorological simulations appears promising 

when compared to large-scale calculations over regions where more conventional 

numerical approaches would require localized fine meshing to accurately capture rapidly 

changing flow features.    
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Abstract 

 

The inverse heat conduction and radiation problems are advanced when they apply to many different 

layers of the composite extreme temperatures on the outer surface. The approximate formulation and 

solution to ablative problem were conducted by applying FEM Comsol software. A rectangular 

sample was replaced with a cylindrical sample of an equivalent volume. The tested model does not 

take into account the changes caused by the impact of geometrical dimensions of the flame heat. The 

working conditions for the test sample were non-standard to such an extent that we were forced to 

estimate the thermophysical properties as referred to the applied temperature range. In addition, the 

model does not take into account the combustion heat; the given forced heat transfer was modelled by 

adding, to the tested model, a plate with a given diameter of the burner with the condition of constant 

temperature, taking into account the radiation and convection. We assume that the considered 

simplifications are non-significant for the model. Typical results of numerical tests compared with our 

own experimental results have been listed in the paper. It can be concluded that the presented 

approximate model correctly represents the actual process of ablation. 

1 Introduction 

The use of modified plastics as ablative materials protecting against an excessive temperature increase was 

connected with the middle of  20th century, directly with arms industry as well as aeronautical, rocket and 

space techniques. These materials can also be used in the design of passive fire-proof protections for 

large cubature supporting elements in building structures
2
, communication tunnels and for the 

protection of data stored in electronic, optical and magnetic carriers. This paper reports results of 

studies on modelling of ablative and thermal properties of epoxy composites with hybrid fabrics 
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reinforcement (kevlar and carbon fibers)  filled with a mixture of epoxy resin and mineral nanoclays 

(layered silicates). The composites were treated with hot combustion gases to detect the temperature 

profiles across the studied samples, the back side temperature of specimen ts, the average linear rate of 

ablation va, and their mass waste Ua during ablation processes. The paper briefs assumptions and 

requirements on research how to create ablative and thermal properties of epoxy composites with 

hybrid fabrics reinforcement. 

 
Fig. 1  Physical model of ablation [1] 

 

2 Description of the method 

Ablation is a self-regulating heat and mass transfer process, which, due to physical and chemical 

reactions, leads to irreversible structural and chemical changes of a material combined with heat 

absorption at the same time. The process is initiated and sustained by external sources of thermal 

energy. (fig. 1) [1] 

Once an ablation surface interacts with a high-temperature heat stream, an ablation process is 

initiated. This is when the ablation surface, under the influence of temperature, undergoes internal 

structural changes, which protect lower layers and affect thermo protective properties of a material. If 

an ablation shield has a multi-surface structure, the process takes place in cycles: the external layer is 

sometimes burned, falling off the larger part; subsequently another layer undergoes ablation changes. 

Among the factors which are not directly linked with the ablation layer, the cohesion of native 

material plays a tremendous role in its exploitation reliability, particularly in the case of thermal 

interactions. The need to assess mechanical properties of a native ablative material is connected with 

the fact that high mechanical stresses arising in a non-degraded layer of polymer composites, during a 

process of high-temperature  heat transfer and heat conduction exert a much stronger influence on 

composite cohesion rather than heat stresses in a degraded ablation layer. It is thermomechanical 

stresses of the native material that are responsible for the damage of a composite. Therefore it is vital 

to also evaluate the basic mechanical properties of the composites in question. [2, 3, 4]. Despite 

numerous years of applying ablation materials, there is still room to fully determine the quality and 

quantity relationships between the type-phase composition and ablation properties, in the context of 
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other exploitation features of composites used for thermo protective shields [5, 6].Polymer composites 

with fibre reinforcement in the form of glass fibres and carbon fibres have been quite thoroughly 

investigated, also in connection with various powder fillers [8, 9, 10, 11, 12].It is also true of 

composites with reinforcement in the form of carbon fibre as well as multilayer composites with 

hybrid reinforcement [13, 14]. 

The phase composition of samples and the number of conducted experiments (N = 8) were determined 

on the basis of a plan of experimental research, i.e. 2-level full factorial orthogonal design matrix for 

replicated 2
3
 factorial experiments.[15]. 

On the basis of the analysis of thematic publications [16-÷19], we selected phase components of the 

composites: epoxide resine - Epidian 52 – base, cured in room temperature by the following curing 

agents: TFF (27 ns) produced by Z. Ch. Organika-Sarzyna S.A. in Nowa Sarzyna. The ablative 

properties of the composition of resin were modified with a layered aluminosilicate, Bentonite Special 

Extra, which contained 75% calcium montmorillonite – MMT – (Zębiec Mining-Metal Plant located 

in Zębiec). The hybrid reinforcements of the composite were balanced fabrics: aramid of 230g/m
2
 

basis weight and carbon of 160g/m
2
 basis weight, layered in a alternating and even way in the 

composite layer (fig.2). 

 

 

Fig. 2: Sample structure 

3 Experimental verification 

3.1 Description of the model and the real object of study 

The thermo protective ablative research was realized on the author’s own construction stand(fig. 2), in 

accordance with the assumptions and methodology described in the available studies [19,20]. The 

ablative specimens (composite blocks of 11 x 25 x 35) were placed in a fire resistant insulating board 

made with plasterboard, where they were treated with a stabilized stream of combustible gases for a 

time period of τ = 150 s. The source of heat was burning a mixture of liquid gases – propane butane, 

which gave off a flame temperature of 1100 
o
C. 

263



 P. Przybyłek , R. Szczepaniak, W. Kucharczyk, R. Rudzki  

 

 

 
Fig. 3 Laboratory research stand 

3.2 Description of numerical model  

We prepared a numerical model as well as performing numerical simulations in the COMSOL 3.5a 

environment, by COMSOL Multiphysics. The analysis was conducted by means of the heat transfer 

module, where we simulated the physical processes of heat conduction, heat transfer through radiation 

and convection. 

 

During the numerical analysis we introduced simplifications of the following: 

 

 

 the process of gas combustion was simulated through an introduction of a uniform distribution 

of the temperature field on the surface of the examined sample, with a geometry close to the  

radius of flame geometry, as well as introducing a replacement value for air due to a turbulent 

flow of heated air; 

 

 the 3D model was replaced with a two-dimension axially symmetrical model, with the volume 

of the tested sample similar to the volume of the actual sample (Fig. 2 ); 

 

  the introduced thermophysical values of the materials are replacement and approximate 

values (some values were used as values dependent upon temperatures – Table 1). 
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3.3 Modelling construction elements of the system 

The thermophysical properties of the specimen and the nearest environment of the simulation 

examination of the numerical model (fig. 2) were adopted on the basis of available scientific journals, 

and are listed in the table below (see Table 1): 

Table 1: Materials properties. 

 Replacement parametres for numerical calculations 

Materials Heat capacity [J/kg K] Thermal conductivity [W/m K] Density [kg/m
3
] 

Air 1 2+0.005(T-273)
* 

1.2-0.001(T-273) 

Epoxy resin[22] 2030 if T=473 K 1 1200 

Carbon fibers [28,29] 1921/(1+2.189e
-0.0064 (T-273)

) 10 1760 

Kevlar [21,24,25] 1380+7.5(T-273) 0.05+(T-273)10
-6 1440 

Plasterboard [27] 0.8 0.17-0.00025 (T-273) 600 
*
replacement value resulting from an introduction of air flow through a heat stream from the burner 

4 Analysis results 

4.1 Temperature field and the ablation layer of the examined material 

Fig. 4 shows a graphic distribution of the temperature field for the constant replacement value on the 

surface of the tested sample, at t=160 s. The measurements of the temperature field for the introduced 

numerical model prove that the temperature on the opposing surface to the surface of the thermal 

activation surface, after a time span of 160 sec, does not exceed 100 C. Moreover, the ablation 

surface of the composite material was marked, equalling approximately 1.8 mm, with a radius of r=0, 

where the temperature exceeded the critical value for the examined material. 

 
Fig. 4: Illustration of the ablation layer, after a simulation of the examined sample 

l0.0018 [m] 

Ablative surface 
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In addition, we also presented temperature distribution in the function of time for different values of 

the distance to thermal activation (Fig. 5). It depicts rough values of the change of the ablation front 

across particular material layers in the time function.  

 
Fig. 5: Simulation result of the examined sample 

 

4.2 Heat resistance properties of a material 

The fundamental parametre which specifies the heat resistance properties of a material is the 

temperature on the rear surface of the examined sample (ts). The temperature distribution on the rear 

surface is presented on the comparative diagram below. We can observe only a slight discrepancy 

between these findings and the experimental findings, which may indicate a proper approximation of 

the introduced numerical model simplifications as referred to the actual model. 

 
Fig. 6: Numerical and experimental results ts. 

Materials 

was burning 
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The best ablative thermo protective properties were noticed in those composites which achieved, at 

the same time: the lowest final temperature of the rear surface area of the specimen ts (ensuring the 

highest temperature reduction on the casing’s width), the lowest rate of ablation va (the smallest 

degrading speed of the native material structure) and the smallest ablative mass loss Ua (the thickest 

ablative exploitation layer with low thermal diffusivity). 

In the investigated range of temperature of the ablative area (900 ÷ 1300) 
o
C, the lowest values of all 

the components of the response function are absorbed by the composite with phase composition no 3 , 

which contains 60% base (cured by TFF hardener), 14 layer of aramid fabric and 6 layer of carbon 

fabric as well as 15% aluminosilicate, Bentonite Special Extra(fig.8).  

 

 
Fig. 7 Ablative thermo protective properties 

5 Summary and conclusions 

This paper presents the findings of a numerical analysis of a complex heat transfer for composite 

materials (polymer fibre composite of geometry illustrated in Fig 2). During the assessment of the 

analysis, it is essential to emphasise the introduction of several simplification assumptions: 

 

 

 partial implementation of variables of thermophysical parametres, which has got an error due 

to an incomplete temperature range of the examination of parameters of particular composite 

materials, 

 the pattern has got an error in the measurement of temperature, resulting from very high 

temperatures (1100 C) on the front surface, and the rear surface, after measuring the 

temperature by touching the surface with a thermoelement, 

 lack of proper insulation of the pattern zone, where there are extremely high temperatures and 

the air flow is distant from the examined sample, 

 assumption about a uniform temperature field, through gas combustion, on the surface of the 

heated sample, 

 the composite material underwent an analysis as layered composition of several components, 

disregarding the permeation of its components. 

 

267



 P. Przybyłek , R. Szczepaniak, W. Kucharczyk, R. Rudzki  

 

 

The distance from the heated surface, where the material is burnt and the ablation surface is formed 

equals 1.8 mm, on the basis of a simulation, in comparison with the experimental value of 2.02 mm in 

the middle layer of the sample, and is a very good approximation. The discrepancy may also be linked 

to the actual change in  the sample geometry while burning part of the material. In addition, the 

ablation volume is connected with the heating radius of the front surface (the radius of flame is lower 

than the radius of the sample), which can be observed in Fig. 6. 

The presented findings of the simulation examination prove that it is essential to expand the range of 

the research by temperature measurements of different widths of the examined material, which will 

considerably allow to observe the thermal field distribution in a material. Thus, it will be easier to 

introduce more accurate values of thermophysical properties in a wider range of temperatures. In this 

way, it will be possible to analyse a numerical model, closer to reality, and more precisely determine 

the ablation surface of the examined materials. 
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Abstract
The aim here is to study time-multiscale models and their associated parameter identification. When it is
possible to consider several well-separated time scales, and when the applied loading consists of periodic
functions with respect to some of these time scales, a periodic time homogenization scheme, similar
to what exists in space homogenization, can be used to derive a homogenized model. The parameter
identification of this latter then requires some specific formulations, which are described here in an
academic example.

1 Introduction

As far as the numerical calculation of a time-dependent model is concerned, the question of the computa-
tional cost can be of utmost relevance, especially when the considered model deals with fast phenomena,
which require the use of very small time steps, when compared with the length of the time interval. In or-
der to drastically reduce the computational cost, a periodic time homogenization method, such as [1], can
be used when well-separated time scales can be defined, and when the components of the applied loading
are periodic with respect to some of these time scales. The resulting homogenized model is then cheaper
computationally, for it can be solved using time steps related to the slower time scale only, whereas the
other, faster time scales are taken into account in an average way in the homogenization scheme.

In order them to give accurate predictions, such time-homogenized models have to be compared with
experimental data. The key point is to define an identification strategy able to deal with such models in
such a way that the process remains cheap and efficient. The aim of this paper is to analyze on a specific
academic example how the different choices can be made throughout the whole identification process,
and what is their impact on the identification results.
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2 Periodic time homogenization method

Periodic time homogenization, as it was initially proposed in [1], can be seen as a transposition to time of
the classical periodic space homogenization methods, such as the techniques described in [2]. It consists
in separating two time scales, a slow one t and a fast one τ = t/ξ, by introducing, in the equations of the
reference problem, an asymptotic expansion, in terms of the ratio ξ, for each time-dependent variable:

α(t, τ) = α0(t, τ) + ξα1(t, τ) + ξ2α2(t, τ) +O(ξ3) (1)

When this ratio ξ is very small, it is possible to consider that the two time scales are independent, and that
any derivative with respect to time has to use the partial derivatives with respect to the two time scales:

dtα = ∂tα+
1

ξ
∂τα (2)

where dt, ∂t, et ∂τ stand for the total time derivative, the partial derivative with respect to the slow time
and the partial derivative with respect to the fast time respectively. Moreover, if the applied loading has
a component, which is periodic with respect to the fast time τ , it is possible to assume that each variable
is quasiperiodic, meaning that it is periodic with respect to τ .

Using the asymptotic expansion (1) for each quantity in the reference equations, and balancing the dif-
ferent orders of ξ, the time homogenized equations are determined by averaging over a fast period the
different quantities:

< α >=
ξ

Tf

∫ Tf/ξ

0
α(t, τ) dτ (3)

where Tf is the period associated with the fast periodic component of the loading.The residual associated
with this average is then denoted as α∗ = α− < α >, and depends on both time scales t and τ a priori.
Eventually, these homogenized equations are solved relatively to the slow time scale only, by introducing
the averaged influence of the fast cycles, allowing to solve for all the zeroth-order time-homogenized
variables.

Recently, this method has been used for different models in several frameworks, namely for simulations
of structures withstanding fatigue loads with two periodic components:

• material fatigue with a viscoplastic law defining two hardening variables in [3] ;

• material fatigue with an isotropic damage law in [4] ;

• extension of the method to the dynamic framework in [5] ;

• extension of the method to three different time scales in [6].

Previously, investigations from other authors on this time homogenization method had also been pro-
posed, such as the behavior of viscoelastic materials in [7], or the vibration of preloaded beams in [8].
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3 Parametric identification

In this section, a general identification strategy is proposed: from this scheme, a specific strategy, rele-
vant for the case of time-homogenized models, will be described in Section 4. The forward problem is
considered as an implicit formulation with a functional F over a time interval [0, T ] :

F (u(t),dtu(t),p, t) = 0 ∀t ∈ [0;T ] (4)

u(0) = U0

where dt is the time derivative. Whereas u is the state vector of size N , composed of all the time-
dependent degrees of freedom (DOFs) describing the studied problem, p stands for the vector containing
the P scalar parameters associated with the differential equation (4).

The identification problem consists in finding the parameter vector popt such that the solution u(t;popt)

of (4) obtained with the parameters popt is as close to the available experimental data as possible. These
latter are indeed compared with the corresponding quantities Au(t;p), where A is a projection operator
allowing to select, for each quantity, the closest DOF to the experimental measurement point. In order to
use consistent notations, the corresponding experimental quantity is denoted Auexp(t); however, it does
not mean that such a vector uexp(t) actually exists.

The following misfit function is then introduced: it consists of a norm measuring the discrepancy between
the quantities predicted with the forward model (4) and experimental data:

J (p) =
1

2

∫ T

0
|A(u(t;p)− uexp(t))|2 dt+

1

2
|R(p− p0)|2 (5)

where u(t;p) satisfies Equation (4). The L2-norm proposed here is completed with a Tikhonov regu-
larization term, allowing to deal with the ill-posedness of the identification problem, by bounding the
magnitude of the parameter vector p to be identified: this regularization term uses a vector p0 contain-
ing nominal values corresponding to a priori experience, and a diagonal weighing matrix R. Eventually,
the solution of the identification problem can be sought as the parameter vector minimizing the misfit
function J (p):

popt = argmin
p
J (p) (6)

The determination of this minimum is achieved using gradient-based minimization methods, therefore
the question of avoiding local minima by means of an appropriate regularization process should be care-
fully addressed. In some cases, rather than using the classical Tikhonov regularization term, the a priori
experience can be introduced in some specific ways, as in [9]. Similarly, the fact of using a homogenized
model in the parameter identification process can introduce a regularizing effect, just as explained in
[10].

To estimate the gradient of the misfit function, we solve here an adjoint state problem. A typical example
in mechanical engineering is given in [11], where the parameters of an elastoplastic material law are
identified with indentation tests. In the strategy proposed here, the generic form of the adjoint state
problem is as follows:

∇uFTz− dt
(
∇dtuFTz

)
= ATA(u− uexp) ∀t ∈ [0, T ] (7)

(
∇dtuFTz

)
|t=T

= 0
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where∇uF and∇dtuF stand for the directional derivatives of F with respect to u and dtu respectively.
The adjoint state problem is then a time-backward differential equation with a final condition, and where
the first-order sensitivities of the forward problem are concerned.

Once the adjoint state problem (7) is solved, it can be shown that the misfit function gradient with respect
to the parameter vector p can be expressed as:

∇pJ (p) = RTR(p− p0)−
∫ T

0
∇pFTz(t) dt (8)

This specific way of estimating the misfit function gradient can be compared with a classical finite differ-
ence formula, such as the central finite difference scheme: in this latter case, when the parameter vector is
of size P , the gradient calculation is obtained by evaluating the misfit function in 2P additional ‘points’,
each couple of points corresponding to two symmetrical perturbations of the misfit function associated
with each parameter in the vector p. The resulting computational cost for each gradient evaluation con-
sists of 2P solutions of the forward problem (4) and 2P time integral evaluations. By contrast, when the
adjoint state solution is used, only two differential equation solutions are required: for the forward prob-
lem (4) and for the adjoint problem (7). The associated computational cost for each gradient evaluation
is then 2 differential equation solutions, and P time integral evaluations. The resulting gain is as high as
the number of parameters to be identified. Moreover, it is easier to control the accuracy of the gradient
estimate with the adjoint state method than with finite difference formulas, for which the choice of the
discretization steps has a strong influence on the final estimate.

4 Parameter identification of a model with two time scales

Here an academic example is proposed to discuss the different steps of the parameter identification
problem associated with a time-homogenized model. This latter consists of a straight bar of length L
withstanding at one end a normal force with two periodic components. The measured displacement at
this end is then used to determine the parameter values of the material elastic viscoplastic law.

4.1 Reference problem

The quasistatic equilibrium of the bar is a scalar equation, with the normal stress σ(x, t) defined at each
point x ∈ [0, L]:

∂xσ = 0 (9)

where ∂x is the partial space derivative. It is assumed that no load is applied along the bar. Whereas this
latter is clamped at x = 0, a surface force is applied at x = L. It follows that:

σ(x, t) = fs(t) ∀x ∈ [0;L] ∀t ∈ [0, T ] (10)

The constitutive relation links the normal stress to the longitudinal displacement u(x, t) along the bar:

σ = E (∂xu− εp) (11)

whereE is the Young’s modulus, and εp(x, t) stands for the longitudinal plastic strain. This latter verifies
a Norton’s viscoplastic evolution law:

dtε
p =

( |σ|
K

)n
(12)
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with εp(x, 0) = 0 ∀x ∈ [0, L]. K and n are two constant parameters to be identified.

Since the stress σ is homogeneous, the plastic strain εp, as well as the total strain ∂xu, are constant along
the bar as well. The forward problem then consists in solving the following differential equation:

dt∂xu =
dtσ

E
+ dtε

p (13)

Eventually, the obtained displacement at x = L, which is compared with experimental data, has to verify:

dtu(L, t)

L
=

dtfs(t)

E
+

( |fs(t)|
K

)n
∀t ∈ [0;T ] (14)

u(L, 0) = 0

4.2 Time-homogenized problem

The loading applied to the bar is typical to what occurs in Combined Cycle Fatigue (CCF), where the
two considered frequencies are very different one from the other (F = 0.05Hz and F/ξ = 500Hz here):

fs(t, τ) =< fs > (t) + f∗s (τ) (15)

where < fs > (t) = f0 + f1 cos 2πFt and f∗s (τ) = f2 cos 2πFτ , with f0, f1 and f2 some fixed values
such that fs(0, 0) = 0.

The time-homogenized equations come from the zeroth-order expression of the forward problem (14),
where the fast-time average (3) has been previously applied:

∂t < u0 > (L, t)

L
=
∂t < fs > (t)

E
+

〈( |fs(t, τ)|
K

)n〉
∀t ∈ [0, T ] (16)

< u0 > (L, 0) =
< fs > (0)L

E

The term associated with the evolution equation is evaluated by means of a numerical integration formula,
such as the trapezoidal rule with M + 1 points:

〈( |fs(t, τ)|
K

)n〉
=

M∑

k=0

wk

(
| < fs > (t) + f∗s (

k
MF )|

K

)n
(17)

where w0 = 1/2M,w0<k<M = 1/M,wM = 1/2M .

Eventually, the displacement at x = L is derived by adding to the zeroth-order time-homogenized dis-
placement the associated residual u∗0(L, τ), which is the quasi-static solution of an elastic tension prob-
lem, when the fast time variable is replaced by its actual expression τ = t/ξ :

u(L, t) =< u0 > (L, t) +
f∗s (t/ξ)L

E
∀t ∈ [0, T ] (18)

When compared with the reference problem, whose solution requires time steps of 10−4s (if one con-
siders that 20 times steps are needed to discretize well the fast period component), time steps of 0.01s
allow to get the same estimations with the homogenized problem. It then becomes possible to deal with
such time-dependent problems, for very long time intervals, whereas the solution could not be calculated
using the reference problem. More details are given in [6] for this academic example, for a more complex
evolution law (viscoplastic behavior with two hardenings after [12]).
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4.3 Formulation of the identification problem

The associated identification problem consists in determining the material parameters E, K and n using
measurements obtained during very long time intervals: in the CCF case indeed, a significant evolution of
the structure’s response is visible only if a very high number of loading cycles is applied to the structure.
Here is studied how the choice of the misfit function can influence the identification results.

4.3.1 Misfit function using time-homogenized quantities

A first possible choice consists in modifying the misfit function (5) by introducing time-homogenized
quantities. It is considered here that the displacement uexp(t) at the end at x = L can be measured:

J 0(E,K, n) =
1

2

∫ T

0
| < u0 > (L, t;E,K, n) − < uexp > (t)|2 dt (19)

+
αE
2
|E − E0|2 +

αK
2
|K −K0|2 +

αn
2
|n− n0|2

Whereas < u0 > (L, t;E,K, n) is the solution of the zeroth-order time-homogenized forward prob-
lem (16), < uexp > (t) stands for the corresponding experimental quantity, which is obtained by fast-
averaging the experimental data for each time step tk of the time-homogenized displacement:

< uexp > (tk) =
F

ξ

∫ tk+
ξ
F

tk

uexp(t) dt (20)

The gradient of this misfit function is evaluated as in Section 3, using the solution of an adjoint state
problem. This latter is as follows:

dtz
0(t) = L (< u0 > (L, t;E,K, n) − < uexp > (t)) ∀t ∈ [0, T ] (21)

z0(T ) = 0

which is, as previously, a time-backward differential equation with a final condition equal to zero. This
equation can be solved using the slow time steps tk only, which allows to derive the solution in a way as
efficient as for the time-homogenized forward solution (16). The misfit function gradient then consists
of the three following partial derivatives:

∇EJ 0(E,K, n) =

∫ T

0

L

E2
< |dtfs(t)| > z0(t) dt+

L

E2
< fs > (0)z0(0) + αE(E − E0)

∇KJ 0(E,K, n) =

∫ T

0

nL

K

〈( |fs(t)|
K

)n〉
z0(t) dt+ αK(K −K0) (22)

∇nJ 0(E,K, n) = −
∫ T

0
L

〈
ln

( |fs(t)|
K

)( |fs(t)|
K

)n〉
z0(t) dt+ αn(n− n0)

These preceding relations (21) and (22) are actually the zeroth-order time-homogenized estimates of
the adjoint state solution and the misfit function gradient of the identification problem associated with
the reference problem (14). This is a classical result in periodic space homogenization, as described for
example in [13].
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4.3.2 Misfit function using ‘exact’ quantities

An alternative consists in choosing a misfit function where the ’exact’ experimental displacement uexp(t)
is compared with the corresponding displacement (18) :

J 0∗(E,K, n) =
1

2

∫ T

0
| < u0 > (L, t;E,K, n) +

f∗s (t/ξ)L
E

− uexp(t)|2 dt (23)

+
αE
2
|E − E0|2 +

αK
2
|K −K0|2 +

αn
2
|n− n0|2

The misfit function’s gradient is evaluated by means of the adjoint state z0∗ verifying the following
time-backward equation:

dtz
0∗(t) = L

(
< u0 > (L, t;E,K, n) +

f∗s (t/ξ)L
E

− uexp(t)
)
∀t ∈ [0;T ] (24)

z0∗(T ) = 0

Because of the fast term involving T/ξ, it is not relevant to directly solve this differential equation, unless
one loses the drastic reduction in the computational cost offered by the time homogenization method. On
the contrary, it is possible to homogenize Equation (24) with respect to time and solving for a zeroth-
order adjoint state z0∗0 verifying:

dtz
0∗
0 (t) = L (< u0 > (L, t;E,K, n) − < uexp > (t)) ∀t ∈ [0;T ] (25)

z0∗0 (T ) = 0

which is solved with respect to the slow time scale only. This differential equation is actually identical to
Equation (21).

The zeroth-order time-homogenized adjoint state z0∗0 is then used to evaluate the misfit function’s gradi-
ent as follows:

∇EJ 0∗(E,K, n) =
∫ T

0

L

E2
< |dtfs(t)| > z0∗0 (t) dt+

L

E2
< fs > (0)z0∗0 (0) + αE(E − E0)

−
∫ T

0

L

E2
f∗s (t/ξ)

(
< u0 > (L, t;E,K, n) +

f∗s (t/ξ)L
E

− uexp(t)
)

dt

∇KJ 0∗(E,K, n) =
∫ T

0

nL

K

〈( |fs(t)|
K

)n〉
z0∗0 (t) dt+ αK(K −K0) (26)

∇nJ 0∗(E,K, n) = −
∫ T

0
L

〈
ln

( |fs(t)|
K

)( |fs(t)|
K

)n〉
z0∗0 (t) dt+ αn(n− n0)

It can be seen that these partial derivatives are identical to those estimated in Equation (22), except for
an additional term, in the expression of∇EJ 0∗, which is related to the fast loading component f∗s (t/ξ).
As a result, the main difference between the two misfit functions is whether one takes into account this
fast component or not.

4.3.3 Identification results

In order to evaluate how the two misfit functions perform, synthetic data uexp(t) are created by solving
the reference forward problem (14), using Eexp = 200GPa, Kexp = 100MPa, nexp = 10 as param-
eter values. As previously, the bar withstands a CCF loading with F = 0.05Hz and F/ξ = 500Hz.
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E0 = 220GPa, K0 = 110MPa, n0 = 11 are chosen as initial parameter values for the identification
process, which is based on an interior-reflective Newton method [14] in order to minimize the two mis-
fit functions J 0 and J 0∗, for which no regularization term is added. Subsequent results are listed in
Table 1: the parameter values identified for the two misfit functions are very similar, even if the misfit
function J 0∗ using ‘exact’ quantities seems to provide slightly better results. Figure 1 shows the com-
parison between the two identified models and the synthetic reference, more precisely the variations of
the longitudinal plastic strain, which is not directly observable. In both cases, the computational cost
associated with the identification process is significantly reduced when compared with what is obtained
when the inverse problem related to the reference problem (14) is considered.

Table 1: Identified parameter values.

Misfit function Number of iterations Eid Kid nid
J 0 18 200.0GPa 97.6MPa 10.2
J 0∗ 21 200.0GPa 97.9MPa 10.1

Figure 1: Longitudinal plastic strain: synthetic data (red), initial parameter values (blue), identified pa-
rameter values with J 0 (black), identified parameter values with J 0∗ (green).

5 Summary

Here we have proposed a first study of a parameter identification process for time-homogenized models.
An adaptation of the approach with an adjoint state formulation can be used: this leads to the determina-
tion of the time-homogenized counterpart of the adjoint solution associated with the reference identifica-
tion problem. The academical example studied here showed the relevance of the strategy and its reduced
computational cost. These results can be viewed as a first step before dealing with more complex cases
of study. The extension to models with three different time scales, such as those described in [15], should
be straightforward as well.
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Abstract 

The paper presents 

1 Introduction 

Numerical simulations of metallurgical industrial processes require computational costly multiscale 

procedures [1]. Usage of such methods in the case of computer aided technology design is very time 

consuming due to applied multi iterative optimization approaches. Exertions, leading to improvement 

of numerical efficiency, are focused mainly on two areas of development i.e. parallelization of numerical 

procedures or simplification of virtual material representation in micro scale [2]. The approach presented 

in this paper covers both these subjects, because it applies idea of Statistically Similar Representative 

Volume Element (SSRVE) to simplify the computational domain, as well as it uses High Performance 

Computing hardware architectures to increase the computing performance. 

SSRVE is an extension of RVE idea, which is very well known and widely applied in multiscale 

simulations [3]. In the micro-macro modelling approach a RVE representing the underlying 

microstructure is attached at each Gauss point of the macroscopic solution. The constitutive law 

describing material behavior in the macro scale is obtained by averaging the first Piola-Kirchoff stresses 

with respect to the RVE. The theoretical basis of the micro-macro modelling is well described in the 

scientific literature [4]. Considering micro-heterogeneous materials, the continuum mechanical 

properties at the macro scale are characterized by the morphology and by the properties of the particular 

constituents in the micro scale. In this work two phase microstructures composed of soft ferrite and hard 

martensite are considered. In the analysis we concentrate on the measures characterizing the hard 

martensite islands only. The material models of the individual constituents are assumed to be known. 

The description of the microstructure is the based on statistical consideration [5]. An usual RVE is 

determined by the smallest possible sub domain, which is still able to represent the macroscopic behavior 

of the material. Although these RVEs are the smallest possible by definition, they still can be too 

complex for the efficient calculations. Therefore, the construction of statistically similar RVEs, which 

ICIPE2014 8th International Conference on Inverse Problems in Engineering, May 12–15, 2014, Poland
Eds: I. Szczygieł, A.J. Nowak, M. Rojczyk

281



 L. Rauch, D. Szeliga, K. Bzowski, D. Bachniak  

 

 

are characterized by a lower complexity than the smallest possible substructure, was proposed in [4]. 

The basic idea is to replace a RVE with an arbitrary complex inclusion morphology by a periodic one 

composed of optimal unit inclusions (Fig. 1), which is characterized by similar material properties as 

RVE. 

   

Figure 1: Original micrograph (can be binarized to obtain RVE) of DP steel (a) and periodical three 

element SSRVE (b). 

 

The number of inclusions in SSRVE is usually not higher than three. The most of the papers, related to 

determination of SSRVE, are focused on theoretical considerations or creation of single element 

SSRVE. In this work, identification procedure, focused on creation of multi-inclusion SSRVE, is 

proposed. The second section contains description of SSRVE methodology including all the steps 

required to obtain final multi-inclusion SSRVE. The subsequent sections (three and four) present 

sensitivity analysis and optimization procedures. Afterwards, the results in 2D and 3D are shown and 

the paper is concluded with perspectives of the future work. 

2 Procedure of SSRVE creation 

The scheme of the procedure dedicated to SSRVE creation consists of four main steps dedicated to 

preparation of microstructure images characterizing analyzed steel, processing of images to determine 

features describing material, and performance of sensitivity analysis and optimization procedure. These 

steps are presented in Fig. 2. 

 

Figure 2: Procedure of SSRVE creation. 

 

The procedure of SSRVE creation starts with analysis of original micrographs, which aims at 

creation of binary (segmented) images with separated martensitic inclusions. The algorithms for 

processing of various micrographs are presented in details in [6]. Then, in case of 2D SSRVE, the shape 

coefficients of inclusions in original images are estimated directly from the segmented pictures. In case 

of 3D procedure, the reconstruction of three dimensional microstructure on the basis of 2D images has 

a) b) 
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to be performed [7]. Afterwards, the shape coefficients of 3D inclusions are estimated. Ohser and 

Muecklich [8] proposed four basic parameters for statistical shape description. Few more parameters, 

which are used in the image analysis, were added and described by Authors in [9]. In consequence, the 

following parameters describing shape of inclusions were considered: volume fraction, area/volume, 

roundness, ellipsoid fit, contour to center ratio, border index, mean curvature, total curvature, 

Malinowska coefficient, Blair-Bliss coefficient, Danielsson coefficient and Haralick coefficient. Not all 

of these parameters can be adapted from 2D to 3D. Thus, some of the coefficients are used only for 2D 

SSRVE. 

Additionally, statistical and rheological coefficients are calculated to obtain full set of reference 

coefficients, which describe all aspects of material properties and which are used further in optimization 

procedure. The statistical measures, used for microstructure characterization in the SSRVE for micro-

macro modelling of DP steels, are described in details in [9]. Brandts et al. [10] introduced the higher 

order statistical measures for microstructures: n-point probability functions, spectral density and lineal-

path function. The latter parameter is crucial in description of anisotropic microstructures, while it 

describes the probability that a complete line segment a = 
1 2a a  is located in in specific direction in the 

same phase, where a1 = {x1,y1} and a2 = {x2,y2} are coordinates of the ends of the line segment. Lu and 

Torquato [11] gave general mathematical description of this measure for multi-phase anisotropic 

materials. Simplified approach, which is applicable to DP microstructures, can be defined by the 

following equation: 

    1 2

1 1

1
,

yx
NN

LP

p qx y

m k
N N

 
 

  a a  (1) 

where Nx, Ny are the dimensions of micrograph in pixels, and  ( )

1 2

i a a  is modified indicator function 

defined for phase 
( )iD  as: 

  
( )

( ) 1 2
1 2

1 if

0 otherwise

i
i D


 

 


a a
a a  (2) 

The estimated shape coefficients as well as statistical measured are the main elements of 

optimization function aiming at SSRVE creation. Optimization procedure is based on approach proposed 

in [9]. Originally, a method for the construction of simple periodic structures for the special case of 

randomly distributed circular inclusions with constant equal diameters was proposed by Povirk [12]. In 

that work the positions of circular inclusions with given diameter were found by minimizing the 

objective function, which was defined as a square root error between spectral density of the periodic 

RVE and non-periodic real microstructure. In our work this function was adapted to the following form:  

 

1

n
i iSSRVE

i

i i

w
 



  
    

  
  (3) 

where: wi – normalized weights, n – number of coefficients, i – ith reference coefficient obtained from 

original microstructure, iSSRVE – ith coefficient obtained from SSRVE. The coefficients includes all 

mentioned parameters describing shape, rheology and statistics. 

The current implementation of optimization procedure is based on genetic algorithm (GA), where 

chromosome is composed of m elements representing coordinates of control points determining SSRVE 

shape. These points are connected with spline functions forming smooth shape of SSRVE inclusion. 

Calculations of the objective function are performed iteratively for each proposition of new SSRVE 

shape. The optimization loop is preceded by sensitivity analysis, which allows to determine the most 

influential parameters of the optimization or to determine the weights used in the objective function (3)

. The sensitivity analysis is described in the next section, which is followed by detailed presentation of 

optimization procedure. 
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3 Sensitivity analysis 

Sensitivity Analysis (SA) is the field of knowledge investigating the model behavior for various input 

data and model parameters [13]. It determines how the variations of input data and parameters are 

distributed on the variations of model outputs and influence them. In this work global sensitivity methods 

were applied, which calculate one (global) value expressing the sensitivity of a parameter for the whole 

parameter domain. These methods are derived from statistics and the probability theory. Global SA 

requires a definition of the following terms: 

 expression which characterizes the measure of model output/outputs (it should be a scalar value), 

 definition of the variation interval for each input parameter, 

 selection of the points in the parameters domain (design of experiment techniques are applied), 

 sensitivity measure – the sensitivities are estimated based on the model outputs measure variations, 

caused by changes in the model parameters. 

Two algorithms were selected for the purposes of this work: Morris Design which is a screening method 

and Sobol’ algorithm ,based on analysis of variance. 

3.1 Morris Design algorithm 

The term screening design characterizes the method of the input parameters domain processing. The 

methods of this group calculate the parameter sensitivities as the global indices and they search 

systematically the whole parameters domain, thus, they are called screening methods. The main idea of 

these algorithms is to investigate the model parameters, which have the biggest influence on variability 

of the model output, and to keep computing costs as low as possible. The methods deal with the question, 

which model parameters are really important. Due to the assumption of low computing costs, these 

procedures estimate the importance of the input parameters qualitatively, not quantitatively. The One-

At-a-Time (OAT) approach, originally developed by Morris [14], was selected. This technique 

investigates the impact of the variation of each parameter in turn. The OAT design is called the global 

sensitivity analysis, because the algorithm explores the entire space over which the parameters vary. In 

the algorithm, the term of parameter main effect is introduced and it is determined by computing a 

number of local measures at different points in the input space and next estimated by mean value and 

standard deviation. The key definitions and steps of Morris design are presented below. 

 

Assumptions and definitions. Let x be an n-dimensional vector of model parameters xi. The primary 

assumption of the algorithm is that all xi components are defined on  0,1  interval. In most practical 

problems xi components are of various physical units and the parameters have to be rescaled to  0,1 . 

Linear or logarithmic transformation can be applied. The conversion is necessary to compare the results 

obtained for various parameters. It is feasible only if estimated elementary effects are expressed with 

the same units for all parameters. Let the components xi, 1, ,i n , accept k values in the set 

 0,1 ( 1),2 ( 1), ,1k k  . Then the parameters domain n  forms an n-dimensional k-level grid. 

The elementary effect xi of the ith parameter at a given point x calculated for y model output is defined 

as: 

 1 1 1( , , , , , , ) ( )
( ) : i i i i n

i

y x x x x x y
     




x
x  (4) 

where x is any value in the   domain such that the perturbed point x  is also in  ,  , ,i i s i ex x     

and 
,i sx , 

,i ex  are start and end points of parameter ix  variation interval, respectively,   depend on k 

and describe the side length of the grid element. A finite distribution Fi for each parameter xi is obtained 
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by sampling x in  . The number of elements of Fi is equal to   11 nk k  . Distribution Fi of elementary 

effects is described by mean   and standard deviation  . A mean characterizes the sensitivity of the 

model output with respect to ith parameter. A high mean indicates that the parameter is important and it 

substantially influences the output. A high standard deviation implies that the parameter interacts with 

other parameters or its effect to the model is nonlinear. 

The results of the sensitivity of the model output with respect to the input model parameters 

expressed as the estimated mean of elementary effects are dependent on Δ value, which is selected 

arbitrarily. This dependence rises with the nonlinearity of the model and the sensitivity calculations may 

be not reliable. Thus, the calculations with the Morris Design algorithm are performed for various Δ and 

next the results are compared. The comparison is feasible for normalized quantities: 

  i i
i i

 
  

μ σ
 (5) 

where  1, , n  μ ,  1, , n  σ  are vectors of means and standard deviations calculated for all 

the input parameters xi, i = 1, . . . , n. If means and standard deviations computed for various Δ are close 

to each other, the sensitivities are properly estimated. If not, the value of Δ should be narrowed down 

and the procedure is repeated. 

3.2 Sobol’ method 

Sobol in [4] developed the method of the global SA based on the variance analysis and the Monte Carlo 

algorithm. Let us assume that the domain of the input model parameters xi, i = 1, . . . , n, is defined as an 

n-dimensional cube Ω: 

  : 0 1 1, ,ix i n     x  (6) 

Let the function ( )y y x  represents a model. Sobol defined the decomposition of ( )y x  as the sum of 

the increasing dimensionality addends: 

        1 0 1,2, , 1

1 1

, , , , ,
n

n i i ij i j n n

i i j n

y x x y y x y x x y x x

   

        (7) 

The decomposition (7) is held if y0 is constant and the integrals of every addend over its own variables 

is zero: 

  
1 1

1

,

0

, , 0 : 1
s s ki i i i iy x x dx k k s       (8) 

From (7) and (8) it is concluded that all the addends in (7) are orthogonal: 

        
1 1 1 1, , 1 1, , , , 0 , , , ,

s s k ki i i i j j j j s ky x x y x x d i i j j 



       x  (9) 

and  

  0y y d


  x x  (10) 

Sobol’ in [15] proved that the decomposition (7) is unique and all the decomposition addends can be 

evaluated as multidimensional integrals: 

    
1 1

0 ~

0 0

i i iy x y y d     x x  (11) 

        
1 1

0 ~( )

0 0

,ij i j i i j j ijy x x y y x y x y d       x x   
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where ~idx  and ~( )ijdx  denote integration over all the variables except xi and xi, xj, respectively. 

Following that, the total variance Var is of the form: 

  2 2

0Var y d y


  x x  (12) 

and partial variances are estimated based on the terms in equation (7): 

  
1 11 1

1

2

1

00

 Var
s s ssi i i i i ii i x x dxy x     (13) 

where 
11 si i n   , 1, ,s n  . Squared and integrated over Ω equation (7) gives: 

 
1,2, ,

1 1

Var Var Var Var 
n

i ij n

i i j n



   

     (14) 

Thus, the sensitivity measures 
1 si iS 

 are defined by: 

 1

1

Var

Var
s

s

i i

i iS


   (15) 

Si is called the first order sensitivity index for the parameter xi and it measures the main effect of xi on 

the model output. Sij, for i  j, is the second order sensitivity index and it measures the interacted effect 

of the two parameters xi and xj on the model output. The higher order sensitivity indices can be defined 

in the same way. The multidimensional integration in calculations of variances (13) and (14) is 

performed with the Monte Carlo method, hence the efficiency of Sobol’s algorithm depends mostly of 

efficiency of the Monte Carlo procedure. 

4 Optimization procedure 

On the basis of results obtained from sensitivity analysis the reference coefficients, their values and 

weights are established. A set of these parameters is used further in optimization procedure as i  in (3)

. In this work the procedure is implemented in two versions i.e. for 2D and 3D, however the core part of 

the applied optimization algorithm is the same for both solutions. Implemented multi-iterative genetic 

algorithm [16] is composed if the following steps: 

a) Generation of initial population – random generation of n specimens containing information about 

coordinates of control points and their weights. Size of the specimen depends strongly on number 

of control points describing martensitic inclusions in SSRVE. At the beginning of calculations the 

control points form m circles, where m is a number of inclusions. The main assumption is that those 

circles cannot touch each other and the summary phase fraction of these inclusions has to be equal 

to the phase fraction determined for original microstructure. 

b) Estimation of objective function value – the procedure calculates values of iSSRVE  on the basis of 

shapes of martensitic inclusions in succeeding SSRVEs. Shapes of these inclusions are described 

by Non-uniform Relational B-Spline (NURBS). These parametric curves are controlled by basic 

interpolation functions and a set of mentioned control points, which are described by coordinates 

and weights. The weight of each control point influences the position of curve near the particular 

control point. The shapes of martensitic inclusions influence also rheological properties and 

statistical description of microstructure. Rheological model of SSRVE is determined by processing 

of this element in virtual uniaxial compression, tensile and shear deformation tests. Obtained stress-

strain relations allow to calculate equivalent tensile stress, which describes material rheology. The 

main statistical measure is lineal-path function, calculated directly from pixels or voxels values of 

SSRVE. 
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c) Stop conditions – two fundamental conditions are implemented i.e. number of iterations and mean 

square error between expected and actual objective function. 

d) Application of genetic operators – the following operators were implemented in the presented 

approach: 1x crossing and 2x mutation operators. The former operator is responsible for exchange 

of random number of genes between two specimens (Fig. 3). 

 

Figure 3: Illustration of crossing operator for 2D specimens. 
 

The first of mutation operators (Fig. 4) changes positions of control points regarding center of gravity 

of the shape. The operator determines random set of control points, which will be mutated, and then the 

new position is calculated also on the basis of randomized operations. The second mutation operator 

changes the positions of control points in X or Y axis direction by using random values of coordinates 

in the vector of translation. 

 

Figure 4: Illustration of mutation operator for 2D specimens. 

e) Generation of new population – the specimens obtained after operations of crossing and mutation 

are included in the new population. In each subsequent iteration, each specimen is validated. On 

the basis of validation the worst specimens are removed from population, some of the best 

c) effect of crossing 

a) 1st base specimen           b) 2nd base specimen 

A 

B 

C 

D 

A 

D 

Center of 

gravity 

translation  

vector 

a) b) 
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specimens go further without changes and the rest is passed again to crossing and mutation 

operators. 

The procedure of NURBS generation, crossing and mutation operators, representation of specimen 

are the main results between 2D and 3D approach. Shape of inclusion in 3D is composed of 2D layers, 

which were used in reconstruction algorithm mentioned at the beginning of this section. Thus, the 

specimen in 3D contains additional Z coordinates, which influences all the algorithms inside 

optimization procedure. Therefore, the crossing operator is based on exchange of a set of whole layers 

between two specimens instead of a set of single control points. The first mutation operator behaves 

similarly by translating of whole layers in Z axis direction, while the second mutation operator chooses 

two layers randomly and replace them inside one SSRVE. 

5 Obtained results 

The calculations in this work were performed for dual phase steel, which microstructure is presented in 

Fig. 5. The original micrograph was analysed by using filtering methods based on convolution 

algorithms and the method proposed by Authors, based on algorithm of dynamic particles [6]. The final 

segmentation is a result of watershed algorithm implemented by using cellular automata [17]. 

 

Figure 5: Results of sensitivity analysis. 

 

Grains on the micrograph were analysed according to procedure described in [17], and the reference 

values were established. Afterwards sensitivity analysis by using Morris Design and Sobol method was 

applied. The results are presented in Fig. 6.  

    

Figure 6: Results of sensitivity analysis for Morris Design (a) and Sobol method (b). 

 

a) a) 
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It can be seen that the parameter, which is the most influential on time of calculations and accuracy of 

the model, is the number of control points. The less important coefficient is number of inclusions per 

SSRVE, which does not increase qualitative nor quantitative results. However in the case of strong 

diversification of grains in a microstructure, it is recommended to design SSRVE based on two or three 

inclusions. The procedure applied in this work took into account four reference shape coefficients 

(maximum curvature = 4.964, border index = 0.831 and Malinowska = 0.341), rheological model, lineal-

path function and phase fraction = 0.45. The results obtained for different number of control points are 

presented in Fig. 7a-d for 2D. Three dimensional result is presented in Fig. 7e. The values of objective 

function were in all cases below 0.01, while the best numerical performance was obtained in case of 8 

and 12 control points. However, the best accuracy of rheological model was obtained for 20 control 

points. The solution based on 8 control points was selected and applied in 3D on 8 layers in Z axis 

direction. Therefore we obtained 64 control points, which offered value of objective function similar to 

2D cases. 

 

    

 
 

    

Figure 7: Results of optimization for 2D SSRVE in case of (a) 8, (b) 12, (c) 16, (d) 20 control points 

for each inclusion in SSRVE. 

6 Conclusions 

The paper presents procedure of identification of SSRVE, preceded by sensitivity analysis. The results 

obtained in this work proves high reliability of material representation by using SSRVE as well as 

satisfactory numerical performance. The optimization procedure based on the results of sensitivity 

analysis allows to setup better weights of parameters in objective function and to reduce its complexity. 

Therefore, 2D and 3D elements are created very efficiently. Further objectives of results will be focused 

on integration of the approach presented in this work with software dedicated to management of 

multiscale method in modern e-infrastructures (e.g. Scalarm software). 
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Abstract
The aim of this study is to simultaneously retrieve three parameters, of constitutive and geometrical
nature, that define the state of a fluid-like object, by nonlinear inversion of synthetic transient acoustic
response data. Contrary to most publications treating this subject, it is assumed herein that the retrieval
model is not identical to the data model, this being so because some of the parameters (priors) in the re-
trieval model are different (by the simple fact of being more or less unknown) from their true counterparts
in the data model. This so-called model discordance, which is the usual situation in real-world inverse
problems, is a source of errors for the retrieval of the other parameters. Retrieval errors as a function of
prior uncertainty are computed for a a lossy fluid-like cylinder object, and found to be large, for various
model discordance scenarios involving one uncertain prior, and noiseless data.

1 Introduction

The ultimate goal of the majority of the applications of inverse scattering is to obtain a quantitative im-
age [9] of a corrupted (such as by a crack: [1], [2]), diseased (such as affected by a tumor: [8], [17], or
otherwise inhomogeneous [7], [3] body. To do this in an oft-employed manner (e.g., via a domain inte-
gral approach: [7], [16]) requires the previous knowledge of the (termed ’specific’ in [16], [6]) Green’s
function of the corresponding uncorrupted, healthy [7]), or homogeneous body. The determination of this
Green’s function requires quantitative information about the size, shape and constitutive parameters of
the healthy body, which must be determined by solving another inverse (scattering or vibration) problem.
If the diseased body is a cylinder containing a tumor, then the healthy body is the same cylinder without
the tumor; this cylinder is the object we wish to characterize.

We revisit an oft-studied acoustically-solicited (analogous to the electromagnetic wave: [5]) ’healthy’
configuration involving a canonical object (simple circular shape, homogeneous viscous fluid [11], [12],
[13] (analogous to lossy dielectric [5]) composition), thereby:

ICIPE2014 8th International Conference on Inverse Problems in Engineering, May 12–15, 2014, Poland
Eds: I. Szczygieł, A.J. Nowak, M. Rojczyk
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- enabling the direct-scattering problem to be solved in a quasi-analytic manner (e.g., [16]), and
- enabling nonlinear full (transient)- wave inversions (e.g., [15], [6], [14], [12], [10], [13]) to be carried
out in a reasonable amount of time.

Numerous numerical tests of the multiparameter retrieval (such as in [10],[13]) are made herein
in the hope of shedding light on the crucial issue of retrieval error of more-complicated (i.e., involving
objects with non-canonical shapes and/or that are inhomogeneous) transient-wave inverse problems.

2 Ingredients of multiparameter inversion of time- domain data

The model of the physical process which accurately mimics the data during the inversion is termed
retrieval model, or M, characterized by its mathematical ingredients M and numerical ingredients N.
We term the model that mimicks measured data, the data simulation model, or m, characterized by its
mathematical ingredients m and numerical ingredient(s) n. The physical/geometric parameters of m and
M are p and P respectively, i.e., lower-case letters apply to the (true) data (simulated or experimental)
and upper-case letters to the retrieval model.

Let r := {rj ; j = 1, 2, ..., Nr} be the set of to-be-retrieved parameters, q := {qj ; j = 1, 2, ...Nq} the
set of priors (whose nature will be made more precise further on), X := {xj ; j = 1, 2, .., Nx} the set
of sensor locations and t := {tl ; l = 1, 2, .., Nt} the set of instants of the sampled signal. At present,
Nr = 3 and Nq = 11.

The basic scheme is to replace the true (fixed) parameter set r by the trial (variable) parameter set R :=

{R1, R2, ..., RNr} and the true (fixed) set of priors q by another fixed set Q := {Q1, Q2, ..., QNq}, and
search, in iterative manner, for the set R = r̃ that minimizes the discrepancy (the measure of which is
a cost or objective functional) between trial signals (resulting from trial parameters) S(X, t,Q,R) and
the true signal s(X, t,q, r) (resulting from the true parameters).

Note that if, as will be assumed in some of the examples presented hereafter, there exists some uncertainty
in the priors, Q will not be identical to q. In fact, this possible (model) discordance will affect the
accuracy of the retrieval and it is of considerable interest to quantify this effect.

The discrepancy between S and s is the cost functional K. We choose this as:

K(r,R,q,Q,X, t) =

∑Nx
j=1

∑Nt
k=1[s(xj , tk,q, r) − S(xj , tk,Q,R)]2

∑Nx
j=1

∑Nt
k=1[s(xj , tk,q, r)]2

. (1)

The inverse problem is solved, at each stage, by minimization of the cost functional via the Nelder-Mead
Simplex scheme [4] implemented in MATLAB by the function fminsearch. The minimum of the cost
functional (in the parameter space explored by the Simplex scheme, anchored at the user-defined starting
values of the to-be-retrieved parameters, is found for R = r̃, i.e.,

r̃ = arg min
R⊂S

K(r,R,q,Q,X, t) , (2)

wherein S designates the parameter search space during a given stage of the search of a minimum, a
stage being defined as a specific choice of the initial value set (since fminsearch requests such a set
to get started). We call the initial value set R := {Rj ; j = 1, 2, 3, Nr = 4}. Note that R takes on
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different values (from this initial value) as the minimization proceeds. The schemes considered in this
investigation actually solve for all members of the set r at each stage.

Often, a priori information, concerning the solutions of the inverse problem, is of the form: ’the sought-
for parameter rj lies between Rbj and Rej’, which fact suggests that one should try to carry out the
retrieval for a variety of starting values lying between Rbj and Rej .

More precisely, we shall carry out the inversion for the set of starting values R := {Rjk ; j =

1, 2, 3, Nr = 4 ; k = 1, 2, ..., NRj}, with Rjk := Rbj + (k − 1)dRj ; j = 1, 2, 3 ; k = 1, 2, ..., NRj and

dRj :=
Rej−Rbj

NRj
−1 . Thus, supposing NR1 = NR2 = NR3 := NR, the number of stages, and the number

of retrieved solutions, will be N3
R, a number that increases rapidly with NR since 23 = 8, 33 = 27,

43 = 48,... The question (alluded-to previously) is then how to select the most appropriate (i.e., ’best’)
solution among this multitude of retrievals.

The result of an inversion scheme can lead to (one or more) rj that are not within the initial search
interval [Rbj , Rej ], but a logical option (i.e., equivalent to a regularization scheme) is to reject such
retrievals (otherwise, why impose initial search intervals other than to constrain the retrievals?) and then
apply the min min cost rule (select the solution, amongst those obtained by the Simplex minimization
scheme, corresponding to the smallest minimum of the cost functions) to the remaining solutions. In the
sequel, we shall apply this regularization scheme [13] to our canonical inverse problem.

2.1 The retrieval error generated by prior uncertainty

Nonlinear inversion usually leads to error-ridden retrievals of the j−th parameter (recall that the true
value of this parameter is rj). Our aim will be to evaluate the relative error of the final retrieved parameter
r̃j (j = 1, 2, ..., Nr = 4)

εj :=
r̃j − rj

rj
, (3)

as a function of the prior uncertainties, which, for the k-th prior, is

δk :=
Qk − qk

qk
. (4)

Note that it is the theoretical (rather than experimental) nature of our study which makes it possible to
evaluate the retrieval errors since in real life the true values of the various parameters are not known.

3 The models for computing the signals s(xj, tk,q, r) and S(xj, tk,Q,R)

3.1 Model description

An infinitely-long (in the z-direction of an Oxyz cartesian reference system) lossy fluid-like cylinder,
(known to be) centered at the origin O and of radius a, is immersed in another (host, non-lossy) fluid
and is submitted to an acoustic plane wave whose wavevector ki lies in the x − y (sagittal) plane.
Consequently, the incident and diffracted fields are independent of z, i.e., the problem is 2D, with z the
ignorable coordinate.

The plane wave carries a pulse, and the purpose of this excitation field is to produce a pulse-like diffracted
field (i.e., signal) constituting the data, which by means of an inversion scheme, is analyzed to enable the
retrieval of the radius of the cylinder and constitutive parameters of the fluid enclosed therein.
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The constitutive parameters of the host medium, as well as the excitation parameters, may, or may not,
be precisely known beforehand.

The analysis takes place in the sagittal plane wherein Ω0 denotes the domain exterior to the cylinder, Γ

the circular bounding curve of the cylinder, and Ω1 the domain within Γ.

The homogeneous fluids in Ωl are M [l], l = 0, 1. The acoustic bulk phase velocities in these media are
c[l] = ℜc[l] + iℑc[l], with ℑc[1] ≤ 0 and ℑc[0] = 0 (note that ℑc[l] is a measure of attenuation which is
equal to zero in a non-attenuating medium). The densities in M [l], l = 0, 1 are ρ[l]. The corresponding
wavenumbers are k[l] := ω/c[l], with ω = 2πf the angular frequency and f the frequency.

The bandwidth of the incident pulse is, for all practical purposes, finite, and within this band the phase
velocities of the two fluids are assumed to be constant with respect to the frequency f .

The (incident) angle between ki and the x axis is θi.

The diffracted field is sensed at various (Nx) points X on a circle of radius b > a enclosing the cylinder
and having the common origin O. The polar angle at which a generic point-like sensor is located is θj

(with respect to the positive x axis). X is assumed to be precisely known.

The objective is to retrieve the parameters c[1]r := ℜc[1], c[1]i := ℑc[1], ρ[1] and radius a from data
relating to the diffracted (scattered) field signals recorded at one or more sensors.

Recall that in this study, the experiment for obtaining the diffracted field data signal(s), rather than
being carried out physically in the laboratory or field, is simulated by computational means via the
data simulation model, whereas the inversion requires another model, termed the retrieval model.
We assume the mathematical and numerical ingredients of these two models to be identical; the two mod-
els differ only by the values of various physical/geometrical parameters entering therein and eventually
by noise added to the data signal (we treat the noiseless case here; otherwise see [13]).

Each model is employed to solve a direct scattering problem, once as concerns the generation of the
synthetic data, and as many times as necessary during the inversion process.

3.2 Acoustic field solutions

The incident plane-wave pressure field is:

u[0]i(x, ω) = S(ω)e−ikr cos(θ−θi) = S(ω)
∑

m∈Z
γmJm(k[0]r)eimθ , (5)

wherein x = (r, θ), S(ω) is the spectrum of the pulse associated with the incident wave, and
γm = e−im(θi+π

2 ). We choose a pseudo-Ricker type of pulse excitation whose spectrum S(ω) =
ω2

4α3
√

π
exp

(
iβω − ω2

4α2

)
. The diffracted pressure field outside the cylinder is [16]:

u[0]d(x, ω) = S(ω)
∑

m∈Z
AmH(1)

m (k[0]r)eimθ , (6)

wherein Am = γmAm, η := k[0]ρ[1]

k[1]ρ[0] , Żm(z) := d
dzZm(z), with Zm(z) = Jm(z) (Bessel function)

or Zm(z) = H
(1)
m (z) (Hankel function). The time-domain diffracted field outside the cylinder (termed

’signal’ when r = b) is

U [0]d(x, t) = 2ℜ
∫ ∞

0
u[0]d(x, ω)e−iωtdω . (7)
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Recall that that the field is sensed on a circle of radius r = b > a. We take into account only the first
N + 1 terms of the series in u[0]d(b, θ, ω), with Nf = fk[0]b + 3 and f a user-chosen factor that is usually
equal to 2 or 3. We carry out the Fourier transform as follows

U [0]d(b, θ, t) ≈ 2ℜ
∫ 2πff

2πfd

u[0]d Nf (b, θ, ω)e−iωtdω , (8)

with fd a very small number, ff chosen large enough to prevent the generation of numerical artifacts,
and the finite integral evaluated by the Simpson scheme.

4 The parameters involved in the simulated data and retrieval data

4.1 The parameters involved in the (simulated) data

Our simulated data involves fourteen physical/geometric parameters (PGP) and two numerical parameter
(NP) sets (see Tab. 1), both designated by lower-case characters. The PGP consist of: the four to-be-

Table 1: Correspondences between the different (lower case) symbols relating to the simu-
lated/experimental (fixed during the retrieval) parameters. The entries of a given column represent the
same parameter.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14

r1 r2 r3 r4 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

c[1]r c[1]i ρ[1] a c[0] ρ[0] θi α β b θb θe Nθ P

retrieved parameters of the cylinder p1, p2, p3, p4, the two background medium priors p5, p6, the three
excitation priors p7, p8, p9 and the five receiver priors p10, p11, p12, p13, p14.

The polar angle of the j-th receiver (the total number of receivers being Nθ) is

θj = θb + (j − 1)dθ , (9)

and

dθ =
θe − θb

Nθ − 1
, (10)

it being understood that
s(xj , tk,q, r) = U [0]d(b, θj , tk,q, r) , (11)

is the (simulated) data signal at the j-th receiver and instant tk, and that

S(xj , tk,Q,R) = U [0]d(b, θj , tk,Q,R) , (12)

is the retrieval signal at the same receiver and instant.

In practice, the retrieved signal is affected by noise whose amplitude is accounted-for by the parameter
P , but in the sequel we consider only noiseless data corresponding to P = 0.

The two NP sets are: n1 = (fd, ff , Nf , f), n2 = (td, tf , Nt). We stress the fact that the first two NP
employed in the retrieval model are identical to those in the data simulation model, i.e., Nl = nl ; l =

1, 2.
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4.2 The parameters involved in the retrieval data

Our retrieval data involves fourteen physical/geometric (PGP) parameter sets and two numerical param-
eter (NP) sets (see Tab. 2), both designated by upper-case characters.

Table 2: Correspondences between the different (upper case) symbols relating to the retrieval parameters.
The entries of a given column represent the same parameter or vector.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

R1 R2 R3 R4 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

(C [1]r
b , (C [1]i

b , (R[1]
b , (Ab, C [0] R[0] Θi A B B Θb Θe NΘ P

C
[1]r
e , C

[1]i
e , R[1]

e , Ae,
NC[1]r ) NC[1]i) NR[1]) NA)

The PGP consist of: the three parameter sets relative to the cylinder P1, P2, P3, P4, the two background
priors P5, P6, the three excitation priors P7, P8 P9, and the five receiver priors P10, P11 P12, P13, P14,
it being understood that

Pj = Rj = (Rbj , Rej , NRj ) ; j = 1, 2, 3 , (13)

and that we choose: Pj = pj ; j = 10, 12, 13, 14.

Furthermore,
S(xj , tk,Q,R) = U [0]d(b, θj , tk,Q,R) , (14)

is the retrieval signal at the j-th receiver and instant tk.

The three numerical parameter sets are: N1 = (Fd, Ff , NF ,F), n2 = (td, tf , Nt), n3 = (MFE) , with
MFE the maximum number of function evaluations per stage in each call to the Simplex function.

We always chose Nl = nl ; l = 1, 2 and MFE = 5000.

5 Parameters and conventions common to the figures

The true (target) parameters are: c[1]r = 1700 m/s, c[1]i = −210 m/s, ρ[1] = 1300 kg/m3 , a = .1

m. The true priors are: c[0] = 1500 m/s, ρ[0] = 1000 kg/m3, θi = 0◦, α = 2000 Hz, β = .1

s, b = 1 m. The numerical parameters are: f =(.003 Hz,2000 Hz,201), t = (.098 s, .103 s,181). We
take θ = (0◦, 180◦, 5).

As stated earlier, we do possess some knowledge at the outset of the values of the parameters we wish to
retrieve. This knowledge takes the form of intervals which are used to initialize the Simplex optimization
algorithm. To parametrize this degree of knowledge, we employ the variable dRj = d = .9 ; j = 1, 2, 3

for the initial parameter intervals [C
[1]r
b = c[1]r(1−d), C

[1]r
e = c[1]r(1+d)], [C [1]i

b = c[1]i(1−d), C
[1]i
e =

c[1]i(1 + d)], [R[1]
b = ρ[1](1 − d), R[1]

e = ρ[1](1 + d)], [Ab = a(1 − d), Ae = a(1 + d)].
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6 Tables expressing the retrieval errors of three parameters

The following tables indicate the relative retrieval errors (ε) incurred by a fixed relative uncertainty (δ)
of a selected prior (one at a time). We take δ = ±0.1 for all but the prior B and δ = ±0.0004 for prior B.
This is done for the various programs we employed to simultaneously retrieve three parameters amongst
c[1]r, c[1]i, ρ[1], a.

Table 3: The entries of this table are the retrieval error εc[1]r , given in this, and the other following tables,
as a function of the various prior uncertainties (one at a time, the other priors taking their true values) and
the programs by which the retrievals were carried out. For example, program r1r2r3 retrieves r1 = c[1]r,
r2 = c[1]i, and r3 = ρ[1] simultaneously. The prior uncertainty is: δ = −0.1 for the priors C [1]i, R[1], A,
C [0], R[0], A and δ = −0.0004 for the prior B.

C [1]r C [1]i R[1] A C [0] R[0] A B
r1r2r3 .040 -.191 .000 .014 .039
r1r2r4 -.064 -.201 .071 .008 .045
r1r3r4 -.009 -.189 .000 .004 .228

Table 4: The entries of this table are the retrieval error εc[1]r . The prior uncertainty is: δ = +0.1 for the
priors C [1]i, R[1], A, C [0], R[0], A and δ = +0.0004 for the prior B.

C [1]r C [1]i R[1] A C [0] R[0] A B
r1r2r3 -.028 .203 .000 -.017 -.057
r1r2r4 .065 .171 -.058 -.008 -.056
r1r3r4 .009 .429 .000 -.005 -.067

Table 5: The entries of this table are the retrieval error εc[1]i . The prior uncertainty is: δ = −0.1 for the
priors C [1]r, R[1], A, C [0], R[0], A and δ = −0.0004 for the prior B.

C [1]r C [1]i R[1] A C [0] R[0] A B
r1r2r3 .522 .147 .000 .134 -.644
r1r2r4 -.593 .612 1.145 .034 -.627
r2r3r4 -.829 1.908 .000 .046 -.742
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Table 6: The entries of this table are the retrieval error εc[1]i . The prior uncertainty is: δ = +0.1 for the
priors C [1]r, R[1], A, C [0], R[0], A and δ = +0.0004 for the prior B.

C [1]r C [1]i R[1] A C [0] R[0] A B
r1r2r3 -.281 -1.045 .000 -.154 .402
r1r2r4 1.000 -1.004 -.551 -.033 .486
r2r3r4 -2.120 -1.000 .000 -.040 1.362

Table 7: The entries of this table are the retrieval error ερ[1] . The prior uncertainty is: δ = −0.1 for the
priors C [1]r, R[1], A, C [0], R[0], A and δ = −0.0004 for the prior B.

C [1]r C [1]i R[1] A C [0] R[0] A B
r1r2r3 .058 -.052 -.100 .018 -.006
r1r3r4 -.013 -.069 -.100 .005 .113
r2r3r4 -.154 -.012 -.100 .012 -.042

Table 8: The entries of this table are the retrieval error ερ[1] . The prior uncertainty is: δ = +0.1 for the
priors C [1]r, R[1], A, C [0], R[0], A and δ = +0.0004 for the prior B.

C [1]r C [1]i R[1] A C [0] R[0] A B
r1r2r3 -.041 .019 .100 -.023 -.007
r1r3r4 .013 .112 .100 -.006 -.053
r2r3r4 .171 -.158 .100 -.012 .049

Table 9: The entries of this table are the retrieval error εa. The prior uncertainty is: δ = −0.1 for the
priors C [1]r, R[1], A, C [0], R[0], A and δ = −0.0004 for the prior B.

C [1]r C [1]i R[1] A C [0] R[0] A B
r1r2r4 .333 -.124 -.165 .025 -.012
r1r3r4 .030 .052 .000 .026 -.179
r2r3r4 .898 -.275 .000 .021 .090

Table 10: The entries of this table are the retrieval error εa. The prior uncertainty is: δ = +0.1 for the
priors C [1]r, R[1], A, C [0], R[0], A and δ = +0.0004 for the prior B.

C [1]r C [1]i R[1] A C [0] R[0] A B
r1r2r4 -.153 .040 .286 -.038 -.018
r1r3r4 -.025 -1.860 .000 -.039 .119
r2r3r4 -.224 .988 .000 -.035 -.145
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7 Discussion of results and conclusion

We consider a retrieval to be:
- accurate for a given parameter rj with respect to a prior uncertainty δk of prior Rk if |εj | ≤ |δk|,
- fairly accurate if |δk| < |εj | ≤ 3|δk|,
- inaccurate if 3|δk| < |εj | ≤ 10|δk|.
- without signification (or helplessly inaccurate) if |εj | > 10|δk|.

A first comment applicable to all the tables Tab. 3-Tab. 10: the retrievals of all four parameters
(three at a time) are hopelessly inaccurate with respect to the excitation prior B (which is related to the
instant of onset of the pulse), even for the choice made herein of the extremely-small prior uncertainties
δβ = ±.0004, this being true whatever program is employed.

A second comment again applicable to all the tables Tab. 3-Tab. 10: the choice of ±10% uncertainties of
the other priors is relatively modest, in that in many real-life situations, either an excitation prior is not
properly measured, and/or the value of a constitutive prior is simply guessed or taken from the literature
and not necessarily-transposable to the sample under investigation.

Tab. 3 shows that the retrieval of c[1]r is accurate with respect to all priors except C [0] and B. The retrieval
of c[1]r is fairly inaccurate with respect to C [0].

Tab. 4 shows that the retrieval of c[1]r is accurate with respect to all priors except C [0] and B, this being
true by all the programs. The retrieval of C [0] is fairly accurate by r1r2r3, r1r2r4, and inaccurate by
r1r3r4.

Tab. 5 shows that the retrieval of c[1]i is fairly accurate with respect to priors C [0] and A by program
r1r2r3. The retrieval is accurate with respect to prior A[0] by r1r2r4 and r2r3r4 and with respect to
R[0] by r1r2r3 and r2r3r4. The retrievals of c[1]i are inaccurate with respect to priors C [1]r and R[1] and
A . They are also inaccurate with respect to C [0] by r1r2r4. Helplessly inaccurate retrievals are obtained
with respect to prior R[0] by r1r2r4, and with respect to C [0], by r2r3r4.

Tab. 6 shows that the retrieval of c[1]i is accurate or fairly accurate with respect to prior A. The retrievals
are accurate with respect to R[0] by r1r2r3 and r2r3r4, while being inaccurate by r1r2r4. The retrievals
are hopelessly inaccurate with respect to priors C [1]r and R[1], and they are fairly inaccurate with respect
to A. Helplessly inaccurate retrievals are obtained with respect to prior C [0] for all programs.

Tab. 7 shows that the retrievals of ρ[1] with respect to prior R[0], are such that ερ[1] = δR[0] . The retrievals
of ρ[1], with respect to the other priors except B, are either accurate or fairly accurate.

Tab. 8 shows that he retrievals of ρ[1], with respect to prior R[0], are such that ερ[1] = δR[0] . The retrievals
of ρ[1], with respect to the other priors except B, are either accurate or fairly accurate.

Tab. 9 shows that the retrievals of a are either accurate or fairly accurate with respect to all the priors
except C [1]r, R[1] and B. Inaccurate retrievals are obtained with respect to C [1]r and R[1].

Tab. 10 shows that the retrievals of a are either accurate or fairly accurate with respect to all the priors
except C [0] and B. A hopelessly inaccurate retrieval is obtained with respect to C [0] by program r1r3r4.

In conclusion: this investigation shows that the accuracy of a retrieved parameter (especially as it relates
to attenuation) is largely conditioned by prior uncertainty and can be low (i.e., |ε| large compared to |δ|)
even for small prior uncertainty (especially as it relates to the excitation prior B).
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Abstract 

Reliable damping estimates are crucial for accurate forced response predictions when assessing 
vibration response of aero-engine components. This requires the solution of inverse problem for 
determination of dissipation parameters from measured data. In this paper a number of damping 
estimation methods applicable to random vibration data are presented. Methods applicable to 
stationary, as well as non-stationary, signals are studied. The latter is very important in real engine 
environment where natural frequencies often change as a function of time. An empirically derived new 
method, based on Rice distribution operating on probability distribution of zero-crossing intervals is 
also introduced. The applicability of the new method is demonstrated for various ranges of prevailing 
damping and modal densities. 

1   Introduction 

Harsh operating environment of aero engines often necessitates introduction of dissipation 
mechanisms to keep vibration response below harmful levels. These dissipation mechanisms may be 
introduced deliberately, such as in the case of under-platform dampers used in high pressure turbine 
stages, or may occur naturally, such as in the case of blade-disc contact. Whatever the mechanism, the 
analysts rely on accurate estimates of damping available to perform representative forced response 
calculations, which in turn are used to assess suitability of design from vibration view point. Therefore 
methods for solution of inverse problem to determine dissipation parameters from measured data are 
required. 

The present work gives an account of various methods that were used to produce damping estimates 
from measured engine data. Given the complex nature of interactions, producing such estimates is 
often a challenge. The task is further complicated by the fact that in real engine measurements, upon 
which the said methods are operating, the exact excitation forces are unknown. This means that certain 
assumptions will have to be made about the character of excitation force before any estimates for 
damping can be produced. Adequacy of these assumptions is discussed. 
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2 Methods for Identification of Instantaneous Frequency and Amplitude 

Some of the methods used in estimation of damping rely heavily on variation of natural frequency and 
amplitudes as a function of time. In cases where these variations are not taken into consideration it is 
important to justify the underlying assumption. And for methods that can account for these variations, 
they need to be identified with enough fidelity such that the techniques can be applied reliably. In this 
paper zero-crossing, nonlinear curve fitting and Hilbert transform methods are used for identification 
of instantaneous properties. 

Of these, zero-crossing or level-crossing method is applicable to mono-harmonic signals. Therefore its 
use on real engine data is almost always preceded by band-pass filtering to isolate the mode of interest. 
This method is used for construction of Rice distributions used in Section 5.  

In cases when isolation is not possible, nonlinear curve fitting can be applied, provided that a suitable 
model is selected. The method employed here for curve fitting uses Levenberg–Marquardt (L-M) 
algorithm [3]. Use of the L-M algorithm in this paper is based on the one given in [4] but modified for 
increased stability and speed. For signals that present local variations in time, nonlinear curve fitting 
can provide unique advantages in terms of resolution of both amplitude and frequency. However, 
curve fitting methods do not quite reveal instantaneous properties in the signal as these properties are 
estimated from a portion of the signal over a period of time. For such cases Hilbert transform methods 
are used. Use of Hilbert transform in structural dynamics application has gained prominence in recent 
years [6]. Here Hilbert transform has been used to identify signal instantaneous amplitude (i.e. 
envelope) and frequency as a function of time. Nonlinear curve fitting and Hilbert transform based 
methods are predominantly used in stationarisation of signals in Section 4. 

3 Standard Damping Estimation 

Power Spectral Density (PSD),   ( ), of a Single Degree of Freedom (SDOF) system to broadband 

random excitation can be expressed as the multiplication of its power transfer function, | ( )| , and 

input PSD,   ( ), [1]. For a lumped-mass parameter SDOF system with mass   and stiffness  , 

  ( ) can be expressed as follows: 

  ( )  [
 
 ⁄    

 

(  
    )  (

    
 )

 ]    ( )               ( ) 

Here the first term in square brackets is | ( )|  and since it is the power transfer function between 

output and input, it is in       units, where   denotes output units (e.g. m, MPa, etc.) and   denotes 

input units (e.g. N).    is the natural frequency and   is the measure of damping, defined as the ratio 

of natural frequency to modal bandwidth and is therefore non-dimensional. Output PSD,   ( ), is 

given in units of       and likewise input PSD,   ( ), in       units. Since   ( ) can be considered 

constant (i.e. broadband random input), and, assuming time-invariant system properties, the whole of 

numerator in equation (1) can be expressed in terms of a constant;         
    . Given an PSD 

curve for a mode of interest, a nonlinear curve fitting algorithm such as L-M [3] can be used to fit 

equation (1) for identification of unknown quantities    ,  , and,   (i.e. the numerator). The output PSD 

is obtained by successively segmenting the measurements and averaging PSD curves obtained in each 

segment. The theory of PSD calculations can be found in various good text books such as in [1]. 

The relation given in equation (1) relies on underlying excitation force to be of random broadband in 
nature. It is important that this is verified before any damping estimation is attempted. When excited 
by a random input, the mode of interest will act as a band-pass filter resulting in a normal distribution 
of instantaneous values. In this case the peak response amplitudes will follow the Rayleigh distribution 
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[8] given in equation (2). Therefore random input requirement of the excitation can be assessed by 
fitting equation (2) to probability distribution of the response peaks. 

 (   )   
 

  
  
 
 
 
 (
 
 
)
 

                ( ) 

Figure 1 (a) shows two modes measured from a real engine test. The measurements are acquired on an 
external component of a civil engine using strain gauges under gradually increased engine speed 
conditions. Rayleigh distributions for both modes were constructed after narrow-band filtering of the 
individual modal responses. Figure 1 (b) shows an adequate degree of correlation whereby justifying 
use of standard damping estimation given in equation (1). However, the same cannot be said for Figure 
1 (c). Upon close inspection it can be seen that a nearby strong engine order excitation introduces a 
bias in peak amplitude distribution thereby invalidating the underlying assumption for damping 
estimation. Therefore use of the method for this mode is not justified. 

 
Figure 1. (a) Zmod measured from a real engine component , peak amplitude density and Rayleigh 
distribution fits for (b) Mode-1, and, (c) Mode-2 shown on the Zmod. 

4 Damping Estimation from Non-Stationary Data 

Standard damping estimation method given in Section 3 assumes that natural frequency of the mode 
for which the damping is being estimated is time invariant. However there are circumstances in which 
natural frequencies of engine components change sufficiently enough that this assumption is no longer 
valid. These changes may be due to temperature effects, centrifugal stiffening etc. When standard 
estimation method is applied to these cases, the effect will be spurious stretching of modal bandwidth 
which in turn will lead to overestimation of the available damping. The effect is schematically 
demonstrated in Figure 2. 

 
Figure 2. Time varying natural frequency of an engine component and illustration of error introduced 
in damping estimation via standard analysis technique. 

Assuming that the effective bandwidth of the mode does not change with changing natural frequency, 

variation in the natural frequency can be compensated for to obtain reliable damping estimations. An 

effective method for achieving this is given in [2]. In essence the method constructs a carrier signal 

from the identified natural frequency variation and convolves this with the original signal to create a 
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component of vibration that is stationarised at an arbitrarily selected mean frequency. Assuming this 

frequency to be    and identified natural frequency variation,     ( ) , a carrier signal can be created 

as follows: 

  ( )     (∫(       ( ) )  )              ( )  

Here the integration in the argument of sine function computes the carrier phase. Given an original 

time varying signal of   ( ), a modulated signal  ( ) can be ccomputed  as: 

 ( )     ( )    ( )              ( ) 

The modulation process creates sum and difference frequencies, so-called upper and lower sidebands 
respectively. Stationarised response is contained in the upper sideband. 

Since resultant stationarised signal has a resonant frequency higher than that of the original variation, 
higher Q values are estimated. This is because the resonant frequency is shifted up by modulation 
process but the mechanical bandwidth is not changed. When new resonant frequency is close to the 
mean of  the original variation then the error introduced may be negligible. However as a good 
practice, the calculated value can be corrected by mean value of the original frequency variation. 

Application of this method to a response measured on a real engine component due to random 
excitation in it is normal operation is given in Figure 3. Here the variation in natural frequency is 
evident in Zmod given in Figure 3 (a). Averaged PSD calculated for this case together with 
corresponding SDOF fit are given in Figure 3 (b) where a damping Q value of 27 is calculated. The 
variation in natural frequency is identified through methods summarised in Section 2 and it is given by 
the dashed line in Figure 3 (a). For stationarisation purposes mean frequency of the mode in question 
is centred at 850 Hz as showing Figure 3 (c) where time dependency of variation is evidently removed. 
Corresponding averaged PSD given in Figure 3 (d) now shows a much cleaner curve with the SDOF 
fit revealing a damping Q value of 80. In other terms estimate from non-stationary case suggests 3 
times as much damping than there really is present, leading to false sense of security. Although 
variation in natural frequency is relatively modest with respect to mean value of natural frequency, it is 
significant compared with the bandwidth of the mode, which is what matters here. 

(a)  (b)  

(c)  (d)  

Figure 3. (a) Zmod showing a mode with varying natural frequency (dashed line), (b) best fit to its 
PSD, (c) the same mode after stationarisation, (d) best fit to its PSD after stationarisation. 
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5 Damping Estimation from Time-Separation Distribution 

The connection between the bandwidth of an ‘ideal’ band pass (electrical) filter to the characteristics 
of the time separation distribution from the resulting narrowband signal has been made in the classic 
paper by Rice, [7]. Utilising Rice’s original notation, for an ideal narrow band-pass filter the 
probability,  , that the distance between two successive zeros lies between   and      is 
approximately;  

   
  

 
  √

 

(    (      )
 ) 
               ( ) 

where       
 

      
 is half the period of natural frequency. For electrical systems, the bandwidth is 

approximated by the parameter value “a”. Figure 4 (a) shows an SDOF mechanical system. The 

response of this system to random forcing is computed and locations of zero-crossings in the response 

are identified as shown in Figure 4 (b). Time-separation probability distribution of these crossing for 

natural frequency of 300 Hz, mass of 0.1 kg and a Q value of 100 is given by the dotted line in Figure 

4 (c). Best fit to the given probability distribution using equation (5) and employing nonlinear curve 

fitting algorithm given in Section 2, is also plotted in Figure 4 (c), as a solid line. It is evident from the 

plot that the probability distribution is accurately described by equation (5). 

 
             (a) 

 
(b)                                                       (c) 

Figure 4. (a) SDOF system with random excitation, (b) its response showing zero-crossings, and (c), 

distribution of instantaneous frequencies computed from these crossings [...Computed distribution, —

Fitted distribution]. 

The contribution of this paper is its attempt to appropriate abovementioned concept for mechanical 

systems as a means of damping estimation. The main concept and empirical identification of 

bandwidth and damping from a given zero-crossing distribution are presented below. The adaptation 

of method and its application to simulated and real data, as well as its limitations and scope are also 

presented. 

In an attempt to find a relationship for bandwidth and damping in case of mechanical systems from 

distribution given above, the SDOF model shown in Figure 4 (a) is used. The idea is to construct an 

association involving frequency of the mode in the narrowband response and parameter “a” 

empirically. For this purpose the SDOF model given above is simulated for a range (20-300) of 

damping Q values. The SDOF system is designed to have a natural frequency of 200 Hz and a lumped 

mass of 1 kg. The simulation range for Q values is kept wide enough to cover possible observations in 

practice. For each case the SDOF model is simulated to a random input for 20 seconds. This input is 

kept the same for all cases. Zero-crossing time distribution for each case is constructed. Once again, 

equation (5) is fitted to data. Variation of input Q value as a function of fit parameter “a” is plotted in 
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Figure 5 (a). The plot reveals a smooth nonlinear relationship which is quadratic in nature. In an 

attempt to describe this relationship better, input Q is plotted against a
2
 in Figure 5 (b). The plot now 

demonstrates a near-perfect linear variation. Given this relationship, it becomes possible to “scale” the 

“a
2
” term with a constant featuring natural frequency, such that the slope of this linear relationship is 

as close to 1 as possible (i.e. an estimate for Q value). A suitable relationship is found when a
2
 term is 

multiplied by 
    

 

 
, as shown in Figure 5 (c). The slope of linear variation show in Figure 5 (c) is 

nearly 1. As a result the empirical description for estimation of Q value using time separation 

distribution resulting from a narrowband signal is defined in the following form: 

   
 

 
        

                ( ) 

Since parameters   and      are obtained directly from fitting equation (5) to time-separation 

probability distribution, estimate for damping in the form of    can readily be obtained. 

 

Figure 5. (a) Variation of parameter “a”, (b) “a
2
” with respect to input Q value, and, (c) Estimated Q 

value against input Q value. 

5.1. Time-separation distribution of narrow-band filtered response 

Although the applicability of the time-separation method is shown on an SDOF system, in practice 

acquired vibration responses will feature a multitude of harmonic content at different natural 

frequencies. For the method to work in these cases, total response will have to be band–pass filtered 

around the mode of interest. To study the effect of narrow-band filtering on time-separation method, 

the SDOF system introduced above is designed and used with following properties:             
          100. Its response to a random input is then simulated for a 20 seconds period. The 

response obtained is filtered using an equiripple FIR band-pass filter, [5], around the natural 

frequency. For both un-filtered and filtered responses time-separation probability distributions are 

obtained. Figure 6 shows the comparison of distributions before and after filtering. Also shown in the 

figure is the fitted distribution to the filtered data. 

Figure 6 presents a surprising picture. The effect of filtering on distribution obtained is significant. 

This is unexpected as the bandwidth of the designed mechanical SDOF system is 3 Hz which is much 

smaller compared with filter bandwidth of 240 Hz used here. The reason for this is that when high-

frequency component of response is filtered, the nature of zero-crossing intervals change significantly. 

Crossing time intervals which were much shorter when unfiltered (i.e. outliers in original distribution), 

are removed in case of filtered response and are moved towards the mean of the distribution. 
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An important observation from equation (5) is that, time-separation distribution is only a function of 

parameter “a” and system natural frequency. In other words, filtered response distribution is identical 

to the unfiltered distribution in characteristics but its parameter “a” is simply scaled by a constant. This 

is more clearly demonstrated in Figure 6 (b) where the response for a different SDOF system with a 

natural frequency of 600 Hz is filtered with a series of band-pass filters which are progressively 

getting narrow in the pass band. It is evident that kurtosis of the distribution increases as the harshness 

of the filters increase. Therefore, any scaling constant must be a function of filter characteristics and a 

correction factor will have to be identified in relation to unfiltered case for each filter individually. The 

question of whether such a correction factor can be derived in a robust manner such that it can be used 

in real cases with confidence is explored in the following sections. 

  

Figure 6. (a) Unfiltered and filtered time-separation probability distribution, (b) Effect of increased 

filter harshness on time-separation probability distribution. 

5.2. Identification of filter correction factor 

The process followed in correction factor identification for a given filter is as follows: First an SDOF 

system with desired natural frequency is designed where a rough estimate for expected damping value 

is assumed. Using time-separation damping estimation method damping from simulation of this 

system is estimated. Subsequently the simulated response is passed through the filter for which the 

correction factor is to be identified. Time-separation method is then applied to the filtered response 

and a new damping estimation is obtained. The correction factor for the filter at hand is then simply a 

ratio of these two damping estimates.  

The process is applied to an SDOF system with n=300 Hz, m=0.1 kg, and Q=100, simulated for 20 

seconds at a sampling rate of 25 kHz. Correction factor is identified for band-pass FIR filter with 

following properties: First transition band of 250-270 Hz and second transition band of 330-350 Hz 

(i.e. pass-band=270-330 Hz), stop-band attenuation of 20dB, and, pass-band ripple of 0.1dB. For this 

case the response from simulation is first filtered with the given band-pass filter and then time-

separation damping estimation is applied to the filtered time domain data. Damping value with applied 

correction factor is identified as 92.3. The deviation of this value from the original Q value of 100 is 

7.7% and the deviation from Q value identified using time-separation for un-filtered response is 6.7%. 
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5.3. Dependency of correction factor on damping value 

Table 1 provides a number of correction scenarios for the SDOF model given above with different Q 

values. Here the correction factors, Cf  (the ratio of Q values after and before filtering), are identified 

for a range of Q values starting from 20 to 300 using the band-pass filter given above. For very low Q 

values deviations up to 20% are observed. As the Q values increase stability of correction factor also 

increases. 

Given the evident stability of correction factor with varying Q values, the SDOF system is simulated 

for the Q of 100 and filtered and then corrected in turn by different Cf factors in Table 1 to quantify the 

dependency of Q value to choice of reference Q value. Estimated Q values (QC) and their deviation 

from original value (QO) of 100, and, estimate from unfiltered response (QUE) of 98.9 are given in 

Table 1. Estimates calculated using correction factors for Q values ranging from 50-300 are all within 

10% of original design value. Therefore it is concluded that correction factor is reasonably insensitive 

to choice of Q value within this range. 

QReference 20 30 40 50 70 100 130 150 170 200 300 

Cf 10.5 9.8 9.4 9.2 8.9 8.6 8.4 8.4 8.4 8.4 8.7 

QC (QFiltered/Cf) 79.9 85.6 89.2 91.1 94.2 97.5 99.8 99.8 99.8 99.8 96.4 

(QC/QUE)*100 19.3 13.5 9.8 7.9 4.8 1.5 0.9 0.9 0.9 0.9 2.6 

(QC/QO)*100 20.1 14.4 10.8 8.9 5.8 2.5 0.2 0.2 0.2 0.2 3.6 

Table 1. Q values estimated by application of correction factors identified from simulations of an 

SDOF system with different Q values. 

5.4. Effect of choice of SDOF system on filter correction factor 

Effect of filtering on zero-crossing time-distribution was studied earlier with an SDOF system. A 

detailed examination was carried out to see if correction factors obtained for different SDOF systems 

with the same natural frequency would yield the same damping value. To this end, mass value was 

gradually varied from 0.1 kg to 5 kg and stiffness value adjusted accordingly for a natural frequency of 

300 Hz. Correction factors obtained from different SDOF systems showed variations smaller than 1%. 

Therefore it is concluded that the choice of SDOF system is not a critical parameter in determination 

of the correction factor. 

5.5. Effect of modal density on filter correction factor 

Effect of proximity of neighbouring/bracketing modes on the filtering correction factors was explored. 

To this end, a number of 3-DOF systems were designed. Natural frequency separation for these 

systems were gradually decreased (i.e. modal density increased) to simulate close modes scenarios. 

Each system was then simulated and their responses at 1st DOF were filtered and passed through time 

separation damping estimation algorithm. Properties of these systems, together with identified 

correction coefficients and filter properties are given in Table 2. Also given in this table are an 

equivalent SDOF system and its correction coefficient as reference. It is evident from the table that 

when the modes of the system are well separated and filter cut-off frequencies are sufficiently far away 

from neighbouring modes, correction coefficients for 3-DOF system are very close to that of reference 

SDOF system. However, as the cut off frequencies get closer to bracketing mode frequencies, as is the 

case in System-4, significant deviations are observed.  
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The same process is repeated with a much harsher band-pass filter to see if the Cf from all 3-DOF 

systems can be aligned with that from the SDOF system. The results for this case are given in “Filter-

2“ column of Table 2. As the new filter is now much harsher, the resultant filtering coefficients are 

much larger. Nevertheless, all systems now result in similar correction coefficients with maximum 

deviation from reference SDOF system being less than 9%. 

 m1,m2,m3 

(kg) 

k1,k2,k3 

(N/m) 

c1,c2,c3 

(kg/s) 
1,2,3 

(Hz) 

Q1,Q2,Q3 Filter 1 Filter 2 

Q2C Cf Q2C Cf 

Sys-1 

 

0.788381 

0.455614 

1.19597 

1935330 

1599560 

1921130 

10 

10 

10 

100 

300 

500 

285.2 

99.8 

55.6 

 

1772.3 

 

17.8 3622.2 36.3 

Sys-2 1.19312 

0.578852 

0.0174768 

4020170 

1759710 

60468.6 

0.34 

0.34 

0.34 

200 

300 

400 

2693.4 

99.9 

1345.6 

 

1737.6 

 

17.4 3583.5 35.9 

Sys-3 2.51416  

0.134519 

0.0064339  

10122900 

461284  

19756.6 

0.202 

0.202 

0.202 

250 

300 

350 

146.0 

100.6 

435.2 

 

1630.0 

 

16.2 3541.9 35.2 

Sys-4 4.23869 

0.0877328 

0.00167354 

15444700 

310571 

5703.85  

0.058 

0.058 

0.058 

270 

300 

330 

183.0 

100.2 

261.7 

 

1181.7 

 

11.8 3322.0 33.2 

SDOF 1 3553060  18.8496 300 100 1763.3 17.6 3640.8 36.4 

Table 2. Effect of modal density on identification of filter coefficient [IIR Filter-1: Fs=25000Hz, 

Fc1=280 Hz, Fc2=320 Hz, Order=4, IIR Filter-2: Fs=25000Hz, Fc1=290 Hz, Fc2=310 Hz, Order=3] 

5.6. Application of time-separation damping estimation method to real data 

The data set used in this section is acquired from a deceleration manoeuvre engine test. The raw time-

domain data is processed at sampling rate of 25 kHz. A Zmod for one of the channels from this 

manoeuvre is given in Figure 7. The modes at 765 Hz, 500 Hz and 360 Hz, as indicated on the Zmod, 

are selected for analysis. First 2 modes are analysed for 30-80 seconds interval, and the mode at 360 

Hz is analysed for 50-90 seconds interval as they show reasonably stationary behaviour in these 

intervals, respectively. Table shown in Figure 7 gives a summary of filter parameters used and 

correction factors obtained. Maximum difference in damping values estimated using time-separation 

and PSD based methods is 10%.  

 

Mode 

(Hz) 

Filter 

band 

(Hz) 

Filter 

Order 

Cf QTS QPSD % 

from 

QPSD 

765 720-810 4 20.3 68 76 10 

500 450-550 4 11.5 27 30 10 

360 340-380 4 20.9 67 64 4.5 

Figure 7. Zmod showing target modes, and, comparison of damping estimations from time-separation 

distribution and standard PSD SDOF curve fit methods. 
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5.7. Sensitivity of time-separation method to data length 

Sensitivity of time separation damping estimation method to signal length used in construction of 

time-separation distribution is also investigated. For this purpose an SDOF system with a natural 

frequency of 300 Hz is excited by a random input and simulated for a 20 second period. Figure 8 

shows damping estimates from 1, 2, 3 and 4 seconds-long segments taken from this simulation. Also 

shown on these plots is the original distribution for whole 20 seconds of simulation. It is evident from 

distribution and subsequent damping estimates that 1 second segment does not capture the process 

accurately. However, as the segment length is increased distribution converges very rapidly to original 

distribution with 4 seconds segment providing near full convergence. 

 

Figure 8. Sensitivity of Time Separation damping estimation methods to time-domain data length 

used.  

5.8. Effect of signal length on damping estimation – real case 

Dependency of damping estimations to length of signal used is investigated on the same engine data 

used in Section 5.6. For this purpose the mode at 765 Hz is used. Data samples of 10s, 5s, 2s, 1s and 

0.5s are evaluated by time-separation distribution and the standard PSD curve fitting methods. 

Estimates for natural frequencies and damping values are given in Table 3. As the signal lengths get 

shorter, PSD based method deviates from expected value significantly whilst time-separation estimates 

are always within 10%. 

Sample size    (  )                         (  )                      

10s 763.1 85 -7.6 764.5 84 -6.3 

5s 763.4 86 -8.9 764.8 94 -19.0 

2s 762.6 75 5.1 763.8 85 -7.6 

1s 762.5 73 7.6 762.7 49 38.0 

0.5s 761.1 76 3.8 759.8 148 -87.3 

Table 3. Effect of signal length on damping estimation by PSD and time-separation. 

6 Discussion and Concluding Remarks 

Obtaining reliable damping estimates from real engine running measurements is very difficult. 
Responses acquired are often non-stationary due time-dependent running conditions. In addition the 
forcing functions are complicated and not precisely known. In the absence of input force data, 
estimates obtained are a function of response amplitude at which they are extracted and are only valid 

250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

T
im

e
-s

e
p
a
ra

ti
o
n
 p

ro
b
a
b
ili

ty

 

 

250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

 

 

250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

Instantaneous frequency (Hz)

 

 

250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

 

 

20 s

2 s

Fit to 2 s

20 s

3 s

Fit to 3 s

20 s

4 s

Fit to 4 s

20 s

1 s

Fit to 1 s

(a) (d)(c)(b)

Instantaneous frequency (Hz) 

T
im

e
-s

e
p
a
ra

ti
o

n
 p

ro
b
a
b
ili

ty
 

310



 ICIPE2014, 12-15 May 2014, Cracow, Poland  

©Copyright Rolls-Royce plc 2014. All rights reserved. 

at those amplitudes. The argument here is that this may be acceptable from practical assessment point 
of view if these amplitudes can be assumed to be representative of the normal operating conditions. 
Nevertheless, the absence of precise forcing measurements requires that certain assumptions will have 
to be made about the character of the forcing to enable calculation of damping estimates. In this paper 
the focus is on the broadband random vibration measurements. As such necessary tools are introduced 
to ensure the random nature of excitation before the relevant methods are applied. 

When the properties of the component being analysed are stationary, and the vibration modes are 
reasonably well isolated, reasonable damping estimates can be obtained by approximating the mode 
for which the damping estimate is sought by a SDOF model. Application of this method to simulated, 
as well as to real engine data has been successfully demonstrated. However, as referred to earlier, 
engine operating environment is often non-stationary with component natural frequencies changing in 
time due to various effects such as temperature and rotational speed. In such cases application of 
SDOF model without taking these variations into account yield optimistic values, suggesting more 
damping than is actually present. Obviously this is not a desirable situation. It is demonstrated on real 
engine measurements that using stationarisation methods introduced in earlier studies, it is possible to 
account for the variations, and that estimates can be out by a factor of 3 if stationarisation is not 
performed. It must be noted that the critical factor here is the total variation with respect to bandwidth 
of the mode in question, and not the natural frequency. As the success of stationarisation depends on 
accuracy with which natural frequency variations can be identified, various means of achieving this 
are also introduced. 

Majority of this paper is dedicated to a new damping estimation method operating on broadband 
random vibration response and utilising Rice distribution of zero-crossing time intervals. This method 
is particularly important since it provides estimates that are independent of the way in which PSD 
based estimates given above are obtained. As such it is very useful in verifying estimates and gaining 
confidence in damping values produced. Nevertheless it is application is less straight forward. The 
method is derived empirically for a practical range of damping values. Care should be taken to ensure 
it is being applied within the boundaries of its scope. As the method is applicable to mono harmonic 
signals, it is almost always preceded by narrow-band filtering to isolate the mode of interest. 
Narrowband filtering is shown to have significant effects on zero-crossing distribution; however, a 
means of accounting for this effect is also given. The performance of the method on real data is 
compared with that of PSD-based methods and a very good correlation is obtained. It is shown to 
outperform PSD-based methods when suitable signal durations are short, providing reasonable 
estimates for signals that are up to an order of magnitude shorter. The work presented here amounts to 
first attempt made at making this method work. More work is needed to extend it applicability to a 
much wider damping range (i.e. very low and very high) as well as reducing its sensitivity to narrow-
band filtering.  
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Abstract 
A problem of identification of a finite number of embedded defects (inclusions, cavities, cracks) in an 
anisotropic linear elastic body by means of boundary data obtained in a single static test is considered. 
It is assumed that the defects are small and well-separated. If the defect is a cavity or a crack we 
suppose that its boundary is unloaded. If the defect is an inclusion we suppose complete bonding 
between the matrix and inclusion. A method for determination of the number of defects and positions 
of their centres using the available boundary data is developed. If the defects have an ellipsoidal shape 
the developed method enables also to determine their sizes and orientations. Numerical example 
illustrating the efficiency of the developed method is considered. 

1 Introduction 

An analytical-numerical method for identification of a single ellipsoidal defect in a linear elastic body 
was developed by the authors in a series of publications. In particular, a problem of identification of a 
single ellipsoidal defect in an isotropic and anisotropic linear elastic solid was solved in [1,2] and 
[3,4], respectively. A method for identification of multiple defects in an isotropic linear elastic body 
was developed in [5]. The developed methods were based on the application of the reciprocity gap 
functional (RGF) method first applied to inverse elastostatic problems in [6]. In the present paper we 
combine the ideas used in the publications [1-5] to develop a method for identification multiple 
ellipsoidal defects in a linear elastic, anisotropic body. 
The paper is organized as follows. The mathematical formulation of the problem is given in Section 2. 
To identify the multiple defects we determine first their number and projections of their centers on an 
arbitrary plane. The problem is solved by means of the RGF method with the use of the regular elastic 
fields of special type. Construction of the regular elastic fields, reduction of the initially considered 3d 
inverse problem to the 2d problem of identification of the projections of defects centers on an arbitrary 
plane and development of the algorithm for solving the 2d problem are presented in Section 3. For 
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identification of the sizes and orientations of ellipsoidal defects it is necessary to use some additional 
regular elastic fields. Construction of such fields and their application for identification of ellipsoidal 
defects is given in Section 4. In Section 5 a numerical example illustrating efficiency of the developed 
method is considered. 

2 Statement of the problem 

Let 3V R⊂  be a bounded domain with a boundary V∂ . kG V⊂ , 1,2, ,k n=   are small, simply 

connected subdomains. We suppose that i jG G =∅ , i j≠ , 
1

n

k
k

G G V
=

= ⊂


, where kG  is a closure of 

the subdomain kG . Let us suppose that an anisotropic linear elastic body with the elastic moduli M
ijklC  

occupies the domain \V GΩ = . The defects kG  can be cavities or inclusions (rigid or linear elastic). 
If kG  is a cavity we suppose that its boundary kG∂  is unloaded. If kG  is an inclusion, it is supposed 
complete bonding between the matrix and inclusion. We assume that typical sizes of the defects have 
the same order. Denote the typical size l . Assume also that the typical distances between the defects 
have the same order and denote the typical distance L . We assume that the defects are small in the 
following sense 
 l L  (1) 

Let us introduce Cartesian coordinates 1 2 3Ox x x . We suppose that the loads ( )1 2 3, ,d d d dt t t=t  and 

displacements ( )1 2 3, ,d d d du u u=u  are measured on V∂  in a single static test. We will mark with the 

superscript d  the stress-strain state in the body Ω : d
ijσ  is the stress tensor, d

ije  is the strain tensor and 
du  is the displacement vector, d d

i ij jt nσ= , where ( )1 2 3, ,n n n=n  is a unit outward normal to the 
boundary V∂  and convention of summation for repeated indices is used. Below we will suppose that 
the defects are linear elastic inclusions. The cases of cavities and rigid inclusions can be considered as 
limit cases when the elastic moduli tend to zero or infinity, respectively. The stress-strain state in the 
inclusion kG  we will mark with the superscript Ik  ( Ik

ijσ , Ik
ije , ( )1 2 3, ,Ik Ik Ik Iku u u=u  are the stress tensor, 

the strain tensor and the displacement vector, respectively). The elastic moduli of the inclusion kG  we 
denote by Ik

ijplC . 

According to our suppositions the following equalities are valid for ( )1 2 3, ,x x x x= ∈Ω : 

 , 0M d
ijpl p ljC u =  (2) 

The elastic field with the superscript Ik  satisfies in the domain kG  the equations analogical to Eq. (2) 

with the replacement of the values M
ijplC  by the values Ik

ijplC . The conditions of complete bonding 

between the matrix and inclusion kG  have the following form: 

 ( ) ( ) ( ) ( ) ( ) ( ), ,Ik d Ik d
ij j ij j kx x x N x x N x x Gσ σ= = ∈∂u u  (3) 

Here ( ) ( ) ( ) ( )( )1 2 3, ,x N x N x N x=N  is a unit normal to the boundary kG∂  at the point x . 
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We will call the elastic fields in the body V  without defects as regular elastic fields and mark by a 
superscript r  ( r

ijσ , r
ije , ( )1 2 3, ,r r r ru u u=u  are the stress tensor, the strain tensor and the displacement 

vector, respectively). The regular elastic fields satisfy the Eq. (2) in the domain V . 
 
The RGF, depending on two stress states with superscripts d  and r , is defined as follows: 
 ( ) ( ), d r r d

i i i i
V

RG d r t u t u dS
∂

= −∫ ,     r r
i ij jt nσ=  (4) 

The problem is to reconstruct the defects kG  using the known loads dt  and displacements du  on the 
boundary V∂ . Because the vector-functions dt  and du  are known, the values ( ),RG d r  can be 
calculated for all regular elastic fields r . So, the problem will be solved if we express the parameters 
of the domains kG  by means of the values ( ),RG d r . According to the results [1-5] the expression (4) 
can be written in the following form: 
 ( )

1
,

k

n
Ik r
ij ij

k G

RG d r e dxσ
=

= ∆∑ ∫  (5) 

where Ik Ik Ik
ij ij ijσ σ σ∆ = − , Ik

ijσ  are the stresses corresponding to the strains Ik
ije  in the material with the 

elastic moduli M
ijklC . 

Let us denote the centers of the defects kG  by ( )1 2 3, ,k k k kx x x x=  and the volumes of the domains kG  by 

kG . Consider a regular elastic field in the body V  without defects subjected to the loads dt  on the 
boundary V∂ . The elastic field we will mark by a superscript dr . Because the defects are small, we 
suppose also that the stress state in the defect kG  is close to the stress state in the inclusion kG  located 
in an infinite elastic solid and subjected to the constant stresses ( )dr k

ij xσ  at the infinity. It follows from 

the supposition and the Eshelby results [7,8] that the stresses Ik
ijσ  are approximately constant in the 

ellipsoidal inclusion kG . Finally, we assume that the values 
,

max Ik
iji j

σ  have the same order for 

different kG . 

3 Reduction of the problem to 2d problem of the centers of defects 
projections identification 

According to our suppositions, formulated in the preceding Section, we will approximate the values of 
the RGF by the principal term of the asymptotic expansion of the Eq. (5) provided that / 0l L →  
 ( ) ( ) ( )

1
,

n
Ik k r k
ij ij k

k
RG d r x e x Gσ

=

≈ ∆∑  (6) 

Consider, for example, projections of the defects on the plane 1 2x x . To determine projections of the 
defects centers on the plane 1 2x x  we will use the regular elastic fields depending only on the 
coordinates 1x  and 2x . Consider a regular elastic field ( ) ( )1 2 1 2 3, , ,r r r rx x u u u=u . Let us search for the 

functions ( )1 2,r
pu x x  in the form ( ) ( )1 2 1 2,r

p pu x x f x sx= + .  

Because the functions r
pu  do not depend on the coordinate 3x , the elasticity equations have the form 

 , 0, 1,2, 1,2M r
i p pC uα β βα α β= = =  (7) 
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It follows from the Eq. (7) 
 ( ) 0ip pm s f ′′ = ,   ( ) ( ) 2

1 1 1 2 2 1 2 2 , 1,2,3, 1,2,3M M M M
ip i p i p i p i pm s C C C s C s i p= + + + = =  (8) 

Consider the matrix ( ) ( )( )ips m s=M . Eq. (8) has a nonzero solution if and only if the following 
condition is valid: 
 ( )( )det 0s =M  (9) 

This equality leads to an algebraic equation of sixth order relative to s . Let us suppose for simplicity 
that the roots of the equation are simple. According to [9] the imaginary parts of the roots are not zero. 
Because the coefficients of the algebraic equation are real, the roots have the following form: 
 1 1 1 2 2 2 3 3 3 4 1 5 2 6 3, , , , , , 0, 1,2,3js i s i s i s s s s s s jα β α β α β β= + = + = + = = = > =  (10) 

The over-bar denotes complex conjugation. 
Because the roots of the Eq. (9) are simple, the space of the solutions of the system of equations 

( ) 0ip j pm s f ′′ = , for 1,2,3j = , is one-dimensional. Let ( )1 2 3, ,
T

j j j jγ γ γ γ=  be a normalized solution of 

the equations. The superscript T  denotes transposition of a matrix. Let ( )1 2jg x s x+  be an arbitrary 

smooth function. It follows from the Eqs. (8)-(10) that vector-function ( )( )Rejr
j ju g zγ=  is a regular 

elastic field. Here 1 2j jz x s x= + . The strain tensor corresponding to the elastic field is as follows 

 ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )11 1 22 2 12 1 2
1Re , Re , Re
2

j j jr r r
j j j j j j j j j j j je z z e z s z e z s zγ ϕ γ ϕ γ γ ϕ = = = +    

 ( ) ( )( ) ( ) ( )( ) ( )13 3 23 3 33
1 1Re , Re , 0
2 2

j j jr r r
j j j j j j j je z z e z s z e zγ ϕ γ ϕ= = =  (11) 

where ( ) ( )j jz g zϕ ′= . 

Let us construct another regular field ( )( )Rej
j ju i g zρ γ= . The strain tensor corresponding to the 

elastic field is as follows 
 
 ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )11 1 22 2 12 1 2

1Im , Im , Im
2

j j j
j j j j j j j j j j j je z z e z s z e z s zρ ρ ργ ϕ γ ϕ γ γ ϕ = − = − = − +   

 ( ) ( )( ) ( ) ( )( ) ( )13 3 23 3 33
1 1Im , Im , 0
2 2

j j j
j j j j j j j je z z e z s z e zρ ρ ργ ϕ γ ϕ= − = − =  (12) 

It follows from the Eqs. (6), (11) and (12) 
 ( ) ( ) ( ) 1 2

1
, , ,

n
k k

j j kj jk jk j
k

RG d r iRG d A z z x s xρ ϕ
=

− = = +∑  (13) 

 ( )11 1 22 2 12 1 2 13 3 23 3
Ik Ik Ik Ik Ik

kj j j j j j j j j j kA s s s Gσ γ σ γ σ γ γ σ γ σ γ = ∆ + ∆ + ∆ + + ∆ + ∆   (14) 

Let us take ( ) ( ) ( )/
p p

j p j j jz z z L wϕ ϕ= = = , 0,1,2,p =  , the value L  was introduced in Eq. (1). The 

regular elastic fields corresponding to the function ( )p jzϕ  we denote by jpr  and jpρ . Eq. (13) for 
these regular elastic fields has the following form 
 ( ) ( )

1
, , , , , 0,1,2,

n
jkp

kj jk jp jk jp jp jp
k

z
A w b w b RG d r iRG d p

L
ρ

=

= = = − =∑   (15) 
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Eq. (15) coincide with the equations arising in the problem of simple poles of a meromorphic function 
identification, see for example [10,11]. In [5], where an isotropic case was considered, the method, 
proposed in [11], was used to determine the number of defects and projections of their centers. The 
same method we use here. We remind briefly the main ideas of the method below simply for the sake 
of making the paper self-contained. Let us first suppose that we know the number of the defects n . 
Consider a polynomial 
 ( ) ( )

1

01

n n
n m

nj jk jm
mk

P w w w w q w
−

==

= − = +∑∏  (16) 

Here ( )deg njP w n=  and jkw , 1,2, ,k n=   are the roots of the polynomial ( )njP w , jmq  are unknown 
coefficients. 
Using Eq. (16) it is possible to obtain a system of linear algebraic equations relative to the coefficients 

jmq . It follows from the Eqs. (15) and (16) 

 
1

0
0, 0,1,2, , 1

n

j p n j p m jm
m

b b q p n
−

+ +
=

+ = = −∑   (17) 

Eq. (17) form a system of linear algebraic equations relative to unknowns jmq , 0,1,2, , 1m n= − . 

After determination of the values jmq  it is possible to construct the polynomial ( )njP w  and to find its 

roots. Thus, the projections of the defects on the plane 1 2x x  are found. After determination of the 
values jkw  we consider a system of Eq. (15) for 0,1,2, , 1m n= − . It is a system of linear algebraic 

equations relative to kjA . So, the values jkw  and kjA  are determined. Here we suppose that 0kjA ≠ . 
Usually we do not know the number of defects n , but we can suppose that we know an upper bound of 
the number. Let us suppose that we know that n N≤ . In this case applying the considered procedure 
for a polynomial ( )NjP w , constructed according to Eq. (16), we obtain the roots of the polynomial jkw  

and coefficients kjA , 1,2, ,k N=  . Among the obtained values jkw  there are some roots 
corresponding to the defects projections and some spurious roots. In [5] there were proposed the 
following criteria for excluding the spurious roots: 1) some of the projections of defects corresponding 
to spurious roots are located outside of the body projection; 2) the values kjA  corresponding to 

spurious roots jkw  are small relative to the values kjA  corresponding to projections of real defects; 3) 

the projections of defects corresponding to spurious roots jkw  are not stable relative to the chosen 
value of the upper bound N  and can change significantly when various values N  are considered; 4) if 
projections on several planes are considered then it is possible to see that projections determined by 
spurious roots are not projections of some points in 3R . 
In the anisotropic case, considered in the paper, it is possible to add one additional criterion. 5) The 
proposed procedure can be fulfilled for all values js , 1,2,3j = . The coordinates ( )1 2,k k

j jx x , obtained 

by means of the values jkw , correspond to the projections of real defects only in case when they are 
close to each other for different 1,2,3j = . 
The value of jkw  is excluded if it should be deleted according at least one of the criteria. 

Let us suppose that the spurious values of jkw  are excluded and we have found points ( )1 2,k kx x  
corresponding to the defects projections. The number of the points can exceed the number of 
projections of real defects because several points can correspond to one defect, see for example [12,5]. 
To determine the exact number of defects projections it is possible to use Eq. (1). So, if we obtain, for 
example, three points 1, 2 and 3 and the distance between the points 1 and 2 is much less than the 
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distances between the points 1, 3 and 2, 3 then we can suppose that the points 1 and 2 correspond to 
the projection of the same defect. After determination of the number of defects we repeat the described 
above procedure for the obtained number of defects. As a result, we obtain points located close enough 
to the projections of defects centers. Numerical example confirming that the use of the proposed 
algorithm enables to determine the number of defects and their centers is considered in the Section 5. 

4 Identification of small ellipsoidal defects 

Let us suppose now that the defects kG  are ellipsoidal inclusions. To determine the geometrical 
parameters of the inclusions (the magnitudes and directions of their axes) we will use an approach 
developed in [1] and applied to reconstruction of a single ellipsoidal defect in anisotropic body in 
[3,4]. According to our suppositions the stress state in the defect kG  is approximately constant and 
close to the stress state in the ellipsoidal inclusion kG  located in an infinite elastic solid and subjected 
to the stresses ( )dr k

ij xσ  at the infinity. For definiteness, let us find the geometrical parameters of the 

defect 1G . To determine the geometrical parameters of the defect 1G , we construct a regular elastic 
field so that the contribution of the first term in the sum on the right side of the Eq. (5) was 
significantly greater than that of the remaining terms. First introduce Cartesian coordinates with the 
origin in the center of the defect 1G : 1, 1,2,3i i ix x iξ= + = . Denote coordinates of other defects 
centers in the coordinate system by ( )1 2 3, ,k k kξ ξ ξ , 2,3, ,k n=  . Define holomorphic functions, 

( ) ( ) ( ) 1 2 1 21
2

1 , 3, ,
n m k k

mj j j kj j j kj jm n
k

m s s
L

χ ζ ζ ζ ζ ξ ξ ζ ξ ξ
−

=

= − ≥ = + = +∏ . Denote  

 ( )
2

0
mn

kj
mj mj

k

P
L
ζ

χ
=

 
= − = 

 
∏  (18) 

Consider a function 
 ( ) ( )

2
* j
mj j mj jL

ζ
ϕ ζ χ ζ

 
=  
 

 (19) 

Let us consider regular elastic fields *
mjr  and *

mjρ  constructed according to Eqs. (11) and (12) by means 

of the function ( )*
mj jϕ ζ . It follows from the Eqs. (5), (11), (12), (14) and suppositions formulated in 

Section 2 
 ( ) ( ) ( )* * *

1 2 3
1

, , ,
k

n
kj

mj mj mj j
k k G

A
RG d r iRG d d d d d d

G
ρ ϕ ζ ξ ξ ξ ξ ξ

=

− ≈ =∑ ∫  (20) 

Using arguments similar to those given in [5], one can show that for sufficiently large m , the 
contribution of the first term in Eq. (20) is much greater than the sum of contributions of the remaining 
terms. Thus we have the following equation 
 ( ) ( ) ( )

1

* * *1

1

, , k
mj mj mj j

G

ARG d r iRG d d
G

ρ ϕ ζ ξ− ≈ ∫  (21) 

It follows from the Eqs. (10), (18), (19) and (21) 

 ( ) ( ) ( ) ( )
1

1* * 2 2 2 2 2
1 1 2 2 1 2 22

1

, , 2 2k mj
mj mj j j j j j

G

A P
RG d r iRG d i d

G L
ρ ξ α ξ ξ α β ξ β ξ ξ α ξ ξ − ≈ + + − + + ∫  (22) 
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Let us remind that according to preceding results of the authors [1], to identify the ellipsoidal defect 

1G , it is sufficiently to construct a matrix ( )1 1
ijZ=Z , where 

1

1

1

5 , 1,2,3, 1,2,3ij i j
G

Z d i j
G

ξ ξ ξ= = =∫ . 

As it was shown in [1], the eigenvalues of the matrix 1Z  equal ( )21
1a , ( )21

2a  and ( )21
3a , where 1

ja , 

1,2,3j =  are the semiaxes of the ellipsoid 1G . The corresponding eigenvectors are directed along the 
axes of the ellipsoid. Eq. (22) is a complex-valued linear equation with respect to three unknowns 

1 , 1,2, 1,2pqZ p q= = . Using the described procedure for different js , 1,2,3j = , we obtain three 
linear complex-valued equations relative to the unknowns. It follows from the Eq. (22) 

 
( ) ( )2 * *

1 1 2 1
11 12 22

1

5 , ,
2 , 1,2,3

mj mj
j j

k mj

L RG d r iRG r
Z s Z s Z j

A P

ρ − + + = =  (23) 

Because i js s≠  for i j≠  the determinant of the system is not zero and the unknowns are determined 

uniquely. Considering projections on other coordinate planes we obtain all elements of the matrix 1Z . 

5 A numerical example 

Consider a numerical example illustrating efficiency of the method of defects reconstruction presented 
in Sections 3 and 4. Let us assume that elastic body V  is a cube { }: 10, 1,2,3ix x i≤ = , containing two 
ellipsoidal cavities. The loads applied to the boundary V∂  of elastic body V  are chosen correspond to 
uniaxial tension in the direction of the axis 3x : ( ) ( )( )30,0, ,d x n x x Vσ= ∈∂t , where 200σ = MPa 
(see Fig. 1). 

 
Figure 1: Uniaxial tension of a cube with embedded ellipsoidal defects. 

 
We suppose that material of the cube V  is orthotropic topaz. The elastic moduli of topaz in the 
crystallographic coordinate system can be found in [13] (see also [3]). The orientation of the 
crystallographic coordinate system relative to the given Cartesian coordinates we define by the Euler 
angles ( )1 2 3, ,β β β  (see, [2]). In the considered example we took ( ) ( )1 2 3, , 45 ,45 ,45β β β =    . Two 

considered ellipsoidal cavities are defined by their centers ( )1 3, 4, 5x = − − , ( )2 5,4,3x = − , volumes 

( 4 / 3 4.189kG π= ≈ , 1,2k =  corresponding to the volume of the unit ball), aspect ratios ( 1
1 0.25ρ = , 
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1
2 0.50ρ = , 2

1 0.50ρ = , 2
2 0.75ρ = , where 1 3 1/k k ka aρ = , 2 2 1/k k ka aρ = ) and orientations. The orientation 

is defined by the Euler angles ( ), ,k k kϕ θ ψ (see, [2,3]). The Euler angles in the example are as follows: 

( ) ( )1 1 1, , 30 ,45 ,60ϕ θ ψ =    , ( ) ( )2 2 2, , 60 ,45 ,30ϕ θ ψ =    . 

The direct Neumann problem for the considered example is solved using FEM and displacements du  
are determined on the boundary V∂ . After that the corresponding values of the RGF are calculated. 
Using calculated values of the RGF the number of defects and their geometrical parameters are 
determined by means of the results presented in Sections 3, 4. 

5.1 Determination of the number of ellipsoidal defects and coordinates of their centers 

According to the approach proposed in Section 3, to determine the number of defects and their centers 
it is necessary to construct polynomials ( )NjP w  for different values of the upper bound N  and roots 

js , 1,2,3j = . The defects projections, corresponding to the roots 1kw , 1,2, ,10k =   of the 

polynomial ( )10 1P w , constructed for the root 1s  in planes 1 2x x , 2 3x x , and 1 3x x , are presented on the 
Fig. 2. Here and below the projections of the given defects on the planes are grey dashed on the figures 
((a) – plane 1 2x x , (b) – plane 2 3x x , (c) – plane 1 3x x ). The projections of the body V  are marked with 
the solid lines. The obtained defects projections, corresponding to the roots 1kw  of the polynomials 

( )10 1P w  are marked with the thick points (• ). The arrows (→ ) denote the projections located outside 
the figures bounds. Among the obtained defects projections, presented on the Fig. 2, there are some 
spurious points which do not correspond to any defects. The spurious points are excluded using the 
criteria formulated in Section 3. To illustrate these criteria let us consider for example the coordinates 
of the projections of defects constructed in the plane 1 2x x  (see Fig. 2a). The points excluded by the 
criteria 1,2, ,5  are marked by the symbols (× ), ( ), ( ), ( ◊ ) and ( ), respectively. To illustrate the 
application of the criterion 2, let us present the values of 1kA  corresponding to the Fig. 2a: 

9
11 0.105 10A = ⋅ , 9

21 0.123 10A = ⋅ , 8
31 0.573 10A = ⋅ , 8

41 0.403 10A = ⋅ , 2
51 0.152 10A = ⋅ , 

4
61 0.748 10A = ⋅ , 5

71 0.231 10A = ⋅ , 5
81 0.139 10A = ⋅ , 3

91 0.450 10A = ⋅ , 101A = . 10.408 10−= ⋅ . It is 

possible to see that the values 1kA , 1, ,4k =   are much larger than the others.  

 
Figure 2: The defects projections determined by the polynomials ( )10 1P w . 

 
As shown on Fig. 2a, the defects projections marked with the numbers 5-10 on the figure satisfy at 
least one of the formulated criteria and hence are spurious. Therefore, only the projections marked 
with the numbers 1-4 should be considered. It can be seen from Fig. 2a that the distance between the 
points 1, 2 is much less than the distances between the points 1, 3 and 2, 3 (or 1, 4 and 2, 4). 
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Accounting for supposition (1), it can be concluded that the points 1 and 2 correspond to the projection 
of the same defect. The same holds for the pair of points marked with the numbers 3, 4 on Fig. 2a. So, 
the number of defects 2n = . Applications of the considered procedure to the roots 2s , 3s  and other 
values of upper bounds N  lead to the same number of defects. 
Let us take the upper bound of the number of defects 2N n= =  and repeat the procedure. The 
obtained points corresponding to the defects projections are presented on Fig. 3. As can be seen the 
points are very close to the projections of the centers of the sought-for ellipsoidal cavities.  

 
Figure 3: The defects projections determined by the polynomials ( )21P w . 

5.2 Determination of the geometrical parameters of ellipsoidal defects 

After determination of the number of ellipsoidal defects n  and coordinates of their centers, 
the magnitudes and directions of the ellipsoids semiaxes can be calculated using the formulas obtained 
in Section 4. The geometrical parameters of the defects are determined by the use of regular elastic 
fields *

mjr  and *
mjρ , 1,2,3j = , depending on integer-valued parameter m  ( 3m ≥ ). The values of 

parameter m  are chosen so big as to eliminate the contribution of all terms in the sum on the right side 
of Eq. (20) except one corresponding to the defect which parameters are determined. It follows from 
Eq. (20) that the bigger the number of defects n  the bigger the value of parameter m  should be used 
to obtain stable identification results.  
Let us note that proposed identification method is based on the measurements which are usually 
subjected to some errors. Increasing of the parameter m  leads to increasing of the degree of the 
polynomials corresponding to regular elastic fields *

mjr  and *
mjρ . As consequence, the errors in the 

calculated values of the RGF corresponding to the fields can also increase. Due to this reason using big 
values of the parameter m  for identification of defects requires the measured data with higher 
accuracy. In the considered numerical examples the measured data were simulated by FEM. The level 
of accuracy of such data enabled us to consider only the values of parameter up to 6m = . The 
identification results obtained for 4m =  are presented on Fig. 4. Here the boundaries of the identified 
ellipsoidal defects projections are marked with solid lines and the projections of real defects are grey 
dashed.  

 
Figure 4: The results of two ellipsoidal cavities identification. 
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The results presented on Fig. 4 show that for chosen value of the parameter m  the identified defects 
projections are in exact agreement with the projections of the given ellipsoidal defects. Using 5,6m =  
gives the results with similar accuracy. Using 3m = in the considered case is not enough and leads to 
big errors in the results of identification. 
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Abstract 

Recently Bevilacqua, Galeão and co-workers developed a new analytical formulation for the 

simulation of the phenomena of diffusion with retention. This new formulation aims at the reduction 

of all diffusion processes with retention to a unifying phenomenon that can adequately simulate the 

retention effect. This model may have relevant applications in a number of different areas such as: 

population spreading with partial hold up of the population to guarantee territorial domain; chemical 

reactions inducing adsorption processes; and multiphase flow through porous media, just to mention a 

few. In the new formulation a discrete approach is firstly formulated taking into account a control 

parameter which represents the fraction of particles that are able to diffuse. The resulting governing 

equation for the modelling of diffusion with retention in a continuum medium requires a fourth order 

differential term. Specific experimental techniques, together with an appropriate inverse analysis, 

need to be settled to characterize the complementary parameters. The present work investigates an 

inverse problem which does not allow for simultaneous estimation of all model parameters and a 

characterization procedure in two steps is proposed: the first one in order to estimate the diffusion 

coefficient and the second one in order to estimate the complementary parameters. In this paper it is 

assumed that the first step is already done and the diffusion coefficient is known within certain degree 

of reliability. Therefore this work is aimed at investigating the confidence intervals of the 

complementary parameters estimates considering both the uncertainties due to measurement errors in 

the experimental data, and due to the uncertainty propagation of the estimated value of the diffusion 

coefficient. The inverse problem solution is carried out through the maximum likelihood approach, 

with the minimization problem solved with the Levenberg-Marquardt method, and the estimation of 

the confidence intervals is carried out through a Monte Carlo analysis. 
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1 Introduction 

Spreading of particles or microorganisms immersed in a given medium or deployed on a given 

substratum is frequently modeled as a diffusion process, given by the well-known diffusion equation 

derived from the Fick’s law. This model represents quite satisfactorily the behavior of several 

physical phenomena related to dispersion processes, but for some cases the approach fails to represent 

the real physical behavior. For instance, population spreading or dispersing particles may be partially 

and temporarily blocked when immersed in some particular media; an invading species may hold a 

fraction of the total population stationary on the conquered territory in order to guarantee territorial 

domain; and chemical reactions may induce absorption processes for the diffusion of solutes in liquid 

solvents in the presence of absorbent material [1]. Among other physicochemical phenomena that 

need improvement on the analytical formulation due to side effects not accounted for in the classical 

diffusion theory we may cite flows though porous media [2], and diffusion processes for some 

dispersing substances immersed in particular supporting media [3-7]. In most cases appearing in the 

literature addressing this issue, it is assumed the well-known second order parabolic equation as the 

basic governing equation of the dispersion process, but the anomalous diffusion effect is modeled 

with the introduction of fractional derivatives [8], or imposing an arbitrary variation of the diffusion 

coefficient with time or concentration [9, 10]. Nevertheless, trying to overcome the anomalous 

diffusion issue by imposing an artificial dependence of the diffusion coefficient on the particle 

concentration, or introducing extra differential terms while keeping the second order rank of the 

governing equation disguises the real physical phenomenon occurring in the process. In 2011, 

Bevilacqua, Galeão and co-workers derived a new analytical formulation for the simulation of the 

phenomena of anomalous diffusion [11], explicitly taking into account the retention effect in the 

dispersion process, aiming at the reduction of all diffusion processes with retention to a unifying 

phenomenon that can adequately simulate the retention effect. The new parameters introduced, 

besides the diffusion coefficient, characterize the blocking process and specific experimental 

techniques, together with an inverse analysis, need to be settled to determine these complementary 

parameters. 

The present work investigates an anomalous diffusion inverse problem which does not allow for 

simultaneous estimation of all model parameters [12], and a characterization procedure in two steps is 

proposed. It is considered possible to impose a case in which the blocking process does not occur, for 

instance as it occurs in the flow of ferrofluid in microchannels. In this example, the problem may 

present an anomalous diffusion effect or not, depending on whether under the presence of a magnetic 

field or not [13]. Therefore, in the first step, assuming all particles are able to diffuse, the diffusion 

coefficient of the model may be estimated. Then the second step may be carried out in a situation in 

which anomalous diffusion occurs for the given problem, with the diffusion coefficient already 

characterized, in order to estimate the complementary anomalous diffusion parameters. In this paper it 

is assumed that the first step of the two-step procedure is already done and the diffusion coefficient is 

known within certain degree of reliability. Therefore this work is aimed at investigating the 

confidence intervals of the complementary parameters estimates, considering both the uncertainties 

due to measurement errors in the experimental data, and due to the uncertainty propagation of the 

considered value of the diffusion coefficient. The inverse problem solution is carried out through the 

maximum likelihood approach, with the minimization problem solved with the Levenberg-Marquardt 

method [14], and the estimation of the confidence intervals is carried out through a Monte Carlo 

analysis [15]. 
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2 Problem formulation and solution methodology 

Consider the process schematically represented in figure 1. The redistribution of the contents of each 

cell indicates that a fraction of the contents 
np  is retained in the n

th
 cell and the exceeding volume is 

evenly transferred to the neighboring cells, that is, 0.5 np  to the left, to the (n-1)
th
 cell and 0.5 np  to 

the right, to the (n+1)
th
 cell, at each time step, where 1   . This means that the dispersion runs 

slower than for the classical diffusion problem. Note that if 1  , the problem is reduced to the 

classical Gaussian distribution. 

 
Figure 1: Schematic representation of the symmetric distribution with retention  1   . 

 

This process can be written as the following algebraic expressions: 

1 1 1

1 1

1 1
(1 )

2 2

t t t t

n n n np p p p    

          (1a) 

1

1 1

1 1
(1 )

2 2

t t t t

n n n np p p p  

          (1b) 

Manipulating eqs. (1a,b) in order to obtain finite difference terms yields: 

 22 2 44

0 1

2 2 4

0 0

1 1
(1 )

2 4

t t
t t

n n n
O xp L p pL

t T x x T x
 


     

    
     

    (2) 

where 0T , 0L  and 1L  are integration parameters. Calling 2

2 0 0/ 2K L T  and 4

4 1 0/ 4K L T , both 

considered constant in this work, and taking the limit as 0x   and 0t  , we have: 

 
2 4

2 42 4

( , ) ( , ) ( , )
1

p x t p x t p x t
K K

t x x
  

  
  

  
    (3a) 

The fourth order term with negative sign introduces the anomalous diffusion effect, which turns up 

naturally, without any artificial assumption, as an immediate consequence of the temporary retention 

imposed by the redistribution law. Further discussion on the model derivation can be found in 

reference [11]. 

As the test case for the present work, consider the governing equation given by eq. (3a) valid for 

0 1x   and 0t  , with the following boundary and initial conditions: 
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The problem given by eqs. (3a-c) is solved in this work with the NDSolve routine of the Mathematica 

system, under automatic absolute and relative error control. Concerning the inverse problem solution, 

observing the problem defined in eqs. (3), it is evident that the three parameters appearing in the 

model cannot be estimated simultaneously since there are three parameters defining two coefficients 

in eq. (3a), i.e. there are infinite sets of values for the parameters 2 4{ , , }K KZ  that lead to the 

exactly same mathematical formulation, yielding non-unicity of the inverse problem solution, which 

was also illustrated by means of a sensitivity analysis in ref. [12]. Since the most interesting aspect of 

this work is the identification of the three parameters appearing in the model, due to their direct 

physical interpretation [11], we choose not to rewrite the problem in terms of two coefficients (which 

would multiply the second and fourth order differential terms). Next we shall consider that the 

parameter 2K  can be obtained through an independent experiment, for example by means of an 

inverse problem in a physical situation where the blocking process that characterize the anomalous 

diffusion phenomenon does not occur, i.e. 1  . Then the main goal becomes to estimate   and 4K , 

and provide an accurate uncertainty analysis due to errors in the experimental data and in the 

considered value of 2K . The inverse problem formulation and solution is addressed at the following 

sections. 

3 Inverse problem formulation and solution 

In order to investigate the inverse problem solution concerning the estimation of the three model 

parameters, 2 4{ , , }K KZ , we consider a vector of experimental data Y ,  simulated with the 

solution of eq. (3), and the addition of noise simulated from a normal distribution with known 

variance: 
2

exact( ) ,    ~ (0, )i i i eY p N   Z           (4) 

In this case, the maximum likelihood approach leads to the ordinary least-squares norm as objective 

function, given by the sum of the squared residues between the experimental data and the predicted 

values from the solution of eq. (3): 

 
2

1

( ) ( )
dN

i i

i

S p Y


 Z Z       (5) 

So the vector Z  that minimizes S  yields the maximum likelihood estimates for the model parameters 

under investigation. In order to minimize S , in this work, we use the Levenberg-Marquardt method 

[14]. Starting with an initial guess 0Z  an iterative procedure is constructed, in which new estimates 

are obtained with 

1 , 0,1,2,n n n n   Z Z Z          (6a) 

being the correction nZ  calculated from  
1

T T

n n n n n n


     Z J J Γ J R          (6b) 

where   is a damping parameter, Γ  is the identity matrix, the elements of the sensitivity matrix J , 

known as the sensitivity coefficients, are 
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j
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J i N j N

Z


  


     (7) 

where pN  is the number of parameters being estimated, i.e., the dimension of the vector Z , and R  is 

the vector of residues, whose elements are given by: 

( )i i iR p Y Z        (8) 

The iterative procedure of sequentially calculating 
nZ  and 

1nZ  with eqs. (6a,b) is continued until 

the convergence criterion 

, tol , for 1,2, ,n j pZ j N             (9) 

is satisfied, where tol  is a prescribed tolerance. The damping factor n  is varied during the iterative 

procedure, such that when convergence is achieved its value is close to zero. 

The derivatives that must be calculated in order to obtain the sensitivity coefficients in eq. (7) can be 

computed with a finite difference scheme. Nevertheless, the finite difference approximations must be 

employed with care because of the choice of the increment. If a large value is used, it is possible that 

the approximations will not be sufficiently accurate. On the other hand, if very small values are used 

for the increment, large numerical errors can occur due to the difference of numbers very close to each 

other, motivating the use of more involved techniques for the computation of the sensitivity 

coefficients, such as the complex-step method [16], or the derivation and solution of the sensitivity 

coefficient equations [17]. In the present work, in order to have a safer computation of the sensitivity 

coefficients, the sensitivity equations have been derived and numerically solved, as presented in 

details in ref. [12], which will be omitted here due to space limitation. 

It should also be highlighted that the sensitivity analysis plays a major role in several aspects related 

to the formulation and solution of inverse problems [17]. In order to obtain good estimates, within 

reasonable confidence intervals, it is required the sensitivity coefficients to be relatively high and, 

when two or more unknowns are simultaneously estimated, their sensitivity coefficients must be 

linearly independent, what graphically means that they should not present the same slope in absolute 

value. Otherwise 0T J J  and the problem is ill-conditioned. Since the problem investigated in this 

work involves parameters with different orders of magnitude, the scaled sensitivity coefficients are 

employed in order to allow for more evident comparisons between the sensitivity coefficients with 

respect to different parameters and identification of linear dependence. The scaled sensitivity 

coefficients are obtained by multiplying the sensitivity coefficient by the value of the concerned 

parameter, i.e. 
iZ i

i

p
X Z

Z





. Therefore we have: 
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; 

2 2

2
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( , )K

p x t
X x t K

K





;  

4 4

4

( , )
( , )K

p x t
X x t K

K





    (10) 

In this work, we are interested in investigating the uncertainty propagation of 2K , assumed to be 

estimated independently, in the first step, into the estimates of   and 4K , and it is also assessed the 

additional uncertainties due to error in the measured experimental data employed in the inverse 

problem solution. In order to calculate the confidence intervals for the parameters   and 4K , it is 

solved the inverse problem of estimating   and 4K  through the minimization of the maximum 

likelihood objective function, eq. (5), assuming the parameter 2K  is known. In order to calculate the 

confidence associated to the estimated parameters, taking into account the uncertainty in the given 
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value of 2K , the Monte Carlo error propagation analysis is introduced [15]. The idea is to simulate M 

virtual noisy experiments, employing different values of 
2K  (randomly simulated from the a priori 

known probability distribution), and different simulated experimental data, and then examine the 

statistics of the corresponding estimated parameters. This procedure can be seen as solving the inverse 

problem several times, and for each time it is solved all inputs (experimental data and 
2K  in this case) 

are varied within their uncertainty limits randomly, obeying their known statistical distributions, 

independent of the others. After a sufficiently large number of independent calculations is performed, 

the distribution of the computed results (the estimated values of   and 
4K  in this case) nearly 

describes the distribution of all possible results from the combination of the input data. 

4 Results and discussion 

In the following results, consider the case with 0.2  , 3

2 10K   and 5

4 10K   in eq. (3a). In 

reference [12] this test case is investigated, and it is shown that for 95t   the sensitivity coefficients 

become essentially constant, suggesting that measurements beyond that time may not aggregate useful 

information for the inverse problem solution. In the present work it also investigated the influence of 

the measurement position on the sensitivity coefficients. For instance, consider figure 2, which depicts 

the scaled sensitivity coefficients with respect to the three parameters,  , 2K , and 4K , at 10t  , for 

0 1x  . It should be observed in this figure that 0.5mx   may be the best position for performing 

transient measurements concerning the inverse problem solution. In the present we work, besides 

0.5mx  , it is also investigated transient measurements acquired with a single sensor at 0.4mx   and  

0.45mx  , for the inverse problem solution, in order to illustrate the influence of the measurement 

position choice on the confidence intervals of the estimates. In all results hereafter presented, it is 

considered 90 experimental data for the inverse problem solution, obtained from 5t   up to 95t  , 

using a single sensor located at (i) case 1: 0.5mx  , (ii) case 2: 0.4mx  , and (iii) case 3: 0.45mx  . 

For instance, figure 3 illustrates a set of experimental data at 0.5x  , simulated employing eq. (4) 

with 0.02e  , yielding, in average, up to 4% noise in the data. In this figure, together with the 

experimental data, it is also plotted the curve obtained from the solution of problem (3) for the test 

case under consideration. 

 

 
Figure 2: Scaled sensitivity coefficients along the spatial domain, x , at 10t  . 

 

3 4Z K   

1Z    

2 2Z K   
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Figure 3: Simulated experimental data (red dots) for transient measurements of a sensor located at 

0.5x  . The black curve shows the numerical solution employed to simulate the experimental data. 

 

In the present work, for each one of the three measurement positions considered ( 0.5mx  , 0.4mx  , 

and 0.45mx  , named case 1, 2 and 3, respectively), 500M   virtual noisy experiments have been 

simulated employing 0.02e   in eq. (4), and for each simulated independent experiment, different 

values of 2K  have been employed, randomly obtained from a normal distribution with 310  mean and 
30.1 10  standard deviation (10% of the mean value), which means the 95% confidence interval for 

2K  is 3 30.8 10 ,1.2 10     . This information concerning 2K  is supposed to be obtained in the first 

step of the procedure herein proposed, with an experiment where the blocking process does not occur 

and the diffusion coefficient could be estimated. The goal here is to investigate how this uncertainty 

on the value of 2K  propagates into the estimates of   and 4K , in the presence of measurement 

errors, in the second step, now considering an experiment with anomalous diffusion and with this a 

priori information available for the parameter 2K . 

First, figure 4(a) illustrates the histogram plotted from the 500 values of 2K  employed in the 

simulations for case 1. For a sufficiently large number of simulations, this histogram approaches the 

exact normal distribution from which the values of 2K  have been sampled. In fact, figure 4(a) 

demonstrates that with 500 experiments it is already obtained a fairly good approximation of the 

distribution considered known for this distribution. In fact, the calculated 95% confidence interval 

from those 500 samples illustrated in figure 4(a) is 3 30.804 10 ,1.196 10     , which approaches very 

well its exact interval, which is 3 30.8 10 ,1.2 10     . Figures 4(b,c) depict the corresponding 

histograms for the estimates of the parameters   and 4K , respectively, obtained from the 500 

simulated noisy experiments. It should be noted that both the histograms for   and 4K  seem to be 

slightly asymmetric with respect to the mean. Whilst this can be a collateral effect of the 

approximation obtained with a limited number of simulated experiments, it can be due to the 

nonlinearity of the problem, which means that even if both the experimental errors and the assumed 

values of 2K  are normally distributed, the statistical distributions of the estimated parameters   and 

4K  are not necessarily normal. 
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 (a) (b) (c) 

Figure 4: histogram of (a) sampled values of 
2K ; (b) estimates of  ; (c) estimates of 

4K . 

 

Proceeding to the investigation of the influence of the measurement position on the reliability of the 

estimates, figure 5 shows the elliptic joint confidence intervals for the estimated parameters   and 

4K  for the three cases studied in this work: (a) case 1: 0.5mx  , (b) case 2: 0.4mx  , and (c) case 3: 

0.45mx  . A direct comparison of those three confidence regions is shown in figure 6, which, in 

agreement with the sensitivity analysis performed earlier, in fig. 2, show that the measurements 

performed at 0.5mx   produces the most reliable estimates, whereas the measurements performed at 

0.4mx   produces the least reliable estimates. It is interesting to notice that this effect is much more 

evident in the estimation of 4K : in the direct comparison of the results obtained with the three 

different measurement positions (fig. 6), it should be observed that the elliptic confidence region 

narrows much more in the vertical direction of the graph ( 4K ) than in the horizontal direction of the 

graph (  ). 

 

  
(a) (b) (c) 

Figure 5: Elliptic joint confidence region for   and 4K : (a) case 1; (b) case 2; (c) case 3. 

 

The influence of the measurement position on the reliability of the estimates is better quantified in 

table 1, which besides the mean estimates and confidence intervals for each case, also shows the ratio 

between the standard deviation and the mean of each distribution. Remembering that this ratio was 

10% in the assumed knowledge on 2K , it can be concluded that the uncertainties were not largely 

amplified into the estimates of   and 4K , noting that for case 1 their calculated ratios are 11.38% 

and 11.89%, which besides the uncertainty of 2K  also include the effect of the measurement errors. 

Nonetheless, if other less favorable measurement position is chosen (cases 2 or 3, for instance), these 

rations increase remarkably, especially for 4K , clearly illustrating the importance of the adequate 

choice of the experimental measurements employed for the inverse problem solution. 
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Figure 6: Direct comparison of the elliptic joint confidence regions for   and 4K   

estimated in cases 1, 2 and 3. 

 

Table 1: Estimated mean and 95% confidence intervals for   and 4K . 

Meas. position   100%







  5

4 10K   
4

4

100%
K

K




  

Case 1, 0.5mx   0.203 [0.154, 0.246] 11.38% 0.994 [0.764, 1.24] 11.89% 

Case 2, 0.4mx   0.201 [0.150, 0.250] 12.39% 1.01 [0.652, 1.35] 17.14% 

Case 3, 0.45mx   0.202 [0.152, 0.248] 12.00% 1.00 [0.678, 1.32] 16.00% 

5 Conclusions 

It has been investigated in this work the inverse problem formulation and solution related with a new 

analytical formulation for the simulation of the phenomena of anomalous diffusion. The inverse 

problem investigated does not allow for the simultaneous estimation of all parameters and a 

characterization procedure in two steps is proposed. The reliability of the anomalous diffusion 

parameters estimates is studied concerning the uncertainty in the experimental data as well as the 

propagation of error concerning the value of the diffusion coefficient, estimated in the first step. The 

inverse analysis was carried out for transient measured experimental data obtained with a single 

sensor, whose position was investigated with respect to the corresponding estimates obtained. The 

results show that the errors present in the inputs do not amplify significantly into the estimates of the 

anomalous diffusion parameters. Nevertheless, the measured data employed in the inverse problem 

solution may be chosen with care, since it affects remarkably the reliability of the estimates. 
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Abstract 

Recently Bevilacqua, Galeão and co-workers developed a new analytical formulation for the 

simulation of the phenomena of diffusion with retention. This new formulation aims at the reduction 

of all diffusion processes with retention to a unifying phenomenon that can adequately simulate the 

retention effect. This model may have relevant applications in a number of different areas such as: 

population spreading with partial hold up of the population to guarantee territorial domain; chemical 

reactions inducing adsorption processes; and multiphase flow through porous media, just to mention a 

few. In the new formulation a discrete approach is firstly formulated taking into account a control 

parameter which represents the fraction of particles that are able to diffuse. The resulting governing 

equation for the modelling of diffusion with retention in a continuum medium requires a fourth order 

differential term. Specific experimental techniques, together with an appropriate inverse analysis, 

need to be settled to characterize the complementary parameters. The present work investigates an 

inverse problem which does not allow for simultaneous estimation of all model parameters and a 

characterization procedure in two steps is proposed: the first one in order to estimate the diffusion 

coefficient and the second one in order to estimate the complementary parameters. In this paper it is 

assumed that the first step is already done and the diffusion coefficient is known within certain degree 

of reliability. Therefore this work is aimed at investigating the confidence intervals of the 

complementary parameters estimates considering both the uncertainties due to measurement errors in 

the experimental data, and due to the uncertainty propagation of the estimated value of the diffusion 

coefficient. The inverse problem solution is carried out through the maximum likelihood approach, 

with the minimization problem solved with the Levenberg-Marquardt method, and the estimation of 

the confidence intervals is carried out through a Monte Carlo analysis. 
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1 Introduction 

Spreading of particles or microorganisms immersed in a given medium or deployed on a given 

substratum is frequently modeled as a diffusion process, given by the well-known diffusion equation 

derived from the Fick’s law. This model represents quite satisfactorily the behavior of several 

physical phenomena related to dispersion processes, but for some cases the approach fails to represent 

the real physical behavior. For instance, population spreading or dispersing particles may be partially 

and temporarily blocked when immersed in some particular media; an invading species may hold a 

fraction of the total population stationary on the conquered territory in order to guarantee territorial 

domain; and chemical reactions may induce absorption processes for the diffusion of solutes in liquid 

solvents in the presence of absorbent material [1]. Among other physicochemical phenomena that 

need improvement on the analytical formulation due to side effects not accounted for in the classical 

diffusion theory we may cite flows though porous media [2], and diffusion processes for some 

dispersing substances immersed in particular supporting media [3-7]. In most cases appearing in the 

literature addressing this issue, it is assumed the well-known second order parabolic equation as the 

basic governing equation of the dispersion process, but the anomalous diffusion effect is modeled 

with the introduction of fractional derivatives [8], or imposing an arbitrary variation of the diffusion 

coefficient with time or concentration [9, 10]. Nevertheless, trying to overcome the anomalous 

diffusion issue by imposing an artificial dependence of the diffusion coefficient on the particle 

concentration, or introducing extra differential terms while keeping the second order rank of the 

governing equation disguises the real physical phenomenon occurring in the process. In 2011, 

Bevilacqua, Galeão and co-workers derived a new analytical formulation for the simulation of the 

phenomena of anomalous diffusion [11], explicitly taking into account the retention effect in the 

dispersion process, aiming at the reduction of all diffusion processes with retention to a unifying 

phenomenon that can adequately simulate the retention effect. The new parameters introduced, 

besides the diffusion coefficient, characterize the blocking process and specific experimental 

techniques, together with an inverse analysis, need to be settled to determine these complementary 

parameters. 

The present work investigates an anomalous diffusion inverse problem which does not allow for 

simultaneous estimation of all model parameters [12], and a characterization procedure in two steps is 

proposed. It is considered possible to impose a case in which the blocking process does not occur, for 

instance as it occurs in the flow of ferrofluid in microchannels. In this example, the problem may 

present an anomalous diffusion effect or not, depending on whether under the presence of a magnetic 

field or not [13]. Therefore, in the first step, assuming all particles are able to diffuse, the diffusion 

coefficient of the model may be estimated. Then the second step may be carried out in a situation in 

which anomalous diffusion occurs for the given problem, with the diffusion coefficient already 

characterized, in order to estimate the complementary anomalous diffusion parameters. In this paper it 

is assumed that the first step of the two-step procedure is already done and the diffusion coefficient is 

known within certain degree of reliability. Therefore this work is aimed at investigating the 

confidence intervals of the complementary parameters estimates, considering both the uncertainties 

due to measurement errors in the experimental data, and due to the uncertainty propagation of the 

considered value of the diffusion coefficient. The inverse problem solution is carried out through the 

maximum likelihood approach, with the minimization problem solved with the Levenberg-Marquardt 

method [14], and the estimation of the confidence intervals is carried out through a Monte Carlo 

analysis [15]. 
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2 Problem formulation and solution methodology 

Consider the process schematically represented in figure 1. The redistribution of the contents of each 

cell indicates that a fraction of the contents 
np  is retained in the n

th
 cell and the exceeding volume is 

evenly transferred to the neighboring cells, that is, 0.5 np  to the left, to the (n-1)
th
 cell and 0.5 np  to 

the right, to the (n+1)
th
 cell, at each time step, where 1   . This means that the dispersion runs 

slower than for the classical diffusion problem. Note that if 1  , the problem is reduced to the 

classical Gaussian distribution. 

 
Figure 1: Schematic representation of the symmetric distribution with retention  1   . 

 

This process can be written as the following algebraic expressions: 

1 1 1

1 1

1 1
(1 )

2 2

t t t t

n n n np p p p    

          (1a) 

1

1 1

1 1
(1 )

2 2

t t t t

n n n np p p p  

          (1b) 

Manipulating eqs. (1a,b) in order to obtain finite difference terms yields: 

 22 2 44

0 1

2 2 4

0 0

1 1
(1 )

2 4

t t
t t

n n n
O xp L p pL

t T x x T x
 


     

    
     

    (2) 

where 0T , 0L  and 1L  are integration parameters. Calling 2

2 0 0/ 2K L T  and 4

4 1 0/ 4K L T , both 

considered constant in this work, and taking the limit as 0x   and 0t  , we have: 

 
2 4

2 42 4

( , ) ( , ) ( , )
1

p x t p x t p x t
K K

t x x
  

  
  

  
    (3a) 

The fourth order term with negative sign introduces the anomalous diffusion effect, which turns up 

naturally, without any artificial assumption, as an immediate consequence of the temporary retention 

imposed by the redistribution law. Further discussion on the model derivation can be found in 

reference [11]. 

As the test case for the present work, consider the governing equation given by eq. (3a) valid for 

0 1x   and 0t  , with the following boundary and initial conditions: 
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 , 

 

1

,
0

x

p x t

x






,   0t      (3b) 

  1002s( , ( ) 10) inp x f x x   ,   0 1x         (3c) 

The problem given by eqs. (3a-c) is solved in this work with the NDSolve routine of the Mathematica 

system, under automatic absolute and relative error control. Concerning the inverse problem solution, 

observing the problem defined in eqs. (3), it is evident that the three parameters appearing in the 

model cannot be estimated simultaneously since there are three parameters defining two coefficients 

in eq. (3a), i.e. there are infinite sets of values for the parameters 2 4{ , , }K KZ  that lead to the 

exactly same mathematical formulation, yielding non-unicity of the inverse problem solution, which 

was also illustrated by means of a sensitivity analysis in ref. [12]. Since the most interesting aspect of 

this work is the identification of the three parameters appearing in the model, due to their direct 

physical interpretation [11], we choose not to rewrite the problem in terms of two coefficients (which 

would multiply the second and fourth order differential terms). Next we shall consider that the 

parameter 2K  can be obtained through an independent experiment, for example by means of an 

inverse problem in a physical situation where the blocking process that characterize the anomalous 

diffusion phenomenon does not occur, i.e. 1  . Then the main goal becomes to estimate   and 4K , 

and provide an accurate uncertainty analysis due to errors in the experimental data and in the 

considered value of 2K . The inverse problem formulation and solution is addressed at the following 

sections. 

3 Inverse problem formulation and solution 

In order to investigate the inverse problem solution concerning the estimation of the three model 

parameters, 2 4{ , , }K KZ , we consider a vector of experimental data Y ,  simulated with the 

solution of eq. (3), and the addition of noise simulated from a normal distribution with known 

variance: 
2

exact( ) ,    ~ (0, )i i i eY p N   Z           (4) 

In this case, the maximum likelihood approach leads to the ordinary least-squares norm as objective 

function, given by the sum of the squared residues between the experimental data and the predicted 

values from the solution of eq. (3): 

 
2

1

( ) ( )
dN

i i

i

S p Y


 Z Z       (5) 

So the vector Z  that minimizes S  yields the maximum likelihood estimates for the model parameters 

under investigation. In order to minimize S , in this work, we use the Levenberg-Marquardt method 

[14]. Starting with an initial guess 0Z  an iterative procedure is constructed, in which new estimates 

are obtained with 

1 , 0,1,2,n n n n   Z Z Z          (6a) 

being the correction nZ  calculated from  
1

T T

n n n n n n


     Z J J Γ J R          (6b) 

where   is a damping parameter, Γ  is the identity matrix, the elements of the sensitivity matrix J , 

known as the sensitivity coefficients, are 
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,  1,2, , ,  1,2, ,i
ij d p

j

p
J i N j N

Z


  


     (7) 

where pN  is the number of parameters being estimated, i.e., the dimension of the vector Z , and R  is 

the vector of residues, whose elements are given by: 

( )i i iR p Y Z        (8) 

The iterative procedure of sequentially calculating 
nZ  and 

1nZ  with eqs. (6a,b) is continued until 

the convergence criterion 

, tol , for 1,2, ,n j pZ j N             (9) 

is satisfied, where tol  is a prescribed tolerance. The damping factor n  is varied during the iterative 

procedure, such that when convergence is achieved its value is close to zero. 

The derivatives that must be calculated in order to obtain the sensitivity coefficients in eq. (7) can be 

computed with a finite difference scheme. Nevertheless, the finite difference approximations must be 

employed with care because of the choice of the increment. If a large value is used, it is possible that 

the approximations will not be sufficiently accurate. On the other hand, if very small values are used 

for the increment, large numerical errors can occur due to the difference of numbers very close to each 

other, motivating the use of more involved techniques for the computation of the sensitivity 

coefficients, such as the complex-step method [16], or the derivation and solution of the sensitivity 

coefficient equations [17]. In the present work, in order to have a safer computation of the sensitivity 

coefficients, the sensitivity equations have been derived and numerically solved, as presented in 

details in ref. [12], which will be omitted here due to space limitation. 

It should also be highlighted that the sensitivity analysis plays a major role in several aspects related 

to the formulation and solution of inverse problems [17]. In order to obtain good estimates, within 

reasonable confidence intervals, it is required the sensitivity coefficients to be relatively high and, 

when two or more unknowns are simultaneously estimated, their sensitivity coefficients must be 

linearly independent, what graphically means that they should not present the same slope in absolute 

value. Otherwise 0T J J  and the problem is ill-conditioned. Since the problem investigated in this 

work involves parameters with different orders of magnitude, the scaled sensitivity coefficients are 

employed in order to allow for more evident comparisons between the sensitivity coefficients with 

respect to different parameters and identification of linear dependence. The scaled sensitivity 

coefficients are obtained by multiplying the sensitivity coefficient by the value of the concerned 

parameter, i.e. 
iZ i

i

p
X Z

Z





. Therefore we have: 

( , )
( , )

p x t
X x t 







; 

2 2

2

( , )
( , )K

p x t
X x t K

K





;  

4 4

4

( , )
( , )K

p x t
X x t K

K





    (10) 

In this work, we are interested in investigating the uncertainty propagation of 2K , assumed to be 

estimated independently, in the first step, into the estimates of   and 4K , and it is also assessed the 

additional uncertainties due to error in the measured experimental data employed in the inverse 

problem solution. In order to calculate the confidence intervals for the parameters   and 4K , it is 

solved the inverse problem of estimating   and 4K  through the minimization of the maximum 

likelihood objective function, eq. (5), assuming the parameter 2K  is known. In order to calculate the 

confidence associated to the estimated parameters, taking into account the uncertainty in the given 
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value of 2K , the Monte Carlo error propagation analysis is introduced [15]. The idea is to simulate M 

virtual noisy experiments, employing different values of 
2K  (randomly simulated from the a priori 

known probability distribution), and different simulated experimental data, and then examine the 

statistics of the corresponding estimated parameters. This procedure can be seen as solving the inverse 

problem several times, and for each time it is solved all inputs (experimental data and 
2K  in this case) 

are varied within their uncertainty limits randomly, obeying their known statistical distributions, 

independent of the others. After a sufficiently large number of independent calculations is performed, 

the distribution of the computed results (the estimated values of   and 
4K  in this case) nearly 

describes the distribution of all possible results from the combination of the input data. 

4 Results and discussion 

In the following results, consider the case with 0.2  , 3

2 10K   and 5

4 10K   in eq. (3a). In 

reference [12] this test case is investigated, and it is shown that for 95t   the sensitivity coefficients 

become essentially constant, suggesting that measurements beyond that time may not aggregate useful 

information for the inverse problem solution. In the present work it also investigated the influence of 

the measurement position on the sensitivity coefficients. For instance, consider figure 2, which depicts 

the scaled sensitivity coefficients with respect to the three parameters,  , 2K , and 4K , at 10t  , for 

0 1x  . It should be observed in this figure that 0.5mx   may be the best position for performing 

transient measurements concerning the inverse problem solution. In the present we work, besides 

0.5mx  , it is also investigated transient measurements acquired with a single sensor at 0.4mx   and  

0.45mx  , for the inverse problem solution, in order to illustrate the influence of the measurement 

position choice on the confidence intervals of the estimates. In all results hereafter presented, it is 

considered 90 experimental data for the inverse problem solution, obtained from 5t   up to 95t  , 

using a single sensor located at (i) case 1: 0.5mx  , (ii) case 2: 0.4mx  , and (iii) case 3: 0.45mx  . 

For instance, figure 3 illustrates a set of experimental data at 0.5x  , simulated employing eq. (4) 

with 0.02e  , yielding, in average, up to 4% noise in the data. In this figure, together with the 

experimental data, it is also plotted the curve obtained from the solution of problem (3) for the test 

case under consideration. 

 

 
Figure 2: Scaled sensitivity coefficients along the spatial domain, x , at 10t  . 

 

3 4Z K   

1Z    

2 2Z K   
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Figure 3: Simulated experimental data (red dots) for transient measurements of a sensor located at 

0.5x  . The black curve shows the numerical solution employed to simulate the experimental data. 

 

In the present work, for each one of the three measurement positions considered ( 0.5mx  , 0.4mx  , 

and 0.45mx  , named case 1, 2 and 3, respectively), 500M   virtual noisy experiments have been 

simulated employing 0.02e   in eq. (4), and for each simulated independent experiment, different 

values of 2K  have been employed, randomly obtained from a normal distribution with 310  mean and 
30.1 10  standard deviation (10% of the mean value), which means the 95% confidence interval for 

2K  is 3 30.8 10 ,1.2 10     . This information concerning 2K  is supposed to be obtained in the first 

step of the procedure herein proposed, with an experiment where the blocking process does not occur 

and the diffusion coefficient could be estimated. The goal here is to investigate how this uncertainty 

on the value of 2K  propagates into the estimates of   and 4K , in the presence of measurement 

errors, in the second step, now considering an experiment with anomalous diffusion and with this a 

priori information available for the parameter 2K . 

First, figure 4(a) illustrates the histogram plotted from the 500 values of 2K  employed in the 

simulations for case 1. For a sufficiently large number of simulations, this histogram approaches the 

exact normal distribution from which the values of 2K  have been sampled. In fact, figure 4(a) 

demonstrates that with 500 experiments it is already obtained a fairly good approximation of the 

distribution considered known for this distribution. In fact, the calculated 95% confidence interval 

from those 500 samples illustrated in figure 4(a) is 3 30.804 10 ,1.196 10     , which approaches very 

well its exact interval, which is 3 30.8 10 ,1.2 10     . Figures 4(b,c) depict the corresponding 

histograms for the estimates of the parameters   and 4K , respectively, obtained from the 500 

simulated noisy experiments. It should be noted that both the histograms for   and 4K  seem to be 

slightly asymmetric with respect to the mean. Whilst this can be a collateral effect of the 

approximation obtained with a limited number of simulated experiments, it can be due to the 

nonlinearity of the problem, which means that even if both the experimental errors and the assumed 

values of 2K  are normally distributed, the statistical distributions of the estimated parameters   and 

4K  are not necessarily normal. 
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 (a) (b) (c) 

Figure 4: histogram of (a) sampled values of 
2K ; (b) estimates of  ; (c) estimates of 

4K . 

 

Proceeding to the investigation of the influence of the measurement position on the reliability of the 

estimates, figure 5 shows the elliptic joint confidence intervals for the estimated parameters   and 

4K  for the three cases studied in this work: (a) case 1: 0.5mx  , (b) case 2: 0.4mx  , and (c) case 3: 

0.45mx  . A direct comparison of those three confidence regions is shown in figure 6, which, in 

agreement with the sensitivity analysis performed earlier, in fig. 2, show that the measurements 

performed at 0.5mx   produces the most reliable estimates, whereas the measurements performed at 

0.4mx   produces the least reliable estimates. It is interesting to notice that this effect is much more 

evident in the estimation of 4K : in the direct comparison of the results obtained with the three 

different measurement positions (fig. 6), it should be observed that the elliptic confidence region 

narrows much more in the vertical direction of the graph ( 4K ) than in the horizontal direction of the 

graph (  ). 

 

  
(a) (b) (c) 

Figure 5: Elliptic joint confidence region for   and 4K : (a) case 1; (b) case 2; (c) case 3. 

 

The influence of the measurement position on the reliability of the estimates is better quantified in 

table 1, which besides the mean estimates and confidence intervals for each case, also shows the ratio 

between the standard deviation and the mean of each distribution. Remembering that this ratio was 

10% in the assumed knowledge on 2K , it can be concluded that the uncertainties were not largely 

amplified into the estimates of   and 4K , noting that for case 1 their calculated ratios are 11.38% 

and 11.89%, which besides the uncertainty of 2K  also include the effect of the measurement errors. 

Nonetheless, if other less favorable measurement position is chosen (cases 2 or 3, for instance), these 

rations increase remarkably, especially for 4K , clearly illustrating the importance of the adequate 

choice of the experimental measurements employed for the inverse problem solution. 
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Figure 6: Direct comparison of the elliptic joint confidence regions for   and 4K   

estimated in cases 1, 2 and 3. 

 

Table 1: Estimated mean and 95% confidence intervals for   and 4K . 

Meas. position   100%







  5

4 10K   
4

4

100%
K

K




  

Case 1, 0.5mx   0.203 [0.154, 0.246] 11.38% 0.994 [0.764, 1.24] 11.89% 

Case 2, 0.4mx   0.201 [0.150, 0.250] 12.39% 1.01 [0.652, 1.35] 17.14% 

Case 3, 0.45mx   0.202 [0.152, 0.248] 12.00% 1.00 [0.678, 1.32] 16.00% 

5 Conclusions 

It has been investigated in this work the inverse problem formulation and solution related with a new 

analytical formulation for the simulation of the phenomena of anomalous diffusion. The inverse 

problem investigated does not allow for the simultaneous estimation of all parameters and a 

characterization procedure in two steps is proposed. The reliability of the anomalous diffusion 

parameters estimates is studied concerning the uncertainty in the experimental data as well as the 

propagation of error concerning the value of the diffusion coefficient, estimated in the first step. The 

inverse analysis was carried out for transient measured experimental data obtained with a single 

sensor, whose position was investigated with respect to the corresponding estimates obtained. The 

results show that the errors present in the inputs do not amplify significantly into the estimates of the 

anomalous diffusion parameters. Nevertheless, the measured data employed in the inverse problem 

solution may be chosen with care, since it affects remarkably the reliability of the estimates. 
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Abstract 

The pressure/rate deconvolution problem is formulated in the form of a linear Volterra equation of the 

first kind.  Besides its ill-posedness, the  problem is characterized  by multi-scale behaviour of 

solution and  discontinuous input data with large measurement errors, which do not allow one  to 

apply standard  regularizing algorithms for solving the Volterra equation. Therefore, in the most 

cases, algorithms constructed for this problem contain ideas of regularization and take into account a 

priori information  usually  in the form of certain conditions on solution, f.e., positivity, monotony or 

convexity (see Introduction). However, as it is known,  solution of the convolution problem satisfies 

the infinite system of inequalities. In this paper, first for this problem, we construct two effective 

algorithms, which generate approximate solutions satisfying all a priori constraints, prove the 

convergence of the methods, and discuss results of numerical experiments for noisy  input data.    

1 Introduction 

The pressure/rate deconvolution problem is described by the firs kind Volterra equation [1]  

 

                                     
0

( ) ( ) ( ), 0
t

Ag q t g d p t t Tτ τ τ ∆≡ − = ≤ ≤∫                                                (1) 

 

and arises in well test interpretation. Equation (1) follows from the Duhamel principle, which means 

that the measured pressure drop 0( ) ( )p t p p t∆ = −  is a convolution of the measured flow rate ( )q t , 

and the reservoir response function ( )g t , where ( ) ( ) / , ( )
u u

g t dp t dt p t= ,  is the constant-unit-rate 
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pressure drop. Here, 0p is the initial reservoir pressure (in undisturbed state of reservoir), ( )p t is a 

pressure measured somewhere in the well, for example, on the surface or at the bottom hole. The 

functions ( )g t and ( )
u

p t  are unknown and should be calculated from measured with noise ( )p t∆ and 

( )q t . The pressure/rate deconvolution problem attracts  the grate attention of researchers and 

reservoir engineers because the log-log plots of functions ( )
u

p t  and ( ) ( )v t tg t=  contain very 

important information about the wellbore/reservoir system. Namely, the first  parts of these curves 

characterize the wellbore storage, a type of the reservoir permeability can be extracted from the 

middle parts of the curves, and a type of the boundaries can be determined from their final   parts (see  

[2,3]).  

As it is known [4], under certain conditions onto the wellbore/reservoir system, the reservoir response 

function ( )g t satisfies the following a priori conditions: 

 

                                                 ( 1) ( ) / 0, 0,1, 2, ...k k kd g t dt k− ≥ =  .                                                 (2) 

 

It should be noted that in all numerous works (see a survey in [5]) devoted to solving this problem, 

one usually used not more than three relations from (2): 

                                                   ( ) 0, ( ) 0, ( ) 0g t g t g t′ ′′≥ ≤ ≥ .                                                      (3) 

 

In particular, constraints (3) were taken into account in [5], where two new regular algorithms were 

constructed. In both algorithms, the desired solution was represented as a  decomposition into a 

system of specific base functions, which satisfy constraints (3). 

In the work [6], very interesting idea was suggested that is based on transition from the linear equation 

(1) to the nonlinear statement in the form 

 

                                              
ln

( )
( )( ) ( )

t
z

p tA z q t e e d
σ σ σ

−∞
∆= − =∫                                                     (4) 

 

by replacements of the variables and functions: 

 

                                                      ln , ( ) ln( ( ))z gσ τ σ τ τ= = ,                                                         (5) 

 

 and, by this, the rather stable algorithm was constructed.  These replacements allow one to decrease 

influence of different scales in the solution and make the condition  ( ) 0g t ≥  to be satisfied. The 

further development of this approach was done, f.e., in [3,7].  

The specific features of the pressure/rate deconvolution problem and sensitivity of the solution to 

noise in the input data stipulate application of the regularization technique. For example, the methods 

presented in [5] for approximation of solution of equation (1) include the Ivanov quasi-solutions 

algorithm and the Tikhonov regularization procedure together with an algorithm of gradient type for 

solving the regularized minimization problem with constraints (3). 

In this paper, the same regularization algorithms are applied to  solving equation (1), but instead of 

(3), the infinite system of  constraints (2) is used to construct approximate solutions satisfying all a 

priori constraints (2). It is attained by expansion of the sought for solution on a system of specific 

base functions, for which all a priori constraints are automatically satisfied. Besides, the regularized 

minimization problem, which should be solved, has the simplest constraints in the form of non-

negativity of the coefficients.  
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The paper has the following structure . Investigation of the convergence of the algorithms based on 

the quasi-solutions method and the Tikhonov regularization scheme is given in Section 2. Section 3 is 

devoted to numerical experiments on solving equation (1) for noised flow rate and pressure drop. 

2 Regular algorithms using all a priori information on solution 

2.1 Quasi-solutions method 

Assume that the operator A in (1) acts from 2[0, ]L T  into 2[0, ]L T .  The operator A  is 

compact on this pair of spaces. Hence, the inverse operator 1A−  is discontinuous It means that 

problem (1) is ill-posed and its solution is very sensitive to errors in the  input data 

( ), ( )q t p t∆ . Real input data have errors of measurements, i.e., instead of the exact data q(t) 

and ∆p(t), the approximate functions ( ), ( )q t p tε δ∆  are given, for which the following  

estimates hold: 

 

                                             
2 2

|| || , || ||
L L

q q p pε δε δ− ≤ ∆ −∆ ≤ .                                              (6) 

 

In the sequel, we denote Aε  as the operator defined by relation (1) where q  is replaced by qε .  

Let us consider the following system of functions: 

 

                               1

0 1
( ) , 1,2,..., 1, , 0kt

k k kk
h t e k h

λ λ λ
∞− −

=
= = = = ∞ >∑ .                              (7) 

 

It is known [8] (see Theorem 3.3.5) that system (7) generates a complete system in the space 

2[0, ]L T . Hence, any function 2[0, ]g L T∈  can be approximated by a linear combination of 

functions from (7), i.e., 

 

                                             
0

( ) lim k
n t

n kk
g t c e

λ−

→∞ =
= ∑ .                                                        (8) 

 

Note that for every  0,1,2,...k =  , ( ) k t

k
h k e

λ−=   satisfies all constraints (2). 

Lemma 1. Let 
0

( ) k
n t

kk
g t c e

λ−

=
=∑ , where 0,

i i j
λ λ λ> ≠ as i j≠ , and for g the infinite 

system of inequalities (2) is satisfied, i.e., 

                                                 ( )( 1) ( ) 0, 0,1,2,....m mg t m− ≥ = . 

 

 Then for all  1,2,...,i n= the coefficients  0
i

c ≥ . 

Proof.  Assume the contrary that there exists a coefficient 0.
k

c <  Then for  
k

m

m
t

λ
=  and  the 

sequence 
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( )( 1) ( )
m

m m

m m

k

e
g t

λ

 
− 

 
,       0,1,2,...m = we have the following relations 

( ) ( ) ( )
1 (1 ) 1( )

0 0 0 0

( 1) ( ) ( 1) ( ) ,
i

kii m i i

k

m m n n n nm mmt z m zm m m m m

m i i i i i i im m
i i i ik k

e e
g t c e c e c z e c z e

λ

λλλ

λλ
λ λ

−− − −

= = = =

− = − − = = =∑ ∑ ∑ ∑  

 

where 
k

i
iz

λ

λ
= . The function 

z
ze

−1
 has maximum at 1=z . For the numbers ki ≠  and 1≠iz , the 

inequalities 10
1 << − iz

iez  are valid. If  ki =   then 1=kz  and  
1

1kz

k
z e

− = . It means that 

 

                                                 ( ) 0)()1(
,1

1)( <→+=−
∞→

≠=

−∑ k

m

k

n

kii

mz

iim

k

m

m

mm
ccezc

e
tg i

λ
, 

 

therefore, there exists m  such that  
( )( 1) ( ) 0m m

m
g t− <  for m m≥ . It contradicts to the conditions of 

Lemma 1. 

Now because of Lemma 1, we may assume that the exact solution ˆ ( )g t   of equation (1) can be 

represented as 

 

                                                        
0

ˆ ˆ ˆ( ) , 0k
n t

k kk
g t c e c

λ−

=
= ≥∑ ,                                                     (9) 

 

Then it allows us to find  approximate solutions of equation (1) by the quasi-solutions method 

[9] 

 

                     2

0 0
min{|| || : , 0 , }

n n

k k k kk k
A g p g c h с c cε δ = =

− ∆ = ≤ ≤∑ ∑ ,                            (10) 

 

where 
0

ˆ,k
nt

k kk
h e c c

λ−

=
= ≤∑ . 

      

Theorem 1. Let equation (1) be uniquely solvable and ˆ ( )g t  be its solution represented by (9). 

Let approximation conditions be satisfied. Then there exists a solution , ( )g tε δ of the 

minimization problem (10) and the uniform convergence of functions and its derivatives 

convergence holds: 

 

                                   
( ) ( )

, 0 [0, ] ,
ˆlim max | ( ) ( ) | 0, 0,1,2,...m m

t T g t g t mε δ ε δ→ ∈ − = = ,                              (11) 

 

Proof. The set represented in the form 

 

                                          
0 0

{ ( ) : ( ) , 0 , }k
n nt

k k kk k
Q g t g t c e c c c

λ−

= =
= = ≤ ≤∑ ∑  

 

is the uniformly bounded and closed set of monotone functions g .  Therefore, Q  is a compact 

set. From this fact and continuity of the operator Aε , it follows that in problem (9) there exists a 
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minimizer ,gε δ . Completion of the proof for the convergence of , ,0
( ) k

n t

kk
g t c e

λ
ε δ ε δ

−

=
=∑  to the 

exact solution 
0

ˆ ˆ( ) k
n t

kk
g t c e

λ−

=
=∑  in the space 2[0, ]L T  can be performed similarly as in [5]. It 

implies the convergence of the coefficients for any ,
ˆ:

k k
k c cεδ →  as , 0ε δ → . From this fact it 

follows that relations (11) are  valid. 

2.2 Tikhonov regularization technique       

Numerical experiments with using a priori constraints (3) had shown [5] that for large errors in the 

flow rate ( )q t  and pressure ( )p t , the Tikhonov regularization method with the non-quadratic 

stabilizing functional  

 

                                                   
2

3[ ] [ ( ) / ( )] , 0
T

a
g g g d aτ τ τ τ′′Ω = >∫                                           (12) 

 

takes better into account the multi-scale structure of solution and gives more appropriate results. 

Now assuming that relation (9) is fulfilled, consider the regularization method in the form 

 

              
2 0 0

min{|| || [ ]: 0 , 0 , }k
n nt

L k k kk k
A g p g b g c e c c c

λ
ε δ

−

= =
−∆ + Ω < ≤ = ≤ ≤∑ ∑              (13) 

 

where  
0

ˆ
n

kk
c c

=
≤∑  and, in contrast to (12), the stabilizing functional is expressed by the formula 

 

               
2

3/ 2 1/ 2 3/ 2 2[ ] [ ( ) / ( ) ( )/ ( ) ( ( ) / ( )) ] , 0
T

a
g g g g g t g g d aτ τ τ τ τ τ τ τ τ′′ ′ ′Ω = − + >∫ .             (14) 

 

Let us explain why such a type of the stabilizer is taken. As it was noted in Introduction about the 

transition from linear equation (1) to nonlinear problem (4), the replacements (5) are used. Therefore, 

we need to pass from the interval [0, ]T   to one [ , ]a T ,  where 0a > . Note that in real computations, 

usually ln 0.001a > . 

Now, if for the nonlinear deconvolution problem the stabilizing functional is defined by the traditional 

way [10] 

 

                                                              
2ln

ln
[ ] [ ( )]

T

a
z z dσ σ′′Φ = ∫                                                         (15) 

 

and in (15) the inverse replacement is carried out, then we arrive to functional (14). 

Theorem 2. Let the premises of Theorem 1 be fulfilled. Then for 0α >  problem (13) is solvable, 

possibly in a non-unique way. If 
2( , ) 0, ( ) / ( , ) 0α ε δ δ ε α ε δ→ + →  as , 0ε δ → , then the extreme 

functions 
( , )gα ε δ

 converge to the exact solution ĝ  in the space [ , ]C a T  together with their 

derivatives, i.e.,  

                                    
( , )

, 0 [ , ]
ˆlim max | ( ) ( ) | 0, 0,1,2,...

m m

t a T m m

d d
g t g t m

dt dt

α ε δ
ε δ → ∈ − = = .               (15) 
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Proof.  Modifying a little the technique of the proof from [5] (see Theorem 5 there), one can prove 

solvability of problem (13) and the convergence of the minimisers 
( , )gα ε δ

 

 

                        
( , ) ( , )

, 0 [ , ]
ˆ ˆlim max {| ( ) ( ) |, | ( )/ ( ) / |} 0t a T g t g t dg t dt dg t dt

α ε δ α ε δ
ε δ → ∈ − − = .              (16) 

 

Taking into account that the functions  
( , )gα ε δ

, ĝ  have  expansions of  form (9), we obtain that  (16) 

implies  

                                        
( , )

, 0
ˆlim | | 0k kc c

α ε δ
ε δ → − =     for any  0,1, 2,... .k = ,  

 

hence, also the relations (15) hold. 

3 Numerical solution of the deconvolution equation 

3.1 Discrete approximation and solving algorithms 

To solve equation (1) numerically, we need to use discrete approximation of the integral operator A . 

For this let us take a collocation method  with a grid 1{ }m

i i
t = , where it  are time points of pressure 

measurements in the well. A grid 
1

0{ }n

j jτ −

=  for the variable τ  is constructed  in the form: 

 

                                     0 1 0ln ln (ln ln ), 0,1, ..., 1
1

j n

j
j n

n
τ τ τ τ−= + − = −

−
, 

 

i.e., the grid is uniform in the logarithmic scale. As above, the desired solution is presented as 

0
( ) j

k

k jj
g c e

λ τ
τ

−

=
=∑ , where the parameters 

j
λ  are chosen from the relations  j je

λ τ
γ

−
=  for a certain 

0γ >  (in numerical experiments 0.01γ = ). 

The integral operator A  of problem (1) is approximated by the following relations: 

 

00 0
( ) ( ) ( ) ( ) , 1,2,...,

i i
j

t tkn k n

mk i i j ij
A c q t g d c q t e d i n

λ τ

ε ετ τ τ τ τ
−

=
= − = − =∑∫ ∫ , 

 

where 0 1( , ,..., ) ,
T n

kc c c c qε=   is the piecewise linear function constructed  on the grid 1{ }n

j jτ =  with 

values ( )
n

iqε τ . Now problem (10) is reduced to the minimization problem    

 

                                  
2

2

0
min{|| || : 0, }m

k

mk j jl j
A c p c c c

=
− ≥ ≤∑ ,                                               (17) 

 

where  
2

2 2

1 01
|| || , , 0, ( )m

m

i i i i i i il i
p p t t t p p tεµ µ −=

= = − = = ∆∑ . Problem (17) is resolved by the 

method of conditional gradients ([11], Chapter 5, Section 4). 

348



                                                    ICIPE2014, 12-15 May 2014, Krakow, Poland   

 

 

 

Remark 1. Under large errors in input data ( ( )q tε  up to 15 % and ( )p tδ∆ up to 5 %) sometimes for 

the quasi-solutions method necessity arises in an additional correction of the function ( )q tε . It can be 

done by a special procedure described in [5]. 

Remark 2. Discrete approximation in the Tikhonov method is carried out like the quasi-solution 

method. After discretization of (13),  the minimization problem can be solved by the conjugate 

gradient method [11]. 

3.2 Numerical experiments 

The quasi-solutions algorithm was tested for synthetic data (Figure 1) taken from the paper [5]. 

Functions ( )p t  and ( )q t  were given on a grid with 5% levels of noise. In this case the exact solution, 

i.e., the pair ( ( ), ( ) / ln )
u u

p t dp t d t is known. Therefore, it allows us to estimate quality of numerical 

solution obtained by the constructed algorithm. In Figures 2 and 3 the results of numerical solution of 

equation (1) are presented on log-log scale for exact data and pressure ( )p t with error 5% 

respectively. In Figure 4 the numerical solution is shown for input data ( ), ( )p t q tδ ε  perturbed by 5% 

and 1% noise correspondingly. In contrast to [5] we have obtained more smooth solution that is 

important for well test interpretation. Accuracy of numerically retrieved solution for exact and noisy 

data is quite satisfactory. For input data ( ), ( )p t q tδ ε  up to 5% level of noise and noiseless 0p  the 

quasi-solutions method gives sufficiently smooth approximate solution but we can see that the 

solution is rather sensitive to errors in input data.  To obtain a reasonable numerical solution for 5% 

noise in 0 , ( )p p tδ  and 15% nose in ( )q tε  it is required to use the Tikhonov method, which provides 

the greater regularizing effect. Besides, in this situation we need in additional correction of the 

function ( )q tε  (see [5]). Thus, the numerical experiments  showed the efficiency of the proposed 

methods. It is achieved by using all a priori information on the desired solution and choosing a special 

basis of smooth functions  ( ),
i

h t  which satisfy the infinite system of inequalities (2). 

 

 
Figure 1: Synthetic data for pressure and flow rate. 
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Figure 2: Solution by the quasi-solutions method with exact p(t) and q(t). 

 

 
Figure 3: Solution by the quasi-solutions method with 5% error in p(t) and exact q(t). 

 

 
Figure 4: Solution by the quasi-solutions method with 5% error in p(t) and 1% in q(t). 
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Abstract 

An issue of the inverse heat conduction methodology in solution of a certain parameter identification 

problem has been discussed. The problem itself concerns determination of the thermophysical 

properties of a thin layer coatings by the laser flash experimental investigation of the thermal 

diffusivity. The analysed model coating was a flake graphite thin layer conventionally applied in the 

laser flash experiments for the specimen surface emissivity enhancement. The paper presents 

a methodology developed for a three layer specimen studies. The procedure assumes identification of 

the out of plane layer diffusivity from the inverse problem solution. The flake graphite heat capacity 

and density are supposed to be known from other experiments. The procedure utilises a finite element 

method model for the direct problem analyses and multi-parametrical identification using Levenberg-

Marquardt algorithm. The presentation is restricted to the numerical modelling only. Typical results of 

the performed numerical studies illustrate performance of the developed procedure.  

1 Introduction 

Advancements of last two decades in laser excitation techniques and contactless measurements of the 

temperature resulted in development of robust and accurate thermal properties measurement devices 

[1]. Particularly the development of the high power impulse lasers and sensitive infrared signal 

detectors helped to take full advantage of the simplicity of procedure introduced by Parker [2], [3]. 

Application of a modern flash apparatus involves radiative excitation and contactless measurements of 

the specimen temperature changes in course of the experimental study [4]. In order to improve both 

the thermal excitation and the thermal response infrared signal recording conditions special 

procedures of the specimen surface emissivity enhancement are usually applied. Typically a flake 

graphite coatings are utilised. Although the standard absorbing graphite layer is extremely thin, its 

presence still influences the thermal diffusivity investigation result. Because of that several studies 

have been performed aiming to determine the final effect of the layer existence [5, 6]. However, the 

ICIPE2014 8th International Conference on Inverse Problems in Engineering, May 12–15, 2014, Poland
Eds: I. Szczygieł, A.J. Nowak, M. Rojczyk
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issue of the thermal properties of the layer material itself is still being open. In the course of a present 

study a methodology of the thin coating layer thermal properties (TP) determination has been 

developed. The flake graphite layer density and the heat capacity are determined in complementary 

measurements. The thermal diffusivity is identified applying results of a laser flash experiments 

performed on a three layer specimen. The identification method involves the inverse heat conduction 

problem solution. The present paper covers the issue of the inverse problem formulation [7], solution 

of the associated direct heat conduction problem applying FEM Comsol software and multi-

parametrical identification using Levenberg-Marquardt algorithm. The identified parameters - 

properties are: the planar heat source density, the layer material out of plane thermal diffusivity, and, 

finally, the heat transfer coefficient for the convection heat losses from the investigated specimen. 

Typical results of the performed numerical studies are shown in the paper. These results illustrate 

performance of the developed algorithm. The algorithm itself will be applied in evaluation of the 

directional, out of plane thermal diffusivity of the Graphite 33 coating from the laser flash 

experimental data. 

2 Problem definition 

Transient heat transfer in solids is govern by a Fourier equation in a form  

VqTk
T





)(cp




 
(1)

 

Where  - material density, cp- heat capacity at constant pressure, T - temperature, k - thermal 

conductivity of a material,  - time and qV stands for external heat sources.  Assuming lack of internal 

heat sources (qV = 0) above equation can by transformed into following relation: 

TaT
c

k

p








T

 

(2) 

 

where a - is a thermal diffusivity of  a material. This relation assumes temperature independent values 

of thermophysical properties. Accounting for it most of the thermophysical property investigation 

procedures were developed, in that range several methods for the thermal diffusivity studies. 

However, it is a common practice to apply the extended relation  

)(c)(

)(
)(

p TT

Tk
Ta




 
(3)

 

for the experimental data processing [1]. 

The thermal diffusivity of the material in the flash method proposed by Parker is determined from the 

thermal response measured at back surface of the sample exposed to impulse excitation at the front 

surface (Fig.1.a). The analysis of the temperature response of the sample leads to simple relation 

between the thickness of the sample l, the time at the value of the temperature reach half of its 

maximum value t0,5 and the thermal diffusivity of the material:   

5,0

2

238,1

t

l
a


 ,      (4) 

Nowadays, however more sophisticated models are utilised for analysis of the sample thermal 

response. In order to increase the accuracy of the measurements the effect of finite laser pulse 

time [3], radiation heat losses and the sample internal structure needs to be included [8]. Therefore 

a variety of models have been developed in a course of thermal diffusivity investigation by the flash 

method. Moreover, when processing the data many parametric estimation methods are usually used. 
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a) b) 

Fig.1. Scheme of the analysed laser flash experiment performed on the graphite coated specimen (a) and 

typical system response (b; abscissa and ordinate data in arbitrary units)  

 

Although modern laser flash apparatus provide robust results in investigations of thermal diffusivity 

of most materials, special sample treatment procedures are necessary for samples with highly 

reflective surfaces. Therefore, it is a common practice to improve the thermal excitation and infrared 

signal recording conditions of the thermal response by specimen surface emissivity enhancement. 

Typically front and rear surface of the sample is covered with flake graphite coating [4]. The 

thickness of typical sample ranges from 5 to 20 mm, whereas the thickness of typical absorbing layer 

does not exceed a two dozens of micrometers. Therefore the influence of thermal resistance of 

absorbing layer are usually assumed to be negligible. Nevertheless for highly conductive materials and 

for very thin samples the presence of additional layers influences the thermal diffusivity investigation 

result [5]. In scope of determination of this effect several researches have been performed. The 

interest of researchers has focused on determination of the thermal diffusivity measurement error, that 

the layer introduces, in correlation to sample thickness and thermal properties of investigated material. 

In order to minimise the error caused by the graphite layer, Lim et al. proposed the correction 

procedure based on three-layer model [6]. Although efforts to improve the measurement procedure of 

covered samples has been made, the issue of determination of thermal diffusivity of  the coating itself 

is still being open. 

Multi-layered samples are commonly used in determination of thermal properties of transparent or 

highly conductive materials by flash method. Typically two-layered  sample are utilised. The layer of 

investigated material is deposed on a layer of material of know thermal diffusivity. The unknown 

thermal diffusivity is determined form the experimental thermal response of the sample with use of 

mathematical model of heat transfer in two-layered samples exposed to surface impulse excitation  

[8]. In standard procedure the thickness of both layers is similar [4], [6].  

Unfortunately, due to a a huge disproportion between the thin layer thickness and the thickness of the 

base specimen the standard procedures of the two-layered samples data processing revealed to be 

ineffective for determination of thermal properties of a thin layer covering the sample. Therefore, an 

alternative methodology based on solution of inverse heat transfer problem was proposed.  

 

T  
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3 Method 

3.1 Inverse problem 

In the proposed methodology the thermal diffusivity of a thin layer is estimated by fitting of 

a numerical model response T  (Fig. 1. b) to the experimental data Y (Fig. 1. a). The solution of this 

inverse heat problem is based on the minimization of the ordinary least squares norm in a form: 

 



I

i

ii PTYPS
1

2
)()( ,    (2) 

where: S - is a sum of squares error, P - vector of unknown parameters, Ti(P) - estimated temperature 

at time ti, Yi – “measured” temperature at time ti. In order to simulate the laser flash excitation and 

convective heat transfer between the ambient and the sample it is necessary to know the planar heat 

source density q and the convective heat transfer coefficient k. Unfortunately, it is impossible to 

measure this parameters during actual experiment. Therefore, the multi-parametrical identification 

needs to be performed. The vector of unknown parameters of the model P=[k,h,q] is estimated by the 

Levenberg-Marquardt algorithm by utilizing the iterative procedure in the form: 

)]([)(])[( 11 nTnnnnTnnn PTYJJJPP    ,   (3) 

where: n - is a iteration number, μn - is a positive scalar named damping parameter, Ωn - is a diagonal 

matrix and J- is a matrix of the sensitivity coefficients in the form: 
T

T

P

PT
PJ 














)(
)(  ,     (4) 

Generally the inverse heat transfer problems are very ill-conditioned around the initial guesses used in 

the iterative procedure. This causes the oscillations and instabilities in the iterative estimation 

algorithms. Therefore, in order to damp this perturbations of the solution, in the Levenberg-Marquardt 

procedure the damping parameter μn is made large in the beginning of iterations and it is gradually 

reduced while the identification procedure advances. In the developed algorithm the stopping criteria 

of the estimation procedure is following: 
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k

ii

k PTYPS
1

2
)()(  ,    (5) 

 

where  - is a user prescribed parameter. 

 

3.2 Sensitivity coefficient analysis 

 

In order design optimum experiments and to estimate the influence of measurement errors it is 

important to analyse the sensitivity coefficients for each estimated parameter. The sensitivity 

coefficients are defined as a first derivative of the estimated temperature Ti with respect to the 

unknown parameter Pj  [7] 

j

i
ij

P

T
J




 ,      (6) 

For small values of the sensitivity coefficients and for their linear dependence the inverse problem are 

ill-conditioned. Therefore it is desirable to design the experiments in such a way that absolute value of 
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the sensitivity coefficients are as high as possible and they are linearly independent. This can be 

determined from the timewise variations of the sensitivity coefficients.  

The sensitivity coefficients for the analysed inverse heat transfer problem were determined as follows: 
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Fig. 2. Results of the sensitivity coefficient calculation in the time scale of the real experiment (a) and 

in the extended time scale (b) 
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Typical results of calculations are depicted in Fig. 2. Analysing the displayed data one can easily 

notice that the problem is well conditioned in view of the heat source planar density q estimation 

within almost the whole time interval. The conditioning of the layer thermal conductivity k 

identification is relatively good, as was expected, for the initial part of the “experimental”. However, 

proper estimation of the heat transfer coefficient h for this particular (q, k, h) parameter vector is 

possible only on the basis of the time extended thermal response analysis. Separation of domains of 

the nonzero values of the sensitivity coefficients foretells optimistically for the analyses of real 

experimental results that are planned to be performed. 

3.3 Numerical model for direct problem solution 

The numerical model was developed applying Finite Element Method (FEM)  Comsol/Multiphysics 

software. The sample in the flash method has a shape of a disc. Therefore it was possible to take 

advantage form the axial symmetry and simplify the geometry of the model. The axisymmetric 2D 

model of a three layer specimen was developed accounting for real specimen dimensions in the Heat 

Transfer module. Since in the experiment there is strong temperature gradient in the sample between 

the top and the bottom surface and one direction of the heat transfer dominate, the structural mesh in 

all domains was chosen (Fig. 3.).  The thermophysical properties  of the graphite and copper layers the 

subdomains were set as shown in Table 1. 

 
Fig. 3. Axisymmetric geometry of the analysed multilayer specimen - dimensions are indicated 

in [mm]. The density of the horizontal meshing is equal for all three domains. In the vertical direction 

all there domains are equally subdivided for 10 elements. 

 

Table 1. The assumed values of the thermophysical properties of the analyzed multilayer specimen 

Subdomain 
Density 

][ -3mkg   

Specific heat 

][ 11 KkgJ  pc  

Thermal conductivity 

][ 11 KmW  k  

Cooper – basic 

middle domain 
8900 385 400 

Graphite – coating 800 700 0,1 ; 1; 10 
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The following boundary conditions was set: axial symmetry on boundary simulating the symmetry 

axis of the disc sample and heat flux condition on three other boundaries in order to simulate 

convective heat transfer between the sample and the ambient fluid. Additionally, the laser flash 

excitation was simulate the on the bottom surface of the sample with the Inward heat flux condition. 

The time of the surface excitation was set to be equal to the time of laser pulse in real experiment. 

Thin thermally resistive layers boundary condition was set on the internal boundaries between the 

graphite and the cooper subdomains in order to simulate the thermal contact resistance. The numerical 

solver was set to follow strictly the assumed time steps.  

3.4 Procedure of the inverse procedure testing    

In order to validate the performance of the algorithm the experimental data was simulated by 

disturbing the numerical model data. The white Gaussian noise was added the temperature response of 

the FEM model. The disturbed data simulated the input experimental data Y of the algorithm. The 

performance of the algorithm was tested for different set of parameters of the simulated experimental 

data to be estimated and for different initial guesses. Different levels of the Signal to Noise Ratio 

(SNR) ranging from 5 to 60 dB was tested.  

4 Results and discussion 

The developed procedure of parametric estimation was tested for several sets of the assumed 

thermophysical parameters of the analyzed system and for several different amplitudes of the imposed 

noise. Typical results in the form of three selected tests outcome are shown in Table 2. These tests 

were conducted applying a 30 dB SNR noise imposed onto simulated thermal response signal (comp. 

Fig. 1.b). A supplementary illustration of the data fitting result is provided in Fig. 4 while the 

evolution of the Levenberg-Marquard iteration procedure result in Fig. 5. 

As was expected, in the analyzed time scale of the input data the procedure proved to be effective in 

estimation of the heat flux density and the thermal conductivity of the model graphite layer. This does 

not concern the heat transfer coefficient. However, this parameter is not of a primary importance in 

view of the planned experimental investigations.  

Concluding the discussion it is worth to mention that the algorithm has proved to be effective in 

estimation of the layer thermal conductivity ranging for two orders of magnitude. The expected value 

of the transversal component of  the flake graphite thermal conductivity seems to be much lower than 

that reported for pyrolitic graphite (comp. eg. [9] and [10]). According to the available data (comp. 

e.g. [6]) it should be comprised within the interval of the analyzed thermal conductivity values.  

 

Table 2. Comparison between the assumed parameter values and those obtained from the inverse 

problem solution when analyzing the Gaussian white noise affected “laser flash” response data 

 

 Direct problem - assumed Inverse - initial guess Inverse - results 

  k           h          q  k0,        h0,     q0 k_est             h_est      q_est 

Test 1  k=1,       h=5,    q=9107 k0=10,  h0=5, q=4107  k_est=0.997, h=4.67,  q=8.90107 

Test 2 k=0.1,    h=5,    q=9107 k0=10,  h0=5, q=4107 k_est=0.1,     h=5,       q=8.29107 

Test 3 k=10,     h=7.5, q=9107 k0=0.1, h0=5, q=5107 k_est=9.4,     h=5,       q=8.98107 
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b) 

Fig. 4. Typical data fitting result of the Test 3 (see also Table 2): a -comparison between the model 

noisy signal data (indicated by blue coloured points; the signal to noise ratio was equal to 30 dB) and 

the initial guess (red line), b - iillustration of the estimation result 
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b) 

Fig. 5. Evolution of the estimated parameters at the beginning of the iteration procedure (a) and 

illustration of the thin layer thermal conductivity k and the heat transfer coefficient h oscillation for 

the increased iteration number (b) 
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5 Summary 

In the course of a present study a methodology of the thin coating layer thermal properties (TP) 

determination has been developed. The procedure has been designed for the flake graphite studies. 

The layer material density and the heat capacity should be determined in complementary 

measurements. The thermal diffusivity is identified applying results of a laser flash experiments 

performed on a three layer specimen. The identification method involves the inverse heat conduction 

problem solution. The present paper has covered the issue of the inverse problem formulation, 

solution of the associated direct heat conduction problem applying FEM Comsol software and multi-

parametrical identification using Levenberg-Marquardt algorithm. The identified parameters have 

been: the planar heat source density, the layer material out of plane thermal diffusivity and the heat 

transfer coefficient for the convection heat losses from the investigated specimen. Typical results of 

the performed numerical studies are shown in the paper. This results illustrates performance of the 

developed algorithm that will be applied in ongoing investigations.   

The algorithm has proved to estimate the selected parameters well. It is also worth to notice that the 

combination of the FEM model and multi-parametrical identification in one algorithm opens up 

possibilities to estimate large variety of parameters.  

The developed procedure will be used to determine the thermal diffusivity of thin graphite coatings 

deposed on a sample form a laser flash experimental data. 
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Abstract
Aircraft have become increasingly costly and complex. Military and civil pilots and engineers have used
flight simulators in order to increase the security through the training of crew. It is necessary to calibrate
the simulation for simulators to have good adherence to reality, that is, to identify the parameters that
make the simulation as close as possible to the real dynamic. After determining these parameters, the
simulator will be ready to be used in human resources training or assessing aircraft. Parameter identi-
fication characterizes the aerodynamic performance of the aircraft and can be formulated as a problem
optimization. The calibration of a dynamic flight simulator is achieved by a new meta-heuristic: Multiple
Particle Collision Algorithm (MPCA). Preliminary results show a good performance of the approach
employed.

1 Introduction

The dynamics of flight are critical for aircraft design, looking at the adaptation of automatic control sys-
tems and flight simulators. Identification techniques applied to dynamics flight has had an improvement
in the increasing availability of faster computers.

The identification of parameters methodology has various applications areas (eg astronomy, aerospace,
economics, biology, electrical, geological, etc.) [1, 2, 3]. The strategy to adjust the unknown parameters
in order to have the best fit of a mathematical model of the phenomenon with the observations. Tools
and techniques of identification have evolved to match the complexity and the increasing need for cor-
rection and precision in the results. This methodology is more accurate than the corresponding values

ICIPE2014 8th International Conference on Inverse Problems in Engineering, May 12–15, 2014, Poland
Eds: I. Szczygieł, A.J. Nowak, M. Rojczyk
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predicted by other methods such as analytical and numerical differentiation [4, 7]. Thus, identification
of parameters has become a significant tool for applications such as model validation, handling qualities
evaluation, control law design, and flight-vehicle design and certification [6].

Specifically for helicopter parameter estimation, Hamel and Kaletka [8] presented a general vision of the
progress in this field up to 1997 and Padfield [5] described a comprehensive flight dynamic theoretical
model, flight qualities criteria development, flight test techniques, and several results of this research in
the United Kingdom.

It is important to notice that most works use local optimization algorithms based on gradient search
methods such as Gauss-Newton and Levenberg-Marquadt methods for finding a local minimum of the
prediction error function at the system output. Concerning the use of global optimization algorithms and,
more specifically, stochastic algorithms (e.g. genetic algorithm (GA)) have been used by Hajela and Lee
[9] in rotor blade design, by Wells et al. [10] in the acoustic level reduction rotor design, and by Zaal et
al. [11] in the estimation of parameters multichannel pilot models, among others.

Regarding helicopter system identification techniques, very few articles have used GA for global opti-
mization of a cost function based on the prediction error. In this framework, one can cite Cruz et al.
[14, 15] in the longitudinal mode system identification of the Twin Squirrel helicopter and Cerro [17] in
the identification of a small unmanned helicopter model.

Thus, parameter identification associated with the aerodynamic performance of the aircraft can be formu-
lated as an optimization problem. In this paper, a new meta-heuristics, named multiple particle collision
algorithm (MPCA) [12], was applied to the calibration of a dynamic flight simulator [13]. The MPCA
optimization algorithm was inspired from some typical phenomena inside of nuclear reactors during
the neutron travel: absorption and scattering of multiple particles. The results obtained with MPCA are
compared to the ones obtained by Cruz [13], where a GA was used to find the parameters.

2 Parameter Identification Methodology

The methodology for the identification of parameters used in this work is the well-known Quad-M,
proposed by Jategaonkar [19]. This methodology takes into account the main elements of rotorcraft
system identification, including the rotorcraft excitation maneuvers, the aerodynamic data measurements,
the mathematical model of the helicopter equations of motion, and the parameter estimation methods
used to minimize the predicted output-error between the model and the real data, as shown in Figure
1. Here it is important to notice that the method used was MPCA. Each one of these elements will be
discussed below.

2.1 Maneuver

The dynamic response and results from the application of inputs such as pulse, step, doublet, multistep,
sinusoidal, 3-2-1-1, among others. Thus, a wide variety of maneuvers can be specified. We considered
the following basic principle in identification systems: the data records of the flight test must contain
the information of the dynamic characteristics to be obtained in the model [13]. In this work, only the
sinusoidal frequency input will be used.
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Figure 1: Adaptation Quad-M Methodology.

2.2 Measurements

The tested helicopter was equipped with the Aydin Vector Data Acquisition System (AVDAS) PCU-816-
I, ATD-800 digital recorder, this system measures a total of thirty-five different parameters. Some of
the measured data channels include fuel quantity in each tank, nose boom static and dynamic pressures,
external stagnation temperature, aerodynamic angle of attack (α) and sideslip (β), roll, pitch, and yaw
rates (p, q and r, resp.), load factors, longitudinal (θ) and lateral (φ) body attitudes, heading, collective,
longitudinal and lateral cyclic, and pedal command deflections (δc, δb, δa and δp, resp.) .

The Earth axis speeds (u, v, w) are obtained with the aid of a Z12 Differential Global Positioning System
DGPS, from Astech, whose antenna is fixed in the top of the vertical fin. The DGPS and AVDAS data
synchronization is made by inserting a simultaneous event in both systems. The DGPS data is represented
with the same AVDAS data sampling rate by means of linear interpolation procedure.

The wind direction and intensity are obtained comparing the body axis speeds with the aerodynamic
speed from the flight-test air data system, mounted on a nose boom, at trim conditions. Consequently,
the body axis speeds (u, v, w) are easily calculated adding wind vector to the Earth axis speeds [16].

2.3 Linearized Model Flight Dynamic

The helicopter equations of motion, deduced from the Newton second law for translational and rotational
movements are given by [20] and [21] as:

X = m(u̇− rv + qw) +mg sin θ (1)

Y = m(v̇ − pw + ru)−mg cos θ sinφ (2)

Z = m(ẇ − qu+ pv)−mg cos θ cosφ (3)

L = Ixxṗ− Izx(ṙ + pq)− (Iyy − Izz)qr (4)

M = Iyy q̇ − Izx(r2 − p2)− (Izz − Ixx)rp (5)
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N = Izz ṙ − Izx(ṗ− qr)− (Ixx − Iyy)pq (6)

where X, Y and Z represents the external force components (longitudinal, lateral and vertical); L, M and
N are respectively, the roll, pitch and yaw moments; and I() corresponds to the moments and product of
inertia of a rotating body. The kinematic relation for the pitch rate and roll rate about Y and X-axis are
written as:

θ̇ = q cosφ− r sinφ (7)

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (8)

The helicopter equations of motion are nonlinear, but a meaningful analysis can be employed by
converting them into linear differential equations, by considering only small perturbations on a trimmed
equilibrium point (represented by subscript 0) in the rotorcraft flight envelope. In matrix notation, a
linearized dynamical model is given by [13]:
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∆ẇ
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(9)

Therefore, Equation 9 may also be written as:

d

dt

[
Xl

Xd

]
=

[
Al C1

C2 Ad

][
Xl

Xd

]
+

[
Bl D1

D2 Bd

][
∆δl(t− τ)

∆δd(t− τ)

]
+ ẋbias (10)

where Xl and Xd represent the longitudinal and lateral movements. Therefore, the longitudinal move-
ment is expressed by:

dXl

dt
= AlXl +Bl∆δl(t− τ) + ẋbias (11)

Xl = [∆u ∆w ∆q ∆θ]T (12)

∆δl = [∆δb ∆δc]
T (13)

Values of interest for system identification are the elements of matrix A (stability derivatives), matrix B
(control derivatives), and τ the delays associated with the aircraft response. Furthermore, the addition of
tendency vector, xbias, is constant and unknown. This vector is introduced in the mathematical model to
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represent measurement errors and noise produced by transducers and instrumentation [18]. Let J(Ω) be
the cost function, given by:

J(Ω) =
n∑

i=1

‖Xobs
i −Xmod

i (Ω)‖22 (14)

Ω =

(
Xu

m
,
Xw

m
,
Xq

m
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Zw
m
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Zq
m
,
Mu

Iyy
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Iyy
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Mq

Iyy
,
XδB

m
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XδC

m
,
ZδB
m

,
ZδC
m

,
MδB

Iyy
,
MδC

Iyy
,

∆u̇bias,∆ẇbias,∆q̇bias,∆θ̇bias,∆uref ,∆wref ,∆qref ,∆θref , τc, τb) (15)

where n is the number of measurements.

2.4 Method: Multiple Particle Collision Algorithm

The cost function to be minimized is a function of the parameters of the dynamic model, such as the
helicopter aerodynamic stability and control derivatives, sensor bias, and sensitivities. Therefore, the
determination of a parameter vector Ω that minimizes the cost function given by Equation 14 can be seen
as an optimization problem and will be solved by a new meta-heuristics, named the MPCA.

MPCA is a meta-heuristics based on the canonical PCA [22]. This version uses multiple particles in a
collaborative way, organizing a population of candidate solutions. The PCA was inspired by the traveling
process (with absorption and scattering) of a particle (neutron) in a nuclear reactor. The use of the PCA
was effective for several test functions and real applications [23].

The PCA starts with a selection of an initial solution (Old-Config), it is modified by a stochastic pertur-
bation (Perturbation{.}), leading to the construction of a new solution (New-Config). The new solution
is compared (function Fitness{.}), and a decision is made on whether it can ou cannot be accepted. If the
new solution is not accepted, the scheme of scaterring (Scaterring{.}) is used. The exploration around
closer positions is guaranteed by using the functions Perturbation{.} and Small-Perturbation{.}. If the
new solution is better than the previous one, this new solution is absorbed. If a worse solution is found,
the particle can be sent to a different location of the search space, such that it enables the algorithm
escape from a local minimum [12].

The implementation of the MPCA algorithm is similar to PCA, but it uses a set with N particles, where
a mechanism to share the particle information is necessary. A blackboard strategy is adopted, where the
best-fitness information is shared among all particles in the process. This process was implemented in
Message Passing Interface (MPI), looking for application into a distributed memory machine [12]. The
pseudo-code for the MPCA is presented by Table 1.

3 Results

The computational results obtained with MPCA and GA are show in Figures 2-5. The GA used Matlab
Toolbox, and the MPCA was also implemented in Matlab R2001b. Computer tests were conducted under
Linux operating system, in an Intel Core I5 2.27 GHz. The sinusoidal maneuver is represented by δ and
the results presented take into consideration the average of 4 experiments with seeds generate different
random numbers and experimental data generating artificially. The parameters used are: 2 particles; 10
iterations (exploration). The stopping criterion used was the total number of iterations (30).
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Table 1: MPCA: psedo-code for the algorithm.

Generate an initial solution: Old-Config
Best-Fitness = Fitness{Old-Config}
Update Blackboard
For n = 0 to # of particles

For n = 0 to # iterations
Update Blackboard
Perturbation{.}

If Fitness{New-Config} > Fitness{Old-Config}
If Fitness{New-Config} > Best-Fitness

Best-Fitness = Fitness{New-Config}
End If
Old-Config = New-Config
Exploration{.}

Else
Scattering{.}

End If
End For

End For

Figure 2: Pitch Rate.

The solid curve corresponds to the real data obtained during the test, the dashdotted is the result of
identification produced by the GA and the results achieved by the MPCA are represented by the dotted
curve. The results show that especially for u and w there is a slight discrepancy between the measured
data and the data obtained by both algorithms. However, for high frequencies there is an improvement in
the identification.
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Figure 3: Vertical Velocity in Body Axis.

Figure 4: Longitudinal Velocity in Body Axis.

4 Conclusions

In this work, we compared two stochastic algorithms, GA and MPCA, for a helicopter parameter iden-
tification. The techniques were applied only in the estimation of the aerodynamic parameters of the
longitudinal motion. The problem is formulated as an optimization process. The algorithms (GA and
MPCA) were employed to address the solution of the optimization problem.

The results indicate that GA and MPCA present a good agreement, but it is a little bit better for MPCA
implementation. Further work is suggested to apply MPCA in lateral-directional dynamic mode and in a
more complex model which includes both longitudinal and lateral-directional dynamic modes.
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Figure 5: Pitch Attitude.
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[13] R.V. Cruz, Desenvolvimento de um Modelo Dinâmico para Simuladores de Helicóptero, Tese de
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Abstract 

The present work is concerned with the problem of structural damage identification built on the 
statistical inversion approach. Here, the damage state of the structure is continuously described by a 
cohesion parameter, which, in turn, is spatially discretized by the finite element method. The inverse 
problem of damage identification is then posed as the determination of the posterior probability 
densities of the nodal cohesion parameters. The Markov Chain Monte Carlo (MCMC) method, 
implemented with the Metropolis-Hastings algorithm, is considered in order to approximate the 
posterior probabilities by drawing samples from the posterior probability density function. With this 
approach, prior information on the sought parameters can be used and the uncertainty concerning the 
known values of the material properties can be quantified in the estimation of the cohesion 
parameters. The assessment of the proposed approach has been performed by means of numerical 
simulations on a simply supported Euler-Bernoulli beam. Different damage scenarios and noise levels 
were addressed and three different strategies were considered in the damage identification process.  

1 Introduction 

Structural damage identification and health monitoring are essential issues for determining safety 
reliability and remaining lifetime of aerospace, civil and mechanical structures. The technological and 
scientific challenges posed by damage identification problems yielded a great research activity on this 
subject within the scientific community [1]. Although different damage identification approaches have 
been proposed in the specialized literature, one may observe a special attention to the non-destructive 
ones built on the dynamic behavior of the structures. These ones, encompassing deterministic or 
statistical perspective, consider different types of data (modal parameters, time series, frequency 
responses) and distinct mathematical formulations and numerical algorithms for solving the 
corresponding inverse problem. 
 
Most prior works are built on the vibrational behavior of the structure, more specifically on the 
traditional modal analysis, being conceived within the general framework of Finite Element Model 
(FEM) updating methods [2,3]. Those methods are aimed at identifying structural damage through 
determination of changes in some parameters of a FEM of the structure in comparison to the known 
values in the undamaged scenario. Therefore, the basic idea of the vibration-based damage 
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identification approach is that the modal properties of the structure (frequencies, mode-shapes and 
modal damping) are functions of the physical properties (mass, stiffness and damping) and changes in 
these last ones, due to the presence of a damage, will be reflected in the modal characteristics, which 
can be measured and used to infer about damage location and severity.  
 
More recently, damage identification techniques based on time-domain responses have been proposed, 
allowing for the damage identification problem formulation in non-linear structures, highly damped, 
and systems with high modal density, situations in which the modal approach may be extremely 
cumbersome. In order to identify the FEM parameters, an objective function is formulated, given by 
the squared residues between the vibration data identified by modal testing and those computed from 
the mathematical model, and then minimized [4]. In most cases the ordinary least-squares norm is 
employed as objective function, and although very useful in many situations, it yields maximum 
likelihood estimates (with statistical significance) only if some hypotheses are valid [5,6]: (i) the 
measured data contain errors which are additive, uncorrelated, and follow a normal distribution with 
zero mean and constant standard deviation; (ii) only the measured variables appearing in the objective 
function contain errors (that is, in the model both the independent variables and the considered known 
parameters are exactly known); and (iii) there is no prior information regarding the values and 
uncertainties of the unknown (sought) parameters. For example, typical sources of uncertainties which 
are commonly neglected are the values of the material properties. 
 
In the present work, the damage state of the structure is continuously described by a cohesion 
parameter. The cohesion field is discretized by the finite element method and this spatial 
discretization is not necessarily coincident with that used for the displacement field. Therefore, the 
damage model adopted in the present work is different from that commonly adopted in the specialized 
literature, where the damage is supposed to be constant within a finite element of the structure. The 
damage identification problem is, then, formulated as an inverse problem where we seek to estimate 
the cohesion parameters. In this work, we use the statistical inverse approach [7,8]. The inverse 
problem of damage identification is then posed as the determination of the posterior probability 
densities of the nodal cohesion parameters. The Markov Chain Monte Carlo (MCMC) method, 
implemented with the Metropolis-Hastings algorithm, is considered in order to approximate the 
posterior probabilities by drawing samples from the posterior probability density function. 
 
The remainder of the paper is organized as follows. Section 2 presents all the mathematical 
formulation required for the definition of the problem of continuum damage identification in the time 
domain.  Hence, the continuum damage model and the vector of generalized response are presented in 
this section. Section 3 presents the formulation of the inverse problem of damage identification built 
on the statistical inversion approach. Section 4 presents the numerical assessment of the potentiality 
of the proposed damage identification approach applied on a simply supported Euler-Bernoulli beam 
for different damage scenarios and noise levels. Finally, Section 5 presents the concluding remarks. 

2 Direct problem formulation 

In the present damage identification approach, the damage state of the structure is continuously 
described by a structural parameter [0,1]  , named cohesion parameter [9]. This parameter is 
related with the connections among material points and can be interpreted as a measure of the local 
cohesion state of the material. If 1   it is assumed that all connections between the material points 
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are preserved and, therefore, there is no damage in the structure. If 0  , a local rupture is 
considered, since all connections between the material points are broken. 
 
In the present work, it is assumed that, during the vibration test, the internal forces within the structure 
do not suffice to cause the continuation of the damage process and, besides, that the damage affects 
only the elastic properties of the structure. Hence, for the special case of an Euler-Bernoulli beam, the 
stiffness matrix of a finite element is given by 
 

2 2

0 0 2 2

0

( ) ( )
( )

e
Tl

e x x
x E I dx

x x


 


 
e e

e N N
K       (1) 

 
where ( )e x  stands for the cohesion field within the element, 

0E  and 
0I  are, respectively, the 

nominal young modulus and the nominal area moment of inertia, ( )e xN  is the vector composed of the 
appropriate interpolation functions for the displacement filed, el  is the element length and T  is the 
matrix transpose operator.  
 
The present work considers a beam element with two degrees of freedom per node, so that the 
cohesion field, within an element, is interpolated by linear Lagrangian functions from its nodal 
parameters 1

e   and 2

e . It must be emphasized here that, the approach considered in the present work 
to continuously describe the structural damage differs from the ones presented in the specialized 
literature. The damage is generally supposed to be uniform within the damaged region, since it is 
associated with a classical parameter of the structure, generally the young modulus, which is uniform 
within a finite element. 
 
Therefore, after a spatial discretization by the finite element method and considering eq. (1), the 
equation of motion of a system with n  degrees of freedom is given by  
 

( ) ( ) ( ) ( ) ( )t t t t  Mq Dq K β q f         (2) 
 
where M , D  and ( )K β  are, respectively, the mass, damping and stiffness matrices of the structure, 
β  is the vector comprised of the nodal cohesion parameters, q  is the vector of nodal displacements, 
( )  represents the differentiation with respect to time and f  is the external excitation vector.  
 
In order to formulate the damage identification problem in the time domain, the vector of generalized 
displacement is defined as follows. Be m

iy  the vector comprised with the response, predicted by the 
model given in eq. (2), at the position ip : 
 

1 2( ) ( ) ( )
T

m m m m

i i i i Ny t y t y t   y        (3) 

 
where ( )m

i jy t  is the response, at the position ip , acquired at the time instant jt  and N  is the number 
of transient measurements that will be considered in the experimental procedure of the damage 
identification process. The vector of generalized displacement is, then, defined as: 
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where 
sm  is the number of positions where the response of the structure is measured. 

3 Inverse problem formulation and solution 

The associated inverse problem consists of estimating the cohesion parameters, 
i , 2,3,...,24i  , 

using the impulse response function of the mechanical system. It is considered to be available 
transient deflection measurements at 0.233x m , acquired with a 1 kHz sample frequency, after an 
impulse excitation at the same position. Synthetic experimental data m

Y  have been simulated by 
adding random noise, from a Normal distribution with zero mean and prescribed standard deviation, to 
the model predicted impulsive response of the structure.  
 
It has been considered three levels of experimental noise, which were computed considering the  
impulse response of the structure in the time interval of 10s and the following signal to noise ratios 
(SNR): 80dB, which represents a very low noise level, being primarily used to test the inverse 
problem implementation; 30dB which is a realistic level of noise for the experiment herein 
considered, and 20dB, which is related to very noisy measurements, and has been used to challenge 
the methodology. In all cases, it has been considered the presence of two local damages in the beam, 
one located at 0.5475x m  and the other at 1.2775x m , corresponding to 10i  , and 22i  , 
respectively. Both damages have been simulated with / 0.9oh h  , yielding 

10 22 0.729   . All the 
other nodes are considered undamaged and therefore 1.0i  . Since, due to damping effects, most of 
the information carried by the impulse response of the structure is retained in its beginning, only the 
first 125 measurements were considered in the damage identification process, i.e. 125N  . 
 
Assuming that the prior information can be modeled as a probability density ( )pr β , the Bayes’ 

theorem of inverse problems can be expressed as [7]: 
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where ( )post β  is the posterior probability density, ( )pr β  is the prior information on the unknowns, 

modeled as a probability distribution, exp( | ) Y β  is the likelihood function and exp( ) Y  is the 
marginal density and plays the role of a normalizing constant. Considering that the measurement 
errors related to the data exp

Y  are additive, uncorrelated, and have normal distribution, the likelihood 
function exp( | ) Y β , i.e. the probability density for the occurrence of the measurements exp

Y  given 
the model parameters β  can be expressed as [6]: 
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where W  is the covariance matrix of the errors related to the data m

Y , and m
Y  are the predicted 

deflections, at the same location and time instants as exp
Y , calculated by the model with the given 

values of the cohesion parameters, β . 
 
In this work we use Markov Chain Monte Carlo (MCMC) methods [7] in order to approximate the 
posterior probabilities by drawing samples from the posterior probability density function. In order to 
implement the Markov Chain we need a candidate-generating density, *( , )tq β β , which denote a 
source density for a candidate draw *

β  given the current state t
β . Then the Metropolis-Hastings 

algorithm [7,8], which is used in this work to implement the MCMC method, is defined by the 
following steps: 
 
Step 1: Sample a candidate *

β  from the candidate-generating density *( , )tg β β  
Step 2: Calculate 
 
 

* *

*

( | ) ( , )
min 1,

( | ) ( , )

t

t t
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g






 
  

 

β Y β β

β Y β β
     (7a) 

 
 
Step 3: If (0,1)U  , then 
 

1 *t β β         (7b) 
 
else, 
 

1t t β β          (7c) 
 
where (0,1)U  is a random number from an uniform distribution between 0 and 1. 
Step 4: Return to Step 1 in order to generate the chain  1 2, ,..., MCMCN

β β β . We should stress that the 

first states of this chain must be discarded until the convergence of the chain is reached. These 
ignored samples are called the burn-in period, whose length will be denoted by burn inN  . 
In the present work we have used a random walk process in order to generate the candidates, so that 

* t β β η , where η  follows the distribution q , which was defined as a normal density. In this case 
g  is symmetric and * *( , ) ( , )t tg gβ β β β , so Step 2 is simplified and eq. (7a) may be rewritten as: 
 

*( | )
min 1,

( | )t






 
  

 

β Y

β Y
       (7d) 

 
which can be directly calculated form eqs. (5) and (6). 
 
The main difficulty associated with this inverse problem solution is due to the large number of 
parameters being estimated ( i , 2,3,...,24i  ) and the choice of the step-size in the random walk 
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process (characterized by the standard deviation, ,g i , of the normal distribution g  associated with 
each parameter i ). If the step-size is too small the posterior density is explored very slowly, and the 
Markov chain takes long time to visit all parts of the density. When the step-size is increased, the 
coverage also increases, but if the step-size is too large the acceptance ratio of the candidates becomes 
too small. This acceptance ratio feature is associated with the sensitivity of the model predictions 
employed in eq. (6) to each one of the parameters, which can be rather different one from another, and 
is also associated with the covariance matrix of the experimental data: it’s intuitive from eq. (6) that 
for experimental data with higher noise the likelihood function is less sensitive to variations in the 
parameters. In this work we have considered three different strategies for the estimation of the 
cohesion parameters, 

i , which are described below: 
 
Strategy 1: the candidate generating normal density, g , in the random walk process of the 
Metropolis-Hastings algorithm, has the same standard deviation value, g , for all parameters. 
 
Strategy 2: after a prescribed number of states in the Markov Chain employing Strategy 1, large 
enough to achieve convergence of the chain, it is identified the most probable damage locations: if the 
mean of the last 1,000 states of the chain is less than a threshold value ( threshold 0.9   ), the point is 
considered as probably damaged. The Markov Chain is then reinitialized, being assigned two different 
standard deviations for the candidate-generating density, g , in the random walk process of the 
Metropolis-Hastings algorithm: d  for the cohesion parameters i  identified as probably damaged 
and nd  for the cohesion parameters i  identified as probably not damaged. 
 
Strategy 3: it is similar to Strategy 2, but instead of simply assigning different step-sizes for the 
cohesion parameters associated with identified probably damaged and undamaged locations, it is 
considered, for the identified undamaged locations, the use of a strong a priori information for the 
corresponding cohesion parameters: the parameters i  identified as probably undamaged have their 
value set as known a priori with 1.0i  , and the Markov Chain is reinitialized for exploring the 
posterior distributions of only the parameters associated with the damaged locations and their 
neighbor nodes. 
 

4 Results and discussion 

Considering the low noise level case (80dB), all three strategies described in Section 3 performed 
well, being able to accurately identify the damage locations and intensities. These results are not 
presented here for brevity. 
 
Considering the mild noise level case (30dB), employing the following step-sizes for the candidate-
generating density in Strategies 1, 2, and 3: 45.0 10   , 35.0 10d

  , 61.0 10nd   , the 
estimated 0( ) /h x h  profile (obtained from the estimated parameters i ) are presented in figures 1(a-c) 
for strategies 1, 2, and 3, respectively. It should be observed in these figures that all strategies were 
able to identify the damaged regions, being the most accurate results obtained by Strategies 2 and 3. 
The main error associated with the inferred posterior distribution associated with Strategy 1 is due to 
not converged and/or poor mixed chains. We highlight that due to the low chain convergence rate of 
Strategy 1, 100,000 states were used in the MCMC chain (being the first 20,000 sates just to achieve 
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convergence, and discarded as the burn-in period), whereas for Strategies 2 and 3 only 20,000 states 
were needed (the first 4,000 states discarded as the burn-in period), reducing significantly the 
computational cost. Table 1 summarizes the mean values and estimated 99% confidence intervals 
obtained for the damaged cohesion parameters, 

10  and 
22 , with the three strategies for this case. It 

should be observed that the Strategy 3 was the only one to accurately identify the 99% confidence 
region encompassing the exact value. The poorest estimates for the damaged cohesion parameters 
were obtained by Strategy 1. The Markov chains are illustrated in figures 2 (a-c), which depict the 
MCMC evolution for 

10  for the three strategies, respectively. 
 

 
 (a) (b)  

 
(c) 

Figure 1: Estimated 0( ) /h x h  profile for the 30dB SNR case with (a) Strategy 1; (b) Strategy 2; and 
(c) Strategy 3. 

 
 

Table 1: Summary of the results obtained for 10  and 22  for the 30dB SNR case. 
 

10  [99% confidence interval] 22  [99% confidence interval] 
Strategy 1 0.749 [0.731, 0.764] 0.786 [0.758, 0.810] 
Strategy 2 0.726 [0.717, 0.733] 0.747 [0.738, 0.757] 
Strategy 3 0.729 [0.720, 0.738] 0.729 [0.722, 0.733] 
Exact 0.729 0.729 
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 (a) (b)  

 
(c) 

Figure 2: MCMC evolution for 10  for the 30dB SNR case with strategies 1, 2 and 3 (a-c). 
 

Considering the high noise level case (20dB), employing the following step-sizes for the candidate-
generating density in Strategies 1, 2, and 3: 45.0 10   , 25.0 10d

  , 61.0 10nd   , the 
estimated 0( ) /h x h  profile (obtained from the estimated parameters i ) are presented in figures 3(a-c) 
for strategies 1, 2, and 3, respectively. These results show that the estimates obtained by Strategy 1 
under the presence of high noise level are quite poor, being the damaged regions roughly estimated, 
with the estimated damage intensity rather far from the exact value. In fact, it has been observed that 
even after 100,000 states, that Markov Chain was not fully converged to the equilibrium distribution, 
and the inferred distribution, in this case, represents very poorly the real posterior distribution. On the 
other hand, strategies 2 and 3 identified the location and intensity of the damage related to 10  
( 0.5475x m ) quite accurately, whereas only Strategy 3 was able to identify accurately the damaged 
region related to 22 , 1.2775x m  - Strategy 2 identified 23  as the most damaged location, which in 
reality is an undamaged cohesion parameter. This result is probably due to the sensor location 
( 0.233x m ) which most probably presents higher sensitivity to the cohesion parameter 10  rather 
than 22 , yielding better estimates for the first parameter rather than the latter. Table 2 summarizes 
the mean values and estimated 99% confidence intervals obtained for the damaged cohesion 
parameters, 10  and 22 , with the three strategies for this case. These results confirm that Strategy 1 
failed to identify the damage intensity related to both 10  and 22 , whereas only Strategy 3 was able 
to estimate 99% confidence intervals which encompass the exact values of the cohesion parameters. It 
is also clear that the confidence interval for 10  is narrower than for 22 , suggesting once again a 
higher sensitivity of the measurement location to 10 . Finally, figures 4(a,b) illustrate, respectively, 
the Markov Chain with 100,000 states for 10  and the corresponding histogram after neglecting the 
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first 10,000 states, which as shown in figure 4(a) is more than enough to achieve convergence of the 
chain. It should be recalled that this case employs a very high level of noise and is here used to 
challenge the methodology and evaluate the behavior difference of the three strategies. 

  
 (a) (b)  

 
(x) 

Figure 3: Estimated 0( ) /h x h  profile for the 20dB SNR case with strategies 1, 2 and 3 (a-c). 
 

Table 3: Summary of the results obtained for 10  and 22  for the 20dB SNR case. 
 

10  [99% confidence interval] 22  [99% confidence interval] 
Strategy 1 0.826 [0.800, 0.859] 0.884 [0.841, 0.921] 
Strategy 2 0.753 [0.710, 0.858] 0.838 [0.734, 0.988] 
Strategy 3 0.773 [0.716, 0.882] 0.791 [0.721. 0.921] 
Exact 0.729 0.729 

 

 
 (a) (b)  

Figure 4: (a) MCMC evolution in Strategy 3 for 10  in the 20dB SNR case; (b) Corresponding 
historgram. 
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5 Conclusions 

In the present work the problem of structural damage identification was investigated by considering 
that the damage state of the structure is continuously described by a cohesion parameter. The inverse 
problem was then posed within a Bayesian framework, as the determination of the posterior 
probability densities of the nodal cohesion parameters. The Markov Chain Monte Carlo (MCMC) 
method, implemented with the Metropolis-Hastings algorithm, was employed in order to approximate 
the posterior probabilities by drawing samples from the posterior probability density function. The 
methodology herein developed, of first identifying the potentially damaged regions, and then 
assigning different step-sizes to the corresponding cohesion parameters, has been demonstrated to 
remarkably enhance the process of exploration of the posterior distribution. This work has also shown 
that assigning an informative a priori to the cohesion parameters related to probably undamaged 
regions brings more accuracy to the damage intensity identification of the damaged regions. 
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Abstract
As it is well known, damage identification is an essential issue for evaluating safety reliability and re-
maining lifetime of aerospace, civil and mechanical structures. The scientific and technological chal-
lenges posed by damage identification problems yielded a great research activity in this subject. The
damage identification can be successful addressed from the point of view of the wave propagation ap-
proach. The main idea is to solve the direct problem using the Sequential Algebraic Algorithm (SAA),
which provides a straightforward solution for the acoustical wave propagation in inhomogeneous media.
Then, the inverse problem is solved by an optimization procedure. Several optimization methods were
tested in this sense. The main conclusion was that for this particular problem, the Luus-Jaakola opti-
mization method provided the best accuracy and computational cost compromise. The identification of a
smooth profile by using the SAA for running the direct problem and the Luus-Jaakola (LJ) procedure for
optimization purposes to identify the impedance profile successful, even with an average additive noise in
the pulse and echo signals. One of the main advantages of using the SAA is that it furnishes a closed form
solution for the direct problem, that means, the running time is negligible. Another important feature is
the possibility to compute the parameters in a sequential way, reducing the computing time. However,
when trying to identify a rough variation impedance profile, the identification does not succeed, show-
ing a significative error propagation. This happens because the transmission coefficients, which are in the
form 1±Ri, whereRi is the ith reflection coefficient and the signal depends on the propagation direction,
are approximated in the algorithm. When these reflection coefficients are not small, the product of sev-
eral transmission coefficients deviates from unity and the identification result diverges, as will be shown
in the numerical examples. Here, it is presented the Improved Sequential Algebraic Algorithm (ISAA)
that provides also a closed form for the direct acoustic wave propagation phenomenon but without the
approximation found in the SAA. The main features are preserved, i.e., it runs in a negligible amount of
time and the identification procedure can be done with one parameter per turn. Identification results with
an average noise in the signals for rough impedance profiles, showing a 80 parameters recovery with low
error are presented in this paper.
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1 Introduction

Structural health monitoring (SHM) and damage identification (DI) are prime concerns in the realm of
civil, mechanical and aerospace engineering. They represent essential issues to determine the safety and
reliability of their systems and structures.

Different nondestructive SHM and DI approaches are proposed in the literature. Most of them, however,
are built on changes in the vibration characteristics of the structures under concern [1]. The basic idea of
these approaches is that the modal properties are functions of the physical properties of the structure and,
therefore, changes due to damage in the physical properties will be reflected in the modal ones, which,
can be measured and used to infer about the damage state.

Although the vibration-based damage identification approaches have been successfully applied to prac-
tical problems [5], it is well known that small defects may yield to excessively small or even no effects
on the modal properties of the structure, making the damage identification a more difficult task. Damage
identification methods built on the acoustic wave propagation approach, on the other hand, are highly
sensitive to changes in local mechanic impedance such as those caused by small defects [2]. Besides
the higher sensitivity to small defects, the wave propagation based approaches are directly defined in the
time domain and, therefore, differently from most of the vibration based methods, they do not require
any signal processing for compressing the acquired data to the modal space, which inherently results in
some loss of information.

Applications of the elastic wave propagation approach in the framework of structural damage identifica-
tion are recently reported in the literature. For instance, damage assessment in laminated beams, fatigue
damage identification and applications in damage assessment and structural health monitoring in aircraft
fuselages are reported. The modeling of the acoustic wave propagation phenomenon in the frequency
domain by the Espectral Element Method for damage identification purposes has been extensively con-
sidered. Applications are reported for beam and plate type structures [3].

For each damage scenario, a pulse-echo synthetic experiment is performed and the excitation and corre-
sponding response are considered in the damage identification procedure. In this work, the damage state
is described by the generalized acoustical impedance of the bar, —see Section 2—, Z(x) were x is the
position variable along the bar. Therefore, the damage identification is performed by minimizing, with
respect to Z(x), the squared norm between the experimental (synthetic) echo and the predicted one.

The main goal of this research is to study the inverse problem of damage identification in bars within
the framework of acoustic wave propagation approach. In a previous work [10], the direct problem of
one-dimensional acoustic wave propagation was addressed by considering the Sequential Algebraic Al-
gorithm (SAA). The inverse problem of damage identification was then casted as a minimization one, in
the time domain, and several optimization schemes were considered for minimizing the squared differ-
ence between the experimental (or synthetic) echo and the one predicted by the SAA. As shown in [11],
the Luus-Jaakola optimization method has shown to present the better compromise between accuracy
and computational cost to solve this problem.

In the following, the difference between the SAA, used previously, and the ISAA will be explained and it
will be showed, in the numerical examples, the actual improvement obtained in the damage assessment.
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2 Mathematical Foundations

2.1 The algebraic sequential algorithm

The one-dimensional longitudinal acoustic wave propagation in a non-homogeneous slender bar can be
described by the hyperbolic second-order differential equation [7]

σtt − c2
[
σxx +

(
A′

A
− ρ′

ρ

)
σx + ρ

(
A′

ρA

)′
σ

]
= 0, (1)

where σ(x, t) is the longitudinal stress field, depending on the position x and time t,A(x) is the bar cross
section area, ρ(x) is the bar density, both depending on the position x, c is the longitudinal acoustic wave
speed, the prime stands for total derivative, and the subscripts, as usual, represent partial derivatives.

The general D’Alembert solution for Eq. (1) cannot be obtained in a closed form. However, it can be
shown, [8], that Eq. (1) can be written in an alternative form, in the characteristic plane (r, s), as the
following system of first-order equations:

Ur +
Ż

4Z
U = 0;

Vs −
Ż

4Z
V = 0,

(2)

where Z = ρcA is called the generalized acoustical impedance, U(r, s) and V (r, s) are, respectively,
the progressive and regressive stress wave components traveling along the characteristic plane, defined
as

r = t+ τ ; s = t− τ, (3)

and the dot stands as derivative with respect to the independent variable τ , the travel time, defined as

τ(x) =

∫ x

0

dξ

c(ξ)
. (4)

Equations (2) are a compact and uncoupled pair of first order differential equations that describes the
longitudinal acoustic wave propagation phenomenon in a more convenient way. To integrate it, boundary
conditions in the (r, s) plane must be provided, corresponding to the physical situation under concern.
Let us, for instance, consider the probing of a medium, x ≥ 0, by a pulse excitation at x = 0. Assuming
also the Sommerfeld radiation hypothesis [6], the boundary conditions can be stated as:

U(s, s) = F (s) = f(t); V (r, 0) = 0, (5)

where f(t) is the incident longitudinal stress being applied at the boundary r = s (x = 0) and the second
equation ensures that there is no disturbance at s ≤ 0 (t ≤ x/c). Note that f(t), being the longitudinal
stress at the physical boundary x = 0, corresponds to U(s, s), a progressive wave component. Analo-
gously, the echo observed at x = 0, due to the inhomogeneity, will be the output signal g(t) = V (s, s),
a regressive wave component.

Assuming now that the bar under study has length l and is discretized in n sections with equal length
∆x = c∆t, so that l = n∆x. The (known) discrete incoming pulse is written then as

Fj = f
(
2(j − 1)∆t

)
, j = 1, 2, . . . , N, (6)
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and the discrete outgoing echo is

Gj = g(2j∆t), j = 1, 2, . . . , N, (7)

where N∆t ≤ ∆T is the total time interval under consideration.

It can be shown that Eqs. (2), with the boundary conditions given in Eqs. (5), have, after the discretization
given in Eqs. (6) and (7), the following algebraic solution for the echo [8]

Gj =

j∑

k=1


Rk +

k−2∑

p=1

Qp
k


Fj−k+1, j = 1, 2, . . . , N, (8)

where the polynomials Qp
k have the general recursive formula

Qp
k = Rk−p

[
Qp

k−1
Rk−p−1

−Rk−p−1

(
Rk−1 +

p−1∑

l=1

Ql
k−1

)]
, k = 1, 2, . . . , (9)

p = 1, 2, . . . , k − 2.

In Eqs. (8, 9), Ri stands for the reflection coefficient at the i-th layer of the medium, defined as

Ri =
Zi − Zi−1
Zi + Zi−1

, i = 1, 2, . . . , n. (10)

The mathematical procedure, in the direct wave propagation approach, consists then in the following
steps. The medium, with a nominal cross-section area A0 and nominal generalized acoustical impedance
Z0, is discretized into n elements. Then, the reflection coefficients are computed by Eq. (10). In the
sequel, the polynomialsQp

k are calculated from Eq. (9). Finally, the output echo is computed from Eq. (8).
The described technique is called Sequential Algebraic Algorithm (SAA).

It is worth stressing that the mathematical model above provides an original algebraic formula to solve
the direct acoustic wave propagation problem. It also permits, in the identification procedure, to identify
one parameter per step. As it will be seen in the damage assessment results, the number of parameters that
may be updated in the identification is significantly larger than what is usually found in an optimization
processes.

It is worth noting that it is not necessary to consider an infinite or even a semi-infinite medium. The
echoes will be observed in the interval ∆T , that means, t ∈ (0, 2l/c). This means that the echo originated
by the right end of the bar — whatever is its boundary condition — is irrelevant for the analysis.

2.2 The improved sequential algebraic algorithm

In this section, an improvement will be introduced in the SAA, resulting in the improved sequential
algebraic algorithm (ISAA).

Let us consider the progressive and regressive terms in the D’Alembert solution for one dimensional
wave propagation as Φ(x, t) and Ψ(x, t). The expansions in Taylor series for the estimate of Φj

i and Ψj
i ,

respectively, were approximated, in the SAA, with a truncation error of order ∆τ . Having in mind to
increase the algorithm accuracy, we propose estimations of second order for these functions.
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Expanding then Φ
j+1/2
i+1/2 , Φ

j−1/2
i−1/2 , Ψ

j+1/2
i−1/2 and Ψ

j−1/2
i+1/2 in Taylor series around the point (i, j) one get,

Φ
j+1/2
i+1/2 = Φj

i + ∆τ

(
∂Φ

∂r

)j

i

+O(∆τ2); (11)

Φ
j−1/2
i−1/2 = Φj

i −∆τ

(
∂Φ

∂r

)j

i

+O(∆τ2); (12)

Ψ
j+1/2
i−1/2 = Ψj

i + ∆τ

(
∂Ψ

∂s

)j

i

+O(∆τ2); (13)

Ψ
j−1/2
i+1/2 = Ψj

i −∆τ

(
∂Ψ

∂s

)j

i

+O(∆τ2). (14)

Adding now Eq. (11) with Eq. (12) and Eq. (13) with Eq. (14), one arrives to:

Φj
i =

Φ
j+1/2
i+1/2 + Φ

j−1/2
i−1/2

2
+O(∆τ2); (15)

Ψj
i =

Ψ
j+1/2
i−1/2 + Ψ

j−1/2
i+1/2

2
+O(∆τ2). (16)

Denoting U j
i and V j

i , respectively, the approximation of Φ(τi, tj) and Ψ(τi, tj), where τi = i∆τ and
tj = j∆t, one obtain the discretized form for the progressive and regressive waves of order ∆τ2:

U
j+1/2
i+1/2 − U

j−1/2
i−1/2

2∆τ
+

1

4

2

∆τ
Ri


V

j+1/2
i−1/2 + V

j−1/2
i+1/2

2


 = 0, for s constant; (17)

V
j+1/2
i−1/2 − V

j−1/2
i+1/2

2∆τ
− 1

4

2

∆τ
Ri


U

j+1/2
i+1/2 + U

j−1/2
i−1/2

2


 = 0, for r constant. (18)

Solving Eq. (17) and Eq. (18) for U j+1/2
i+1/2 and V j+1/2

i−1/2 , one get:

U
j+1/2
i+1/2 = U

j−1/2
i−1/2 −

Ri

2

(
V

j+1/2
i−1/2 + V

j−1/2
i+1/2

)
, for s constant; (19)

V
j+1/2
i−1/2 = V

j−1/2
i+1/2 +

Ri

2

(
U

j+1/2
i+1/2 + U

j−1/2
i−1/2

)
, for r constant. (20)

Changing now the indexes i, j to n, p one arrives to:

U
p
n+1 = U

p
n −

Rn−p
2

(
V

p+1
n + V

p
n

)
; (21)

V
p+1
n = V

p
n +

Rn−p
2

(
U

p
n+1 + U

p
n

)
. (22)

One cannot obtain a sequential form for the components Up
n+1 e V p+1

n , since these components are
unknown in Eqs. (21–22). However, one can modify these relationships in order to eliminate the term
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V
p+1
n from Eq. (21) and Up

n+1 from Eq. (22). Substituting then Eq. (22) in Eq. (21) and Eq. (21) in
Eq. (22), one get:

U
p
n+1 =


1− R2

n−p

4

1 +
R2

n−p

4


U

p
n −


 Rn−p

1 +
R2

n−p

4


V

p
n; (23)

V
p+1
n =


1− R2

n−p

4

1 +
R2

n−p

4


V

p
n +


 Rn−p

1 +
R2

n−p

4


U

p
n. (24)

Defining nowRi and T i as the apparent reflection coefficients and the apparent transmission coefficients,
respectively, a new system of recurrence relationships is obtained:

Ri =
Ri

1 +
R2

i
4

; (25)

T i =
1− R2

i
4

1 +
R2

i
4

(26)

obeying to the condition,

R
2
i + T

2
i = 1. (27)

Rewriting the system of equations (23–24) in terms of R and T one get:

U
p
n+1 = Tn−pU

p
n −Rn−pV

p
n; (28)

V
p+1
n = Tn−pV

p
n +Rn−pU

p
n. (29)

This system, to be numerically integrated, needs two boundary conditions, in similar form of Eqs. 5, such
as:

U
n
n+1 = Fn; V

0
n = 0. (30)

It is worth noting that when the generalized acoustical impedance variations are smooth, the apparent
transmission coefficients T i ≈ 1 and the apparent reflection coefficientsRi ≈ Ri, resulting that the SAA
obtain results practically identical to the ISAA. However, when the generalized acoustical impedance
variations are abrupt, the apparent transmission coefficients T i become relevant and, as it will be shown
in the numerical results section, this is an important feature in the damage identification accuracy.

3 Optimization Technique

The inverse problem of damage assessment can be stated as: by using the experimental (synthetic) echo
Gi, i = 1, 2, . . . , N , at the time instant ti, where N is the total number of data considered in the identifi-
cation process, determine the elements of the unknown vector A, defined as

A =
(
A1, A2, . . . , AN

)
, (31)

where Ai is the ith point of the discretization of the damaged region.
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The damage identification problem is solved as an optimization problem in which the following objective
function is to be minimized,

F(A) =

N∑

i=1

[
Gi(A)−Gi

]2
, (32)

where Gi(A) is the computed echo by the direct problem model.

To consider the damage assessment with noisy data, the generated synthetic data is considered as

Gi = Gexact
i (Aexact) + εΓi, (33)

where the exact echo Gexact
i (Aexact) are computed from the solution of the direct problem, using exact

parameters Aexact; ε is the standard deviation of a measurement error and Γ is a computer generated
pseudo-random number in the range [−1, 1].

To minimize the objective function (32) the Luus-Jaakola (LJ) optimization procedure is considered.
This is an well known method and will not be described here. The interested reader will find a detailed
description of the method in [4].

4 Numerical Results

In order to verify the differences in the two presented formulations a bar of length L = 3, 000 mm
was chosen. A level of random null average noise was added to the pulse and echo signals. In all the
identifications were used ε = 0.01. This corresponds to a signal to noise ratio of about 15 dB. Four
different damage scenarios were imposed to the bar. Two of them are smooth (Case 1 and 2) impedance
profiles and the other two are rough (Case 3 and 4). In Case 1, two superposed triangular variations were
considered, as shown in Fig. 1a. In Case 2, the damage is modeled as a circular hole with diameter of
one half of the bar height inserted at the middle of the beam and crossing its entire width. In Cases 3 and
4, the damages are computer-generated random with maximum reduction of 25% and 50% of the cross
section area, respectively. The assumed material properties are: density ρ = 7, 894 kg/m3 and Young’s
modulus E = 167.1 GPa, so that the sound speed is c =

√
E/ρ ≈ 4, 600 m/s.

4.1 Smooth damage recovery

For Cases 1 and 2, the Figs. 1–4 present the damage recovery (left) and the remaining error in the
identification (right). The identification is almost perfect both using the SAA or the ISAA; however, the
errors with the ISAA become lower.

4.2 Rough damage recovery

For Cases 3 and 4 the Figs. 5–8 present the damage recovery (left) and the remaining error in the iden-
tification (right). It is worth noting that there is an error propagation in Fig. 5b (SAA) that is almost not
noticeable in Fig. 6b (ISAA). For Case 4, with stronger impedance variations, only the ISAA shows to
identify almost well, as can be seen in Fig. 8a. However, with this noise level and strong impedance
variation still remains some error propagation, as seen in Fig. 8b.
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Figure 1: Damage identification with SAA-LJ for Case 1.
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Figure 2: Damage identification with ISAA-LJ for Case 1.
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Figure 3: Damage identification with SAA-LJ for Case 2.
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Figure 4: Damage identification with ISAA-LJ for Case 2.
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Figure 5: Damage identification with SAA-LJ for Case 3.
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Figure 6: Damage identification with ISAA-LJ for Case 3.
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Figure 7: Damage identification with SAA-LJ for Case 4.
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Figure 8: Damage identification with ISAA-LJ for Case 4.
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5 Conclusions

In this paper, an improvement in the sequential algebraic algorithm (SAA), called improved sequential
algebraic algorithm (ISAA) to solve the direct wave propagation in inhomogeneous media is presented.
The inverse problem of damage assessment is cast as an optimization procedure. It was shown that the
ISAA minimizes the identification error in any situation, being actually important for rough impedance
variation cases. It remains some error propagation. This phenomenon, due to the sequential identification
procedure, can probably be reduced by using a regularization term in the functional and by applying
an hybridization technique, with a deterministic optimization method. It is worth noticing that the most
rough impedance variation was assessed with 80 parameters and an average absolute error lower than 4%.
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Abstract 

The frozen bath on the sidewalls of aluminium electrolysis cells plays a crucial role in their stable 

operation. The efforts today for increasing the production affect the stability of the freeze layer. We 

aim to adapt the detection of the phase change front by means of in-situ temperature measurements 

under industrial conditions, in aluminium electrolysis cell sidewalls. This way we can identify the 

thickness and shape of the protective freeze layer. We carried out continuous temperature 

measurements over several months at two locations in the sidewalls of a cell. We built a simplified, 

two-dimensional model of the sidewall and the side-ledge and used it to identify the isothermal 

surface of the freeze. With data generated by numerical simulations the inverse estimation worked 

well, while in case of measured temperatures, the inverse algorithm successfully converged to a 

smooth solution providing an estimate for the freeze shape. The identified profiles showed reasonable 

agreement with profiles obtained by mechanical probing and captured tendencies over time correctly. 

With the further development of the method we aim to develop a monitoring method suitable for 

industrial application. 

1 Introduction 

Nowadays aluminium in industrial scale is exclusively produced using the Hall-Héroult process 

patented in 1886. During this process reduction cells are used to produce aluminium from alumina by 

electrolysis. The alumina is dissolved in molten cryolite which, with a small amount of additives like 

alkali fluorides, has a melting point of about 960 °C [1]. The high temperature is maintained by the 

Joule heat produced by the more than 100 kiloamperes of current passing through the resistances of a 

cell. The cryolite bath has an excellent solvent capacity, rendering it chemically aggressive, attacking 

almost all known materials, including the cell sidewalls. As a result of the electrolysis, molten 

aluminium descends onto the surface of the cathode and carbon dioxide is produced as the alumina 

reacts with the carbon on the surface of the anodes. The gas travels along the anode surface in the 

form of bubbles resulting in a fluctuating resistance between the anode and the cathode. During 
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normal operation, the bath in which alumina is dissolved solidifies along the sidewalls of the cells as 

those are intentionally less insulated.  

The thickness and form of the so-called freeze layer or side-ledge is a result of the thermal 

equilibrium between the bath and sidewall. The movement of the molten cryolite driven by the drag 

force exerted by the gas bubbles and the magneto-hydrodynamic forces in the molten aluminum also 

affect the freeze shape. The resulting freeze is bound by the sidewall and the isothermal liquid-solid 

interface. The typical steady-state temperature distribution resulting across the sidewalls is depicted in 

Figure 1. 

 

 
 

Figure 1: Steady-state temperature distribution across the sidewall of aluminium electrolysis cells 

 

The freeze has a threefold role in the aluminium reduction process. First, the freeze layer on the 

sidewalls provides an effective protection against the corrosive bath. Without this protective layer the 

bath may come in direct contact with the sidewall destroying the cell. Second, the dynamic freezing 

and melting of the side-ledge helps to maintain the thermal stability of the cell. Finally, the freeze 

layer helps maintaining the optimal direction of the vertical electrical current between the anodes and 

the cathode by acting as an insulator on the sidewalls. 

During steady operation, the shape of the side-ledge in the aluminium electrolysis cells remains 

stable, corresponding roughly to the isotherm of the liquidus temperature of the bath (see Figure 1), 

but transient effects occur during normal operation. These effects can strongly modify the side-ledge 

profile as a result of the system trying to regain its thermal stability.  Knowing the importance of the 

freeze, the thickness is of special interest in aluminium production. Commonly a manual measurement 

method is used to probe the shape and thickness of the side-ledge. Due to its intrusive and labour-

intensive nature this method of freeze detection is only utilised 2-3 times a year [2] and the results are 

uncertain. There are huge efforts today to increase the production, which is mainly achieved by 

increasing the useful area of the cells using larger anodes. The higher production area demands higher 

current, increasing the internal heat generation in the cells. These developments affect the stability of 

the freeze layer; therefore, there is a need for methods, which provide information on the side-ledge in 

a continuous way at strategically selected points. For this purpose the detection of the phase change 

front by means of temperature measurements can be a useful method.  

The detection of the phase change front of a solidifying molten liquid or the melting of a solid 

medium is of special interest in various industries like casting, heat storage systems [3], welding [4, 5] 

and furnaces [6]. It was demonstrated that the phase change front can be identified with the help of 

temperature measurements [3- 7] but the studies are limited by their generated test cases or reference 
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values originating from well controlled experiments.  Sorli and Skaar [8] presented a methodology to 

detect the wear-line in a melting furnace by associating it with an isothermal line. They carried out 

measurements in the sidewall of a furnace involving nine thermocouples distributed along a line of the 

wall contour and compared these with their identified profiles.  We developed and tested a similar 

methodology to theirs that can detect the phase change front on the sidewall of industrial aluminium 

electrolysis cells based on continuously monitored temperatures inside the cell walls. Our approach is 

adapted to electrolysis cells and able to give a first rough estimate of the freeze front based on the 

measured data on which the inverse identification can be based. 

2 Methodology 

We carried out continuous temperature measurements over several months at two locations in the 

sidewalls of an industrial point-fed prebake electrolysis cell operated by Rio Tinto Alcan. Two arrays 

of appropriately protected thermocouples were embedded in two sidewall blocks along the 

longitudinal sides of the electrolysis cell to measure the temperatures. The thermocouples in the arrays 

were arranged so that the local temperature gradients and second order derivatives (excluding the 

mixed derivatives) could be estimated. All thermocouples were calibrated and measures were taken to 

minimize the thermal contact resistance between the tip of the thermocouples and the material of the 

sidewall block. We registered one thermocouple signal in the array as reference temperature; all other 

thermocouple signals were recorded as differences to the reference. The temperature signals were 

recorded with a sampling interval of one minute using the data acquisition system of the plant. For 

comparison, during the measurement period the freeze shape was measured several times by means of 

mechanical probing. 

We used the ANSYS parametric design language (APDL) to implement the inverse algorithm 

of the freeze shape identification. The algorithm was based on a simplified, two-dimensional model of 

the sidewall and the side-ledge (Figure 2). 

 

 
 

Figure 2: Numerical model of the sidewall and the freeze 

 

We modeled the influence of the liquid aluminium with a heat transfer coefficient on the cathode 

surface. Similarly, the heat loss on the external surface of the sidewall was modeled with the ambient 

temperature and a heat transfer coefficient. All other boundaries were considered adiabatic. The 

positions of the bounding surfaces on the bottom were chosen so that they do not influence the 
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temperature at the temperature measurement points. The truncated surface of the freeze profile at the 

top of the model is set as a 45° line through the corner point of the side block edge and a point on the 

ledge profile at the electrolytic bath upper level, an approach adopted after Dupuis [9]. Finally, the 

isothermal phase change surface is defined by seven control points along its contour, which are 

moving according to the progress of the optimisation cycle of the inverse algorithm. 

The inverse identification was driven by the built-in APDL gradient based optimisation; a 

least square cost function was used with uneven weights of the temperature and temperature 

difference agreement, the latter having a stronger influence on the results. Additionally, a second 

order regularisation [10] was used to obtain smooth freeze profiles by prohibiting instabilities arising 

from the ill-posed nature of similar problems [8]. The cost function used in our algorithm is given in 

Equation (1). 
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Here Y (Y) and T (T) denote the measured and the calculated temperatures (temperature 

differences), respectively. While n denotes the number of temperature difference sampling points, r 

refers to the number of active control points in the optimisation loop.  is the regularisation constant 

the value of which is chosen so that we obtain a smooth approximation of the isothermal profile.  is a 

weight factor to reduce the importance of absolute temperature match and emphasize the match of 

temperature gradients. The basic idea behind this lies in the nature of thermocouple accuracy, namely, 

the temperature readings are significantly less accurate than the differential signals between the 

thermocouples. Also, due the high temperature level, the difference between the calculated and 

measured temperatures gives a much higher numerical value than the difference between the 

calculated and measured temperature differences. The value of  is chosen so that the two different 

sources in the cost function are compensated. The cj weight factors of the sj freeze thickness control 

parameters are responsible for the compensation of the non-uniform spacing of the control points 

along the vertical axis (y) in the second order regularisation. 

The direct problem is assumed to be steady, since the temperature changes during normal 

operation are slow. This assumption was verified with the measured gradients and second order 

derivatives, which showed well-established temperature distributions in the planar sidewall. 

The developed inverse algorithm consists of three main steps, each of which gives an estimate 

of the freeze thickness and profile. The subsequent steps are created so that they increase the accuracy 

of the result of the previous step. The first step directly gives a rough guess based on the measured 

data. We apply a second order extrapolation using the Taylor series to directly estimate the freeze 

layer thickness and shape locally. This direct estimation provides an initial guess for the identification 

routine. In the second stage we select three control points (solid red points in Figure 2) on the top half 

of the freeze that have higher influence on the temperature field in the region of the thermocouple 

array. These points are optimized while we apply a linear interpolation between them to calculate the 

values of the unused, passive control points. The bottom part of the freeze is set to a constant 

thickness equal to the thickness at the lowest active control point in this step. In the last step we 

include all control points in the optimization loop to refine the converged solution of the optimisation 

in the second step. 
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3 Results and discussion 

3.1 Generated data 

Using typical test profiles, we generated artificial temperature distributions in the solid domain that 

were fed as inputs of the inverse algorithm. In Figure 3 the estimation of a profile at the end of each of 

the three algorithmic steps is compared with the reference profile used to generate the artificial 

temperature fields.  

 

 
 

Figure 3: Comparison of the three steps of the identification with a prescribed freeze profile (red) 

 

Figure 3 shows that the sample test profile was successfully reconstructed from the simulated 

temperature values. The first approximation already gives a safe estimation of the freeze thickness, the 

cost function at the end of this stage has a value of J = 270, with a negligible computation time. The 

second step gives an excellent match of the reference and identified profiles with only three control 

points. The cost function is J = 0.9 after approximately 15 minutes of computation time on an average 

desktop PC. The third step in the present case takes approximately 7 additional minutes resulting in a 

perfect match on most of the reference profile (J = 0.4). The largest difference of the resulting profile 

appears at the bottom. The reduced sensitivity of the measurement array at this distance is the result of 

the limited “field of view” of the array. 

 To identify the uncertainties related to our simplified model we carried out a sensitivity study 

on the parameters affecting the resulting side-ledge profiles. These parameters included the freeze 

thermal conductivity, the liquid aluminium and the ambient temperatures, the heat transfer 

coefficients and the liquidus temperature. The model was found to be most responsive to the changes 

of the freeze thermal conductivity and the ambient heat transfer coefficient (Figure 4). We found that 

with these parameters the positions of the freeze control points have a near to unity sensitivity 

coefficient. The only exception is the thinnest part of the freeze considered as the critical section, 

which shows a significantly lower sensitivity in a wide range of parameter variation. These results of 

the sensitivity study point to the inaccuracy of model parameters, but at the same time they also show 

that the inverse estimation is safely approximating the minimal thickness of the freeze. 
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Figure 4: Main findings of the profile sensitivity study: the two most significantly influencing 

parameters are the freeze conductivity (left) and the heat transfer coefficient on the shell (right)  

 

3.2 In-situ data 

In case of the measured temperatures in the electrolysis cell wall, the presented algorithm reliably 

converged to a smooth solution providing an estimate for the freeze shape. Two resulting freeze 

profiles at one of the measured sections of the cell sidewall with a one-month follow-up interval are 

given in Figure 5. The identified profiles are compared with the corresponding mechanical probing 

data.  

 

 
 

Figure 5: Identifications based on measured temperatures compared with mechanical probing data 

 

Although the comparison of the mechanical probing and the inverse identification contains significant 

uncertainties, the profiles in general show reasonable agreement. Additionally, the identification 

successfully captured the tendency of evolution between different states of the freeze probed with a 

one- month difference. On the left-hand side of Figure 5 the top part of the freeze is apparently thicker 

than on the right-hand side image as reflected by the identified profiles. While capturing the tendency 
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of the freeze thickness change it can be observed that the identified profiles underestimate the 

thickness. Despite of the deviations in the estimated thickness, in a real monitoring situation this 

identification improves the security of cell operation during control. 

3.3 Application of the method 

We applied the presented algorithm to a typical event in the operation of an electrolysis cell. To see 

how an anode change near the detection point affects the freeze thickness and shape, we carried out a 

series of profile identifications. In Figure 6 the profiles are plotted along the evolution of the reference 

temperature signal in time.  

 

 
 

Figure 6: Development of the freeze profile in case of an anode change near the thermocouple array 

 

The temperature signal allows us to estimate the anode removal around the 10
th
 hour of the presented 

period. Before this event we see the reference temperature decreasing slightly but no change is 

detected in the freeze parameters. As a result of the removed anode the identification predicts a 

significant increase of thickness at the weakest point of the freeze. Simultaneously, the top part of the 

freeze shrinks, which is the direct consequence of the process of an anode removal, during which the 

crust together with the top of the freeze is crushed around the anode to facilitate its removal. In the 

following hours the identification captures simultaneous thickening of the thinnest and top parts of the 

freeze. As the reference temperature starts to increase in the 29
th
 hour, as the new anode becomes 

working, the freeze starts to thin in the critical section. The bottom part of the freeze is also thinning 

slightly. 

 These identified profiles suggest that the melting and freezing process happens rapidly 

compared to the overall timescale of the processes in the electrolysis cell. Such changes that may play 

an important role not only in the control of the cell, but in its overall lifetime, could not be followed 

with the intrusive mechanical probing method. 
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4 Conclusions 

The general tendency of increasing the thermal loads in aluminium electrolysis cells demands regular 

follow-up of the sidewall thermal state during its operation.  We are developing a method to actively 

follow the protective freeze layer on the sidewalls. The developed inverse model, based on continuous 

temperature measurements in the cell walls, is able to identify the position of the varying isothermal 

boundary associated with the frozen bath layer. The identification of the profiles are more accurate in 

case of simulated data, which is understandable knowing that the modelling assumptions cannot 

reflect perfectly the real conditions of the thermal measurements. The analysis of the influence of 

routine operations, such as an anode change, on the freeze shape gives a better understanding on the 

thermal load of the pot structure and it gives support for improvements. 

With further development, we aim to create a monitoring method suitable for helping the 

efficient and long-lasting operation of industrial cells.  
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Abstract
Among inverse problems for PDEs we distinguish coefficient inverse problems, which are associated
with the identification of coefficients and/or the right-hand side of an equation using some additional in-
formation. When considering time-dependent problems, the identification of the coefficient dependences
on space and on time is usually separated into individual problems. In some cases, we have linear inverse
problems (e.g., identification problems for the right-hand side of an equation); this situation essentially
simplify their study. This work deals with the problem of determining in a multidimensional parabolic
equation the lower coefficient that depends on time only. To solve numerically a nonlinear inverse prob-
lem, linearized approximations in time are constructed using standard finite difference approximations
in space. The computational algorithm is based on a special decomposition, where the transition to a new
time level is implemented via solving two standard elliptic problems.

1 Introduction

In the theory and practice of inverse problems for partial differential equations (PDEs), much attention is
paid to the problem of the identification of coefficients from some additional information [1, 2]. Particular
attention should be given to inverse problems for PDEs [3, 4]. In this case, a theoretical study includes
the fundamental questions of uniqueness of the solution and its stability both from the viewpoint of
the theory of differential equations [4, 5] and from the viewpoint of the theory of optimal control for
distributed systems [6]. Many inverse problems are formulated as non-classical problems for PDEs. To

ICIPE2014 8th International Conference on Inverse Problems in Engineering, May 12–15, 2014, Poland
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solve approximately these problems, emphasis is on the development of stable computational algorithms
that take into account peculiarities of inverse problems [7, 8].

Much attention is paid to the problem of determining the right-hand side, lower and leading coefficients
of a parabolic equation of second order, where, in particular, the right-hand side and the coefficients
depends on time only. An additional condition is most often formulated as a specification of the solution
at an interior point or as the average value that results from integration over the whole domain. The
existence and uniqueness of the solution to such an inverse problem and well-posedness of this problem
in various functional classes are examined, for example, in the works [9, 10, 11, 12].

Numerical methods for solving problems of the identification of the right-hand side, lower and leading
coefficients for parabolic equations are considered in many works [13, 14, 15, 16, 17]. In view of the
practical use, we highlight separately the studies dealing with numerical solving inverse problems for
multidimensional parabolic equations [18, 19, 8]. To construct computational algorithms for the identifi-
cation of the lower coefficient of a parabolic equation, there is widely used the idea of transformation of
the equation by introducing new unknowns that results in a linear inverse problem.

Approximation in space is performed using the standard finite differences [20, 21] or finite elements
[22, 23]. The main features of the nonlinear inverse problem are taken into account via a proper choice
of the linearized approximation in time. In this paper, for a multidimensional parabolic equation, we
consider the problem of determining the lower coefficient that depends on time only. Linear problems at
every time level are solved on the basis of a special decomposition into two standard elliptic problems.

2 Problem formulation

For simplicity, we restrict ourselves to a 2D problem in a rectangle. Let x = (x1, x2) and

Ω = {x | x = (x1, x2) , 0 < xα < lα, α = 1, 2}.

The direct problem is formulated as follows. We search u(x, t), 0 ≤ t ≤ T, T > 0 such that it is the
solution of the parabolic equation of second order:

∂u

∂t
− div(k(x)gradu) + p(t)u = f(x, t), x ∈ Ω, 0 < t ≤ T. (1)

The boundary and initial conditions are also specified:

k(x)
∂u

∂n
= 0, x ∈ ∂Ω, 0 < t ≤ T, (2)

u(x, 0) = u0(x), x ∈ Ω, (3)

where n is the normal to Ω. The formulation (1)–(3) presents the direct problem, where the right-hand
side, coefficients of the equation as well as the boundary and initial conditions are given.

Let us consider the inverse problem, where in equation (1), the coefficient p(t) is unknown. An additional
condition is often formulated as

∫

Ω
u(x, t)ω(x)dx = ϕ(t), 0 < t ≤ T, (4)
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where ω(x) is a weight function. In particular, choosing ω(x) = δ(x−x∗) (x∗ ∈ Ω), where δ(x) is the
Dirac δ-function, from (4), we get

u(x∗, t) = ϕ(t), 0 < t ≤ T. (5)

We assume that the above inverse problem of finding a pair of u(x, t), p(t) from equations (1)–(3) and
additional conditions (4) or (5) is well-posed. The corresponding conditions for existence and unique-
ness of the solution are available in the above-mentioned works. In the present work, we consider only
numerical techniques for solving these inverse problems omitting theoretical issues of the convergence
of an approximate solution to the exact one.

From the nonlinear inverse problem, we can proceed to the linear one. Suppose

v(x, t) = χ(t)u(x, t), χ(t) = exp

(∫ t

0
p(θ)dθ

)
.

Then from (1)–(3), we get

∂v

∂t
− div(k(x)gradv) = χ(t)f(x, t), x ∈ Ω, 0 < t ≤ T,

k(x)
∂v

∂n
+ g(x)v = 0, x ∈ ∂Ω, 0 < t ≤ T,

v(x, 0) = u0(x), x ∈ Ω.

The additional conditions (4) and (5) to identify uniquely v(x, t), χ(t) take the form
∫

Ω
v(x, t)ω(x)dx = χ(t)ϕ(t), 0 < t ≤ T,

u(x∗, t) = χ(t)ϕ(t), 0 < t ≤ T.
The above transition from the nonlinear inverse problem to the linear one is in common use for numeri-
cally solving problems of identification. In our work, we focus on the original formulation of the inverse
problem (1)–(4) (or (1)–(3), (5)) without going to the linear problem.

3 Semi-discrete problem

To solve numerically the time-dependent convection-diffusion problem, we introduce the uniform grid
in the domain Ω:

ω = {x | x = (x1, x2) , xα =

(
iα +

1

2

)
hα, iα = 0, 1, ..., Nα, (Nα + 1)hα = lα, α = 1, 2}.

For grid functions, we define the Hilbert spaceH = L2 (ω), where the scalar product and norm are given
as follows:

(y, w) ≡
∑

x∈ω
y (x)w (x)h1h2, ‖y‖ ≡ (y, y)1/2 .

The difference operator for the diffusion transport D has the following additive representation:

D =
2∑

α=1

Dα, α = 1, 2, x ∈ ω, (6)
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where Dα, α = 1, 2 are associated with the corresponding differential operator in one spatial direction.

For all nodes except ajoining the boundary, and for sufficiently smooth diffusion coefficients k(x), the
grid operator D1 can be written as:

D1y =− 1

h2
1

k(x1 + 0.5h1, h2)(y(x1 + h1, h2)− y(x))

+
1

h2
1

k(x1 − 0.5h1, h2)(y(x)− y(x1 − h1, h2)),

x ∈ ω, x1 6= 0.5h1, x1 6= l1 − 0.5h1.

At the nodes ajoining the boundary, approximation should take into account the boundary condition (2):

D1y =− 1

h2
1

k(x1 + 0.5h1, h2)(y(x1 + h1, h2)− y(x)),

x ∈ ω, x1 = 0.5h1,

D1y =
1

h2
1

k(x1 − 0.5h1, h2)(y(x)− y(x1 − h1, h2)),

x ∈ ω, x1 = l1 − 0.5h1.

The grid operator D2 is constructed in a similarly way. Direct calculations yield (see, e.g., [21, 24]):

Dα = D∗α ≥ 0, α = 1, 2.

This grid operator of diffusion approximates the corresponding differential operator with an accuracy of
O
(
|h|2
)
. As in the differential case, the difference operator of diffusive transport (6) is self-adjoint and

positive definite in H:
D = D∗ ≥ 0. (7)

In view of (7), we can obtain the corresponding a priori estimates for the solution of the boundary value
problem (1)–(3) in H that ensure the stability of the solution with respect to the initial data and the
right-hand side.

After discretization in space, from the problem (1)–(3), we arrive at the Cauchy problem for the semi-
discrete equation:

dy

dt
+Dy + p(t)y = f(t), 0 < t ≤ T, (8)

y(0) = u0. (9)

We consider the case, where the lower coefficient in the parabolic equation (1) is negative:

p(t) < 0, pm = max
0≤t≤T

|p(t)|. (10)

Then we have

‖y(t)‖ ≤ exp(pmt)‖u0‖+

∫ t

0
exp(pm(t− θ))‖f(θ)‖dθ, (11)

i.e., the norm of the solution of the homogeneous equation (f(x, t) = 0 in (1)) may grow exponentially
with time. The a priori estimate (11) holds in the Banach space of grid functions L∞(ω), where

‖ · ‖ = ‖ · ‖∞, ‖y‖∞ ≡ max
x∈ω
|y|.

This fact can be established on the basis of the maximum principle for grid functions and the relevant
comparison theorems [21] taking into account the diagonal dominance of the matrix (operator) D.
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4 Time-stepping techniques

Let us define a uniform grid in time tn = nτ, n = 0, 1, ..., N, τN = T and denote yn = y(tn), tn =

nτ . We start with discretization in time for the numerically solving direct problem (8), (9). To solve
numerically boundary value problems for transient diffusion-reaction equation (1), approximation in
time is carried out depending on the sign of the coefficient p(t) [25, 26]. In particular, for p(t) ≥ 0,
unconditionally stable schemes are constructed using the implicit approximation for the lower coefficient,
where

yn+1 − yn
τ

+Dyn+1 + pn+1yn+1 = fn+1.

If p(t) ≤ 0, then we need to focus on the explicit approximation:

yn+1 − yn
τ

+Dyn+1 + pn+1yn = fn+1, n = 0, 1, ..., N − 1. (12)

The initial condition (9) yields
y0 = u0. (13)

For the coefficient p(t) with alternating signs, unconditionally stable schemes are based on the explicit-
implicit approximation for the lower term. If we apply the explicit approximation (12) for the problem
(8), (9), then, for p(t) ≥ 0, the stability of the scheme (12), (13) holds with rather weak restrictions on
the time step [26].

Under the assumptions (10), the difference solution of the problem (12), (13) satisfies the following
level-wise estimate in L∞(ω):

‖yn+1‖ ≤ (1 + τpm)‖yn‖+ τ‖fn+1‖, n = 0, 1, ..., N − 1. (14)

The estimate (14) is a discrete analog of the estimate (11) for the solution of the problem (8)–(10). To
prove (14), we cam apply the maximum principle for grid functions [21, 27]. The second possibility to
check the a priori estimate (14) is associated with the use of the concept of the logarithmic norm [28, 29].

5 Algorithm for solving the inverse problem

For the fully discretized (both in space and in time) direct problem (1)–(3), we can solve the inverse
problem of the identification of the lower coefficient p(t). We restrict ourselves to the case, where an
additional information on the solution is defined (see (5)) at some interior node x∗ ∈ ω of the grid:

yn+1(x∗) = ϕn+1, n = 0, 1, ..., N − 1. (15)

This inverse problem is nonlinear, but for discretization in time, we can use the explicit-implicit scheme
(12). This approximation in time leads to linear problems at each time level.

For the approximate solution of the problem (12), (13), (15) at the new time level yn+1, we introduce the
following decomposition (see, e.,g., [8, 30]):

yn+1(x) = vn+1(x) + pn+1wn+1(x), x ∈ ω. (16)

To find vn+1(x), we employ the equation

vn+1 − yn
τ

+Dvn+1 = fn+1, n = 0, 1, ..., N − 1. (17)
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The function wn+1(x) is determined from

1

τ
wn+1 +Dwn+1 = −yn, n = 0, 1, ..., N − 1. (18)

Using the decomposition (16)–(18), equation (12) holds automatically for any pn+1.

To evaluate pn+1, we apply the condition (15). The substitution of (16) into (15) yields

pn+1 =
1

wn+1(x∗)
(ϕn+1 − yn+1(x∗)). (19)

The fundamental point of applicability of this algorithm is associated with the condition wn+1(x∗) 6= 0.
The auxiliary functionwn+1(x) is determined from the grid elliptic equation (18). The property of having
fixed sign for wn+1(x) is followed, in particular, from the same property of the solution at the previous
time level un(x). Such constraints on the solution can be provided by the corresponding restrictions on
the input data of the inverse problem.

It is relatively easy to establish that the solution of the inverse problem for u0 > 0, fn+1 > 0, n =

0, 1, ..., N − 1 in the class pn+1 < 0, n = 0, 1, ..., N − 1 may be represented in the form (16)–(19).
Correctness of the computational algorithm follows from fulfilling the condition wn+1(x∗) 6= 0.

On the basis of the maximum principle, for the solution of the grid problem (18) with yn > 0, we have
wn+1 < 0. Thus, it is sufficient to show that yn+1 < 0. The proof is performed by induction. We have
y0 > 0 and let yn > 0. From (18), we obtain wn+1 < 0. Similarly, from (17), we have vn+1 > 0.

For yn+1 − vn+1, from (12) and (17), we get

yn+1 − vn+1

τ
+D(yn+1 − vn+1) = −pn+1yn.

Because of this, we have yn+1 − vn+1 > 0 and therefore yn+1 > 0. It should be noted that ϕn+1 −
vn+1(x∗) > 0 and for the definition of the coefficient according to (18), we have pn+1 < 0. Thus, we
remain in the class of negative coefficients.

6 Numerical examples

To demonstrate possibilities of the above linearized schemes for solving the coefficient identification
problem for the parabolic equation, we consider a model problem. In the examples below, we consider
the problem in the unit square (l1 = l2 = 1 ). Suppose

k(x) = 1, f(x, t) = x1x2, u0(x) = 1, x ∈ Ω.

The problem is considered on the grid N1 = N2 = 51, the observation point is located at the square
centre (x∗ = (0.5, 0.5)). The coefficient p(t) is taken in the form

p(t) =

{ −1000t, 0 < t ≤ 0.5T,

0, 0.5T < t ≤ T.

The solution of the direct problem (1)–(3) at the observation point is depicted in Fig.1. The solution at
the final time moment is presented in Fig.2.
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Figure 1: The solution of the direct problem at the point of observation

Figure 2: The solution of the direct problem at t = T
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The results of solving the inverse problem with various grids in time are shown in Fig.3. To study the
influence of parameters of the computational algorithm, we need to use the same input data. In our case,
as the input data we use the numerical solution of the direct problem obtained using a very fine grid in
time. The solution of the direct problem obtained with N = 1000 is employed as the input data (the
function ϕ(t) in the condition (5)). It is easy to see that the approximate solution of the inverse problem
converges with decreasing the time step.

Figure 3: The solution of the inverse problem
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Abstract 
In this communication, an adaptation of the conjugate gradient method is presented for an 
identification of flux from two mobile heating sources on a 2D geometry. This adaptation is based on 
sliding-time window to achieve quasi-online identification of unknown parameters. Different 
strategies are presented and discussed (adaptive integration interval, sliding time window). 
 

Nomenclature 
General symbols 
t  Time, s 
x Space variable, m 
y  Space variable, m 

e Thickness, m 
h Heat transfer coefficient, W.m-2.K-1 

ft  Final time, s 

1,2jr =  Heat flux radius, m 

l  Plate width, m 
L  Plate length, m 

n
�

 Unit external outward-pointing vector 

sN  Total number of sensors 

tN  Number of time steps 

Greek symbols 
θ  Temperature, K  
λ  Thermal conductivity, W.m-1.K-1 
ρ  Density, kg.m-3 

c  Specific heat capacity, J.kg-1.K-1 

( )tφ  Heat flux density, W.m-2 

0θ  Initial temperature, K 

 
Indices 
0  Initial 
j  For heating sources 

i  For sensors 
I  Centre of the disk 
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1 Introduction 

This study is based on a resolution of an inverse thermal problem in 2D geometry. In this context it is 
usual to wait the acquisition of all measurements before starting the identification procedure. 
However, when the inversion is realized for control or diagnosis purposes, an online identification can 
be an interesting mean to reduce the calculation time. 
 
Thus, in this paper a presentation of a quasi online identification of two heating flux of two mobile 
heating sources is presented, based on an adaptation of a regularization method (conjugate gradient 
method named CGM). This inverse heat conduction problem is an ill-posed problem in Hadamard 
sense [1] and numerous methods [2-6] were developed to obtain a reliable digital resolution. 
 
First, the identification of two time depend parameters is presented considering all measurements 
obtained and will be used as reference. Then the iterative regularization method will be adapted in 
order to identify online these two heat flux density. Several strategies will be implemented and 
compared (adaptive integration interval, sliding time window). The robustness of these methods will 
be demonstrated for each proposed strategies. 

2 Direct problem 

Let us consider two mobile heating sources 1S  and 2S  evolving on a thin metallic 

plate 2Ω ⊂ ℝ , ( ) ( )0 0L lΩ = × × × , with boundaries ∂Ω∈ℝ and thickness e , see Figure 1. 

Considering that the plate is thin, thermal transfers within the plate can be neglected and a two 
dimensional mathematical model is validated. Both heat losses (convective exchange) and heating 
fluxes are formulated in the heat equation (issued from energy balance considering Fourier’s law). For 

each source, the heat density ( )1,2j jφ = was considered as uniform on a mobile disk ( ),j j jD I r with 

center ( ),j j jI x y and radius jr .The total heat flux applied on the plate can be written: 

 

( )
( ) ( )
( ) ( )

1 1 1 1

2 2 2 2

( ) if , ( ),

, ; ( ) if , ( ),

0 otherwise.

t x y D I t r

x y t t x y D I t r

φ
φ
 ∈
Φ = ∈



 (1) 

 
To describe this heat flux in continuous and differentiable way, we express it as follows:  

( ) ( ) ( )
2

2 2

1

( )
, ; arctan ,

2
j

j j j
j

t
x y t x x y y r

φ πµ
π=

   Φ = − − + − − +   
   

∑  (2) 

 

Where 0µ > is a parameter to be prescribed. The time interval 0, ft    is divided into N  segments, 

namely, [ ]1
0

0, ,
N

f i i
i

t t t +
=

  =  ∪  with it iτ=  and a discretization step defined by 
1

ft

N
τ =

+
. We also define 

the piecewise continuous linear functions as: 
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[ ]

[ ]

1

1

1 if ,

( ) 1 if ,

0 otherwise

i i

i i i

t
i t t t

t
s t i t t t

τ

τ

−

+

 − + ∈

= − + + ∈





 

The two heat flux densities are expressed as follows: 
1

( ) ( ), 1,2.
N

j
j i i

i

t s t jφ φ
=

= =∑ . Thus, the time 

dependent and spatial distribution of temperature ( ), ;x y tθ  within the domain is solution of the 

following partial derivative equation system (3) with parameters listed in Table 1. 
 

( ) ( ) ( ) ( )( ) ( )
( ) ( )

( ) ( )

02

0

, ; 2 , ;, ;
, ; , ; 0,

, ;0 ,

, ;
0 , ; 0,

f

f

x y t h x y tx y t
c x y t x y t t

t e
x y x y

x y t
x y t t

n

θ θθ
ρ λ θ

θ θ
θ

λ

 Φ − −∂
 − ∇ = ∀ ∈Ω×  ∂ = ∀ ∈Ω

 ∂  − = ∀ ∈∂Ω×   ∂
�

 (3) 

The two flux densities ( )1 tφ and ( )2 tφ  do not follow the same temporal evolution and are represented 

in Figure 2. The thermal properties of the system are considered constant during the experiment. 
Numerical resolutions presented in this communication use the finite element method of Comsol® 
software interfaced with Matlab©. 

 

( )3 1J.m .c Kρ − −  ( )2 1W.m .Kh − −  ( )ft s  ( )1 1W.m .Kλ − −  ( )0 Kθ  

2.43.106 10 600 160 291 

( )1,2jr m=  ( )e m  ( )L m  ( )l m   

26.10−  32.10−  1 1  

Table 1: Model parameters. 
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Figure 1: Direct problem representation. Figure 2: Exact fluxes. 
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Exact fluxes is given by : 

( ) ( ) ( )2 2

4
1 2 2

150 450
3.10 exp exp

2 70 2 70

t t
tφ

    − −
    = − + −

    × ×    

 and ( )

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

4

4

4
2

4

200 if 0,50

1.10 if 50,150

200 - 2.10 if 150,200

2.10 if 200,400

-200 10 4 if 400,450

1.10 if 450,550

-200 12 4 if 550,600

t t

t

t t

t t

t e t

t

t e t

φ

 ∈
 ∈
 ∈


= ∈
 + ∈


∈
 + ∈

 

3 Inverse problem 

3.1 Formulation 

To identify the heat flux densities ( )1 tφ  and ( )2 tφ  from temperature evolutions ( )( )
1,

ˆ
c

i
i N

tθ
=

 

provided by 10cN =  sensors placed on the plate at locations ( ) 1, c
i i N

C = , an inverse problem can be 

formulated and solved by minimizing the following quadratic criterion: 

( ) ( )( )2

1 0

1 ˆ, ; ( ) .
2

fc
tN

i i
i

J C t t dtθ θ
=

Φ = Φ −∑∫  (4) 

The conjugate gradient method is implemented to identify the unknown parameters [2,3]. This 
algorithm requires iterative resolution of three well-posed problems: 

- The direct problem (3) to calculate the cost-function (4) and estimate the quality of the estimate 
kΦ at iterationk . 

- The adjoint problem to determine the gradient of the cost-function (4) and thus to define the next 
descent direction [4-7]. 

- The sensitivity problem to calculate the descent depth (in the descent direction). 

3.2 Sensitivity problem 

Let us consider ( ), ;x y tδθ the temperature variation induced by heat flux variation ( )1,2j jφ = which 

is solution of the following system: 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )

2, ; , ; 2 , ;
, ; , ; 0,

, ;0 0 ,

, ;
0 , ; 0,

f

f

x y t x y t h x y t
c x y t x y t t

t e
x y x y

x y t
x y t t

n

δθ δ δθ
ρ λ δθ

δθ
δθ

λ

 ∂ Φ −
 − ∇ = ∀ ∈Ω×  ∂ = ∀ ∈Ω

 ∂  − = ∀ ∈∂Ω×   ∂
�

 (5) 

Where 

( ) ( ) ( )
2 2 2 2

1 1 1

, ; arctan .
2

N
j

j j j
j i jj

x y t x x y y r
δφ πδ δφ µ

φ π= = =

   ∂Φ   Φ = = − − + − − +      ∂     
∑ ∑ ∑  (6) 
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The solution ( ), ;x y tδθ of the sensitivity problem is used to calculate the descent depth at each 

iteration k [2]: 

( )
( ) ( )( ) ( )

( )
*

10

2

10

ˆ, ; , ;

Arg min  .

, ;

f c

cf

N

N

t

k k
i i i

ik k
t

k
i

i

C t t C t dt

J d

C t dt
γ

θ θ δθ
γ γ

δθ

=

∈

=

Φ − Φ
= Φ − =

 Φ 

∑∫

∑∫
ℝ

 (7) 

3.3 Adjoint problem 

In order to determine the gradient of the cost-function 
( )1,...,

n
i

i N

J
J

=

∂ ∇ =  ∂Φ 
at each iteration of the 

minimization algorithm, a Lagrangian formulation ( ),ψΦℓ is introduced: 

( ) ( ) ( ) ( ) ( ) ( )( )0

0

, ; 2 , ;, ;
, , ;

ft x y t h x y tx y t
J c x y t dtd

t e

θ θθ
ψ ρ λ θ ψ

Ω

 Φ − −∂
Φ = Φ + − ∆ − Ω 

∂  
∫ ∫ℓ  (8) 

The Lagrangian variation is given by:  

( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

10

2

0

ˆ, , ; ; ( , ; ) , ;

2 , ;, ;
, ; , ;

f c

f

t N

i i i i i i i
i

t

x y t x y t x y t dt

h x y tx y t
c x y t x y t dtd

t e

δ ψ θ θ δθ

δ δθδθ
ρ λ δθ ψ

=

Ω

Φ = Φ −

 Φ −∂
+ − ∇ − Ω 

∂  

∑∫

∫ ∫

ℓ

 

Considering equations of sensitivity problem, ( ), ;x y tψ  is solution the following problem: 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )

2, ; 2 , ;
, ; , ; , ; 0,

, ;0 0 ,

, ;
0 , ; 0,

f

f

x y t h x y t
c x y t E x y t x y t t

t e
x y x y

x y t
x y t t

n

ψ ψ
ρ λ ψ

ψ
ψ

λ

 ∂
 + ∇ = + ∀ ∈Ω×  ∂ = ∀ ∈Ω

 ∂  − = ∀ ∈∂Ω×   ∂
�

 (9) 

Where ( ) ( )( ) ( ) ( )
1

ˆ, ; , ; ; ( , ; )
cN

i i i i i D i D i
i

E x y t x y t x y t x x y yθ θ δ δ
=

= Φ − − −∑  and 

( ) ( )D i D ix x y yδ δ− − is the Dirac distribution for sensor ( ),i i iC x y . 

When ( ), ;x y tψ is solution of the adjoint problem (9) then, ( )
0

.
ft

J d dt
e

δ ψδ
Ω

Φ Φ = − Ω  
∫ ∫ . 

The time discretization of the heat flux is written such as: 
 

( ) ( ) ( )( )
( ) ( ) ( )( )

2 2

1 1 1

2 2

2
1

2 2

1 1

( ) arctan
2

arcta
2

(

n

)
i

i

N N
i

i i
i i

N
i

i

t x x y y r
s t

s

x x y y

t

s
r

t

πδφ µ
π

πδφ µ
π

= =

=

  Φ Φ − − + − − +  
  

  − − + − − +  

= = +

  

∑ ∑

∑
 (10) 
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Thus, the gradient is expressed by: 

( ) ( ) ( )2 2

0

arctan , 1, 2, 1,..., .
2

f

i

j

t

j j
i

x x y y
s t

r d dt j i N
e

J π ψµ
πφ Ω

     − − − + − − + Ω = =         

∂ =
∂ ∫ ∫  (11) 

4 Numerical results 

4.1 Conjugate gradient method (CGM) 

Considering for example the initials heat flux ( ) ( )2
1 23020 W.  and 0t m tφ φ−= = , the CGM is 

implemented in order to identify the heat flux density of these two mobile sources with noisy 

numerical data perturbed by ( )0,0.5N on 10 sensors. The cost-function is presented in Figure 3. The 

identification has converged in 70 minutes with a stop-criterion 20.5Stop s tJ N Nσ= , [2, 3]. The two 

identified densities are represented in Figure 4. To validate these two identified heat fluxes, 
temperature residual between exact and numerical solutions are presented in Table 2. 
 

 Average temperature residual (K) Standard deviation of residual (K)  
For sensors ( )1,..,5jC =  0.02 0.48 

For sensors ( )6,..,10jC =  0.04 0.47 

Table 2: Temperature residual. 
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Figure 3: Criterion evolution. Figure 4: Estimate heat flux (Sources 1 & 2). 

4.2 Quasi-online identification 

Previous results highlight the efficiency of the CGM. However, the calculation time was 70 minutes in 
addition to the 10 minutes of the experimentation. The main inconvenient of this method is the 
convergence time which can be very important according to the complexity problem and the 
identification time interval. To reduce this computation time, the CGM is implemented considering a 
time interval ,i i iτ τ− + = ⊂ T T which will slide on the total time horizon with a step 0it∆ >  to identify 

the values of unknown parameters ( ) ( )1, 2,,
i i

t tφ φ
T T

. When the values of the parameters are accurately 
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estimated on the interval iT , the identification window 1 1 1, ,i i i i i i it tτ τ τ τ− − + + − +
+ + +   = + ∆ + ∆ =   T  moves 

on the horizon time considering initialization ( ) ( )
1

0
, ,i

k
j j itφ φ τ

+

= +=
T T

 and the initial temperature of the 

direct problem corresponding to 1( , ; )ix yθ τ −
+ . Several strategies based on this approach are proposed 

and analyzed below. 
 

4.2.1 Strategy 1: offset with constant time step 

For this first strategy, the time interval of the window ,i i iτ τ− + = ⊂ T T  used to identify 

( ) ( )1, 2,,
i i

t tφ φ
T T

 is fixed at a constant interval 60i i sτ τ+ −− =  (10% of the overall time of 

identification). This first strategy is based on a constant offset of iT  with i it τ τ+ −∆ < −  to ensure 

identification ranges overlap. Initially, an offset value 15 st∆ =  (25% of the overall time of 

identification on iT ) is studied,  the results of the identification of the two heating fluxes are presented 
in Figure 5. The convergence of this identification was obtained after 12.58 minutes. To compare with 
the CGM resolved on the entire entire time horizon, several time-steps have been tested, see Table 3. 
 

Offset (s) 
Average 

temperature 
residual (K) 

Standard deviation of 
residual (K)  

Convergence time  

 (min) 

Average delay on 
the identification 

(s) 

15t∆ =  0.012 0.546 12.58 115 

30t∆ =  0.027 0.549 9.36 35 

45t∆ =  0.055 0.585 8.66 46 

Table 3 : Temperature residual results 

Considering results presented in Table 3, this method reveals its effectiveness for a quasi-online 
identification of the two vectors of unknown parameters. Averages and standard deviations of 
temperature residual are acceptable given the noise Gaussian considered (( )0,0.5N ) on sensor data. 

The identification results for this method are presented in Figure 5. Considering that measurements 
are taken every second, delays between measurements and the results of the identification on the 
interval are presented in Figure 6.  
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Figure 5: Results sliding mode with (∆t = 15s). 
Figure 6: Delay between the identification results 

and measurement for (∆t = 15s). 
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This first CGM adaption allows the reduction of the computation time of the identification procedure. 
Considering results presented in Table 3 this method can be considering as effective. However, as 
shown in Figure 6 the delay between identifications results and measurement grows up over time. For 
∆t = 15s, unknown parameters are identified 4 minutes after the experimentation (duration 10 
minutes)  
 

4.2.2 Strategy 2: offset with adaptive time step 

For this second method, consider the time interval ,i i iτ τ− + = ⊂ T T  such as 60i i sτ τ+ −− = . 

Identification on this interval is performed during a CPU time equivalent to it . When the 

identification is satisfactory then immediately a new interval is considered 1i i iτ τ+ +
+ = + t or, if 

1 60i iτ τ+ +
+ − >  then 1 30i iτ τ+ +

+ = +  and 1 1 60i iτ τ− +
+ += − . So the identification process is launched only if 

the new measurements are not in adequacy with the temperatures predicted using the previous 
identification of ( ) ( )1 2,

i i
t tφ φ

T T
. The results of the identification of ( ) ( )1 2,

i i
t tφ φ

T T
for this method are 

presented in Figure 7. Considering that measurements are taken every second, delays between 
measurements and the results of the identification on the intervals are presented in Figure 8. This 
method presents the advantage of a decrease in the average delay between the identification results 
and measurements. 
 

Average temperature 
residual (K) 

Standard deviation of 
residual (K)  

Convergence time  

(min) 
Average delay on the 

identification (s) 

0.060 0.548 10.07 28.9 

Table 4: Results of temperature residuals. 
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Figure 7: Results adaptive mode.  
Figure 8: Delay between the identification results 

and measurement with "adaptive mode". 
 
Considering results presented in Table 4 and in Figure 7, this method can be considering as effective. 
The main advantage compared to the first strategy is that the delay between the estimated results and 
measurement can be caught up (see figure 8) and thus reduce the total time of the identification 
procedure. Unknown parameters are identified 67 seconds after the experimentation (duration 10 
minutes)  
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5 Concluding remarks 

In this paper, several approaches for quasi online identification of the heat flux density of heat flow of 
two mobile sources have been presented. These two strategies are based on the Conjugate Gradient 
Method recognized for its effectiveness on inverse problems described by partial differential 
equations. These two strategies show their effectiveness taking into account the time of convergence 
of the algorithm and the results obtained. To test this method of identifying a concrete case and open 
new prospects of studies (choice of relevant sensors [8] and adaptive deployment of a network of 
sensors) experimentation is currently studied. 
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Abstract
This paper deals with an inverse problem of identification of a leading time-dependent coefficient in a
degenerate two-dimensional parabolic equation. We consider a case of weak degeneration by the time
variable.

First treatises of this type of inverse problems for parabolic equations were given in [1], [2]. A
variety of identification problems for one-dimensional domains were studied in [3]. Inverse problems
for degenerate one-dimensional equations have been considered in [4], [5]. Non-degenerate inverse
problems in two-dimensional domains have been considered in e.g. [6], for multidimensional domains
see e.g. [7].

In the paper both existence and uniqueness of the solution are proven in corresponding theorems.
Existence is established via transformation of the problem to a system of operator equations and
subsequent application of Schauder fixed point theorem. Properties of second order Volterra integro-
differential equations are used for the proof of solution’s uniqueness.

1 Problem statement

In the domain QT = (0, h) × (0, l) × (0, T ) we consider an inverse problem of finding an unknown
coefficient a(t) > 0, t ∈ [0, T ] in a parabolic equation

ut = tβa(t)∆u+ b1(x, y, t)ux + b2(x, y, t)uy + c(x, y, t)u+ f(x, y, t) (1)

initial condition

u(x, y, 0) = ϕ(x, y), (x, y) ∈ D := [0, h]× [0, l], (2)

ICIPE2014 8th International Conference on Inverse Problems in Engineering, May 12–15, 2014, Poland
Eds: I. Szczygieł, A.J. Nowak, M. Rojczyk
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boundary conditions

u(0, y, t) = µ1(y, t), u(h, y, t) = µ2(y, t), (y, t) ∈ [0, l]× [0, T ], (3)

uy(x, 0, t) = ν1(x, t), uy(x, l, t) = ν2(x, t), (x, t) ∈ [0, h]× [0, T ] (4)

and overdetermination condition

a(t)ux(0, y0, t) = κ(t), t ∈ [0, T ], (5)

where 0 < β < 1, 0 < y0 < l are some fixed constants.

2 Existence

Theorem 1 (existence) Suppose that the following conditions hold:

(A1) ϕ ∈ C1(D);µi ∈ C2,1([0, l]× [0, T ]), νi ∈ C1,0([0, h]× [0, T ]), bi, c, f ∈ C1,0(QT ), i = 1, 2,

κ ∈ C[0, T ];

(A2) ϕx(x, y) > 0, (x, y) ∈ D, κ(t) > 0, t ∈ [0, T ];

(A3) µ1(y, 0) = ϕ(0, y), µ2(y, 0) = ϕ(h, y), y ∈ [0, l],

ν1(x, 0) = ϕy(x, 0), ν2(x, 0) = ϕy(x, l), x ∈ [0, h],

µ1y(0, t) = ν1(0, t), µ1y(l, t) = ν2(0, t), µ2y(0, t) = ν1(h, t), µ2y(l, t) = ν2(h, t), t ∈ [0, T ].

Then for t ∈ [0, T0], where 0 < T0 ≤ T , and T0 is determined by given data, there exists a solution (a, u)

to the problem (1)-(5), that belongs to C[0, T0]× (C2,1(QT0)∩C1,0(QT0), where a(t) > 0, t ∈ [0, T0] .

Proof. Suppose that a = a(t) is known. Let us write an integro-differential equation, that is equivalent
to direct problem (1)-(4):

u(x, y, t) = u0(x, y, t) +

t∫

0

l∫

0

h∫

0

G12(x, y, t, ξ, η, τ)(b1(ξ, η, τ)v1(ξ, η, τ) + b2(ξ, η, τ)v2(ξ, η, τ)

+ c(ξ, η, τ)u(ξ, η, τ))dξdηdτ, (6)

where the derivatives ux(x, y, t) and uy(x, y, t) are denoted as v1 and v2 respectively, and

u0(x, y, t) =

l∫

0

h∫

0

G12(x, y, t, ξ, η, 0)ϕ(ξ, η)dξdη +

t∫

0

l∫

0

G12ξ(x, y, t, 0, η, τ)τβa(τ)µ1(η, τ)dηdτ

−
t∫

0

l∫

0

G12ξ(x, y, t, h, η, τ)τβa(τ)µ2(η, τ)dηdτ −
t∫

0

h∫

0

G12(x, y, t, ξ, 0, τ)τβa(τ)ν1(ξ, τ)dξdτ

+

t∫

0

h∫

0

G12(x, y, t, ξ, l, τ)τβa(τ)ν2(ξ, τ)dξdτ +

t∫

0

l∫

0

h∫

0

G12(x, y, t, ξ, η, τ)f(ξ, η, τ)dξdηdτ.
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By Gij(x, y, t, ξ, η, τ), i = 1, 2 we denote Green’s functions for the heat equation ut = tβa(t)∆u +

f(x, y, t) with boundary conditions of the i-th kind by x and j-th kind by y. They are determined by the
equality:

Gij(x, y, t, ξ, η, τ) =
1

4π(θ(t)− θ(τ))

+∞∑

m,n=−∞

((
exp

(
− (x− ξ + 2nh)2

4(θ(t)− θ(τ))

)

+ (−1)i exp
(
− (x+ ξ + 2nh)2

4(θ(t)− θ(τ))

))(
exp

(
− (y − η + 2ml)2

4(θ(t)− θ(τ))

)

+ (−1)j exp
(
− (y + η + 2ml)2

4(θ(t)− θ(τ))

))
)
, where θ(t) =

t∫

0

τβa(τ)dτ, i, j = 1, 2.

(7)

Note that the Green’s function Gij can be presented as a product of two one-dimensional Green’s func-
tions: Gij(x, y, t, ξ, η, τ) = Gi(x, t, ξ, τ)Gj(y, t, η, τ). Using (6), integration by parts and the Green’s
function properties

G1x(x, t, ξ, τ) = −G2ξ(x, t, ξ, τ), G2ξξ(x, t, ξ, τ) = −G2τ (x, t, ξ, τ)

a(τ)
,

we calculate v1 and v2:

v1(x, y, t) = u0x(x, y, t) +

t∫

0

l∫

0

h∫

0

G12x(x, y, t, ξ, η, τ)(b1(ξ, η, τ)v1(ξ, η, τ) + b2(ξ, η, τ)v2(ξ, η, τ)

+ c(ξ, η, τ)u(ξ, η, τ))dξdηdτ, (8)

v2(x, y, t) = u0y(x, y, t) +

t∫

0

l∫

0

h∫

0

G12y(x, y, t, ξ, η, τ)(b1(ξ, η, τ)v1(ξ, η, τ) + b2(ξ, η, τ)v2(ξ, η, τ)

+ c(ξ, η, τ)u(ξ, η, τ))dξdηdτ, (9)

where

u0x(x, y, t) =

l∫

0

h∫

0

G22(x, y, t, ξ, η, 0)ϕξ(ξ, η)dξdη +

t∫

0

l∫

0

G22(x, y, t, h, η, τ)(µ2τ (η, τ)

− τβa(τ)µ2ηη(η, τ)− f(h, η, τ))dηdτ −
t∫

0

l∫

0

G22(x, y, t, 0, η, τ)(µ1τ (η, τ)− τβa(τ)µ1ηη(η, τ)

− f(0, η, τ))dηdτ −
t∫

0

h∫

0

G22(x, y, t, ξ, 0, τ)τβa(τ)ν1ξ(ξ, τ)dξdτ +

t∫

0

h∫

0

G22(x, y, t, ξ, l, τ)

× τβa(τ)ν2ξ(ξ, τ)dξdτ +

t∫

0

l∫

0

h∫

0

G22(x, y, t, ξ, η, τ)fξ(ξ, η, τ)dξdηdτ, (10)
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u0y(x, y, t) =

l∫

0

h∫

0

G11(x, y, t, ξ, η, 0)ϕη(ξ, η)dξdη +

t∫

0

l∫

0

G11ξ(x, y, t, 0, η, τ)τβa(τ)µ1η(η, τ)dηdτ

−
t∫

0

l∫

0

G11ξ(x, y, t, h, η, τ)τβa(τ)µ2η(η, τ)dηdτ +

t∫

0

h∫

0

G11η(x, y, t, ξ, 0, τ)τβa(τ)ν1(ξ, τ)dξdτ

−
t∫

0

h∫

0

G11η(x, y, t, ξ, l, τ)τβa(τ)ν2(ξ, τ)dξdτ +

t∫

0

l∫

0

h∫

0

G11(x, y, t, ξ, η, τ)fη(ξ, η, τ)dξdηdτ.

(11)

We obtained a system (6), (8), (9) equivalent to direct problem (1)-(4). In order to obtain the equation
equivalent to overdetermination condition (5), we must first show that v1(0, y0, t) > 0. First, we have to
estimate v1(0, y0, t) from below. Denote first integral in the equality for v1(0, y0, t) as I1. Note that the
following equality holds:

h∫

0

G2(x, t, ξ, τ)dξ = 1. (12)

Using this equality and conditions (A2), we obtain:

I1 ≥ min
D

ϕx(x, y) := M1 > 0. (13)

It follows from the theorem conditions and the fact that other integrals in v1(0, y0, t) converge to zero
when t→ +0 that one can choose such T1 : 0 < T1 ≤ T , that the following inequality holds:

v1(0, y0, t) ≥
M1

2
, t ∈ [0, T1]. (14)

Hence we get from (5)

a(t) =
κ(t)

v1(0, y0, t)
, t ∈ [0, T1]. (15)

Thus we have obtained a system of equations (6), (8), (9), (15). It easy to show that the problem (1)-(5)
is equivalent to the system of equations (6), (8), (9), (15).

To prove the existence of the solution, we use Schauder fixed point theorem. We will find apriori estimates
of the solutions of the system (6), (8), (9), (15).

Estimate a(t) from above. Applying (14) to (15), we obtain:

a(t) ≤ A1, t ∈ [0, T1], (16)

where A1 is determined by given data.

Now we find the estimate for a(t) from below. For that we need estimates for u(x, y, t), v1(x, y, t),
v2(x, y, t) from above. Denote U(t) := max

(x,y)∈D
|u(x, y, t)|, Vk(t) := max

(x,y)∈D
|vk(x, y, t)|, k = 1, 2.

Estimate u0, u0x, u0y first. Using (12), (16) and known estimate [3]:

G2(x, t, ξ, τ) ≤ C1 +
C2√

θ(t)− θ(τ)
, (17)
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we get

|u0(x, y, t)| ≤ C3, |u0x(x, y, t)| ≤ C4 + C5

t∫

0

dτ√
θ(t)− θ(τ)

, |u0y(x, y, t)| ≤ C6. (18)

Then, using estimates for u0, u0x, u0y, and equations (6), (8), (9), we obtain:

U(t) ≤ C7 + C8

t∫

0

(V1(τ) + V2(τ) + U(τ)) dτ, t ∈ [0, T ], (19)

V1(t) ≤ C9 + C10

t∫

0

(
V1(τ) + V2(τ) + U(τ) + 1√

θ(t)− θ(τ)

)
dτ, t ∈ [0, T ], (20)

V2(t) ≤ C11 + C12

t∫

0

(
V1(τ) + V2(τ) + U(τ)√

θ(t)− θ(τ)

)
dτ, t ∈ [0, T ]. (21)

In order to estimate U let us multiply and divide subintegral expression in (19) by
√
θ(t)− θ(τ). By

using (16), we obtain:

U(t) ≤ C7 + C13

t∫

0

V1(τ) + V2(τ) + U(τ)√
θ(t)− θ(τ)

dτ, t ∈ [0, T ]. (22)

Denote W (t) := U(t) + V1(t) + V2(t) + 1. From (19)-(21) we have:

W (t) ≤ C14 + C15

t∫

0

W (τ)√
θ(t)− θ(τ)

dτ. (23)

From the overdetermination condition (5) it follows that a(t)W (t) ≥ κ(t), and thus 1 ≤ a(t)W (t)
κ(t) . Let

us substitute the obtained inequality into (23):

W (t) ≤ C14 + C16

t∫

0

a(τ)W 2(τ)√
θ(t)− θ(τ)

dτ. (24)

Squaring both parts in (24) and using Cauchy-Bunyakovsky inequality we get:

W 2(t) ≤ 2C2
14 + 2C2

16

t∫

0

A1W
4(τ)√

θ(t)− θ(τ)
dτ

t∫

0

a(τ)√
θ(t)− θ(τ)

dτ. (25)

Estimate the last integral in this inequality. From the definition of θ(t) it follows that θ(t) ≤ tβ+1

β+1A1, that

is,
(
θ(t)(β+1)

A1

) β
β+1 ≤ tβ . We have:

I :=

t∫

0

a(τ)√
θ(t)− θ(τ)

dτ ≤ C17

t∫

0

a(τ)τβdτ

(θ(τ))
β
β+1
√
θ(t)− θ(τ)

.
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By performing a substitution z =
θ(τ)

θ(t)
the last inequality is transformed to:

I ≤ C18(θ(t))
1−β

2(β+1)

1∫

0

dz

z
β
β+1
√

1− z
.

Taking into account that
β

β + 1
<

1

2
for 0 < β < 1, the last inequality assumes the form

I ≤ C18(θ(t))
1−β

2(β+1)

1∫

0

dz√
z(1− z)

≤ C19.

Applying this result to inequality (25) yields:

W 2(t) ≤ C20 + C21

t∫

0

W 4(τ)√
θ(t)− θ(τ)

dτ.

Let us substitute t by σ, multiply both parts by
a(σ)√

θ(t)− θ(σ)
and integrate from 0 to t. We get:

t∫

0

a(σ)W 2(σ)√
θ(t)− θ(σ)

dσ ≤ C22

t∫

0

a(σ)√
θ(t)− θ(σ)

dσ + C23

t∫

0

a(σ)√
θ(t)− θ(σ)

dσ

σ∫

0

W 4(τ)√
θ(σ)− θ(τ)

dτ.

Transform the last summand in this inequality. By changing the order of integration and making a sub-

stitution z =
θ(σ)− θ(τ)

θ(t)− θ(τ)
, we obtain:

t∫

τ

a(σ)σβdσ√
(θ(t)− θ(σ))(θ(σ)− θ(τ))

= π.

Then

t∫

0

a(σ)W 2(σ)√
θ(t)− θ(σ)

dσ ≤ C24 + C25

t∫

0

W 4(τ)dτ

τβ
.

Substituting this estimate into (24) yields:

W (t) ≤ C26 + C27

t∫

0

W 4(τ)dτ

τβ
.

Let us denote right part of the inequality by W̃ (t). Let’s find the derivative

W̃ ′(t) = C27
W 4(t)

tβ
≤ C27

W̃ 4(t)

tβ
.
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By solving this inequality, we get

W (t) ≤ C28(1− β)
1
3

(1− β − 3C3
28C27t1−β)

1
3

, t ∈ [0, T2], (26)

where T2 : 0 < T2 ≤ T1 satisfies the inequality 1− β− 3C3
28C27T

1−β
2 > 0. Hence we get the following

estimate: W (t) ≤M2, t ∈ [0, T2]. Therefore we have:

|v1(x, y, t)| ≤M2, |v2(x, y, t)| ≤M2, |u(x, y, t)| ≤M2, t ∈ [0, T2]. (27)

Using (15) we get an estimate from below for a(t):

a(t) ≥ A0 > 0, t ∈ [0, T2], (28)

where A0 is determined by given data. System (6), (8), (9), (15) can be presented as:

(a, u, v1, v2) = P(a, u, v1, v2),

where P is determined by right parts of (6), (8), (9), (15). Operator P maps

N =

{
(a, u, v1, v2) ∈ C[0, T0]×

(
C(QT0)

)3
: A0 ≤ a(t) ≤ A1, |u| ≤M2,

M1

2
≤ v1 ≤M2,

|v2| ≤M2

}
, T0 = min{T1, T2}

into itself. This operator is completely continuous [4]. Hence P has a fixed point, therefore there exists a
solution to (1)-(5).

3 Uniqueness

Theorem 2 (uniqueness) Suppose that the following conditions hold:

(A4) ϕ ∈ C2(D), µi ∈ C3,1([0, l]× (0, T ]) ∩ C2,1([0, l]× [0, T ]), νi ∈ C2,1([0, h]× (0, T ])∩
∩ C1,0([0, h]× [0, T ]); there exist finite limits lim

t→+0
tβµiyyy, lim

t→+0
tβνixx; bi, c, f ∈ C1,0(QT );

(A5) κ(t) 6= 0, t ∈ [0, T ].

Then the solution of the problem (1)-(5) is unique in C[0, T ] × (C2,1(QT ) ∩ C1,0(QT )), a(t) > 0, t ∈
[0, T ].

Proof. Suppose that (a1, u1) and (a2, u2) are two solutions to the problem (1)-(5). For their difference
(a, u) = (a1 − a2, u1 − u2) we have the following problem:

ut = tβa1(t)∆u+ tβa(t)∆u2 + b1(x, y, t)ux + b2(x, y, t)uy + c(x, y, t)u, (x, y, t) ∈ QT , (29)

u(x, y, 0) = 0, (x, y) ∈ D, (30)

u(0, y, t) = u(h, y, t) = 0, (y, t) ∈ [0, l]× [0, T ], (31)

uy(x, 0, t) = uy(x, l, t) = 0, (x, t) ∈ [0, h]× [0, T ], (32)

a1(t)ux(0, y0, t) = −a(t)u2x(0, y0, t), t ∈ [0, T ]. (33)
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By using Green’s function G̃12(x, y, t, ξ, η, τ) for the parabolic equation (29), the problem (29)-(33) is
reduced to the following integral equation:

a(t) = − a1(t)

u2x(0, y0, t)

t∫

0

l∫

0

h∫

0

G̃12x(0, y0, t, ξ, η, τ)τβa(τ)∆u2(ξ, η, τ)dξdηdτ, (34)

Let us estimate the kernel of this equation. Denote by G(2)
12 (x, y, t, ξ, η, τ) the Green’s function for the

heat equation u2t = tβa2(t)∆u2 with boundary conditions (3), (4). By differentiating (6), (8), (9) twice
by x and y, we get:

u2xx(x, y, t) = u0xx(x, y, t) +

t∫

0

l∫

0

G
(2)
12ξ(x, y, t, h, η, τ)

(
b1(h, η, τ)u2ξ(h, η, τ) + b2(h, η, τ)µ2η(η, τ)

+ c(h, η, τ)µ2(η, τ)
)
dηdτ −

t∫

0

l∫

0

G
(2)
12ξ(x, y, t, 0, η, τ)

(
b1(0, η, τ)u2ξ(0, η, τ) + b2(0, η, τ)µ1η(η, τ)

+ c(0, η, τ)µ1(η, τ)
)
dηdτ −

t∫

0

l∫

0

h∫

0

G
(2)
12ξ(x, y, t, ξ, η, τ)(b1(ξ, η, τ)u2ξξ + b2(ξ, η, τ)u2ηξ

+ (b1ξ(ξ, η, τ) + c(ξ, η, τ))u2ξ + b2ξ(ξ, η, τ)u2η + cξ(ξ, η, τ)u2)dξdηdτ, (35)

u2yy(x, y, t) = u0yy(x, y, t)−
t∫

0

l∫

0

h∫

0

G
(2)
12η(x, y, t, ξ, η, τ)(b1(ξ, η, τ)u2ξη

+ b2(ξ, η, τ)u2ηη + (b2η(ξ, η, τ) + c(ξ, η, τ))u2η + b1η(ξ, η, τ)u2ξ + cη(ξ, η, τ)u2)dξdηdτ, (36)

u2xy(x, y, t) = u0xy(x, y, t)−
t∫

0

l∫

0

h∫

0

G
(2)
21ξ(x, y, t, ξ, η, τ)(b1(ξ, η, τ)u2ξη + b2(ξ, η, τ)u2ηη

+ (b2η(ξ, η, τ) + c(ξ, η, τ))u2η + b1η(ξ, η, τ)u2ξ + cη(ξ, η, τ)u2)dξdηdτ, (37)

u2yx(x, y, t) = u0yx(x, y, t)−
t∫

0

l∫

0

h∫

0

G
(2)
21η(x, y, t, ξ, η, τ)(b1(ξ, η, τ)u2ξξ + b2(ξ, η, τ)u2ηξ

+ (b1ξ(ξ, η, τ) + c(ξ, η, τ))u2ξ + b2ξ(ξ, η, τ)u2η + cξ(ξ, η, τ)u2)dξdηdτ. (38)

It is clear that we can split ((35), (36), (37), (38)) in two independent systems ((35), (38)) and ((36),
(37)). Then for ((35), (38)) we obtain:

u2xx(x, y, t) = û2xx(x, y, t)−
t∫

0

l∫

0

h∫

0

G
(2)
12ξ(x, y, t, ξ, η, τ)(b1(ξ, η, τ)u2ξξ + b2(ξ, η, τ)u2ηξ

+ (b1ξ(ξ, η, τ) + c(ξ, η, τ))u2ξ + b2ξ(ξ, η, τ)u2η + cξ(ξ, η, τ)u2)dξdηdτ,

u2yx(x, y, t) = û2yx(x, y, t)−
t∫

0

l∫

0

h∫

0

G
(2)
21η(x, y, t, ξ, η, τ)(b1(ξ, η, τ)u2ξξ + b2(ξ, η, τ)u2ηξ

+ (b2η(ξ, η, τ) + c(ξ, η, τ))u2η + b1η(ξ, η, τ)u2ξ + cη(ξ, η, τ)u2)dξdηdτ, (39)
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where û2xx(x, y, t) and û2yx(x, y, t) denote corresponding free members in equations for u2xx(x, y, t)

and u2yx(x, y, t). Their behaviour will be established first. We will need the equations for u0xx and u0yx:

u0xx(x, y, t) =

l∫

0

h∫

0

G
(2)
12 (x, y, t, ξ, η, 0)ϕξξ(ξ, η)dξdη −

t∫

0

l∫

0

G
(2)
12ξ(x, y, t, h, η, τ)(µ2τ (η, τ)

− τβa2(τ)µ2ηη(η, τ)− f(h, η, τ))dηdτ +

t∫

0

l∫

0

G
(2)
12ξ(x, y, t, 0, η, τ)(µ1τ (η, τ)

− τβa2(τ)µ1ηη(η, τ)− f(0, η, τ))dηdτ +

t∫

0

h∫

0

G
(2)
12 (x, y, t, ξ, l, τ)τβa2(τ)ν2ξξ(ξ, τ)dξdτ

−
t∫

0

h∫

0

G
(2)
12 (x, y, t, ξ, 0, τ)τβa2(τ)ν1ξξ(ξ, τ)dξdτ −

t∫

0

l∫

0

h∫

0

G
(2)
12ξ(x, y, t, ξ, η, τ)fξ(ξ, η, τ)dξdηdτ,

u0yx(x, y, t) =

l∫

0

h∫

0

G
(2)
21 (x, y, t, ξ, η, 0)ϕξη(ξ, η)dξdη +

t∫

0

l∫

0

G
(2)
21 (x, y, t, h, η, τ)(µ2τη(η, τ)

− τβa2(τ)µ2ηηη(η, τ)− fη(h, η, τ))dηdτ −
t∫

0

l∫

0

G
(2)
21 (x, y, t, 0, η, τ)(µ1τη(η, τ)

− τβa2(τ)µ1ηηη(η, τ)− fη(0, η, τ))dηdτ −
t∫

0

h∫

0

G
(2)
21η(x, y, t, ξ, l, τ)τβa2(τ)ν2ξ(ξ, τ)dξdτ

+

t∫

0

h∫

0

G
(2)
21η(x, y, t, ξ, 0, τ)τβa2(τ)ν1ξ(ξ, τ)dξdτ −

t∫

0

l∫

0

h∫

0

G
(2)
21η(x, y, t, ξ, η, τ)fξ(ξ, η, τ)dξdηdτ.

Using known estimates [4]:

t∫

0

G1ξ(x, t, 0, τ)dτ ≤ C29

tβ
, −

t∫

0

G1ξ(x, t, h, τ)dτ ≤ C30

tβ
, (x, t) ∈ [0, h]× [0, T ], (40)

from (35), (38) and corresponding equations for u0xx and u0yx it is easy to see that:

û2xx(x, y, t) ≤ C31t
−β, û2yx ≤ C32, t ∈ [0, T ]. (41)

We now estimate the kernel in first equation in (39), denoting it by I . Using (7), we get:

I ≤
t∫

0

h∫

0

C33 + C34τ
−β

(
θ2(t)− θ2(τ)

)3/2
+∞∑

n=−∞

(
|x− ξ + 2nh| exp

(
− (x− ξ + 2nh)2

4(θ2(t)− θ2(τ))

)

+ |x+ ξ + 2nh| exp
(
− (x+ ξ + 2nh)2

4(θ2(t)− θ2(τ))

))
dξdτ := I1 + I2,
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where θ2(t) =
t∫
0

a2(τ)dτ . In the integral I1 substitute z =
x− ξ + 2nh

2
√
θ2(t)− θ2(τ)

:

I1 ≤
+∞∑

n=−∞

t∫

0

C35 + C36τ
−β

√
θ2(t)− θ2(τ)

x−ξ+2nh

2
√
θ2(t)−θ2(τ)∫

x−ξ+(2n−1)h

2
√
θ2(t)−θ2(τ)

|z| exp(−z2)dz ≤
t∫

0

C37τ
−βdτ√

θ2(t)− θ2(τ)

×
+∞∫

−∞

|z| exp(−z2)dz ≤
t∫

0

C38 + C39τ
−β

√
θ2(t)− θ2(τ)

dτ ≤
t∫

0

C40 + C41τ
−β

√
tβ+1 − τβ+1

dτ.

By substituting z = τ/t in the last integral, we get the next estimate:

I1 ≤ t
1−β
2


C42

1∫

0

dz√
1− z + C43t

−β
1∫

0

dz

zβ
√

1− z


 ≤ t 1−β2

(
C44 + C45t

−β
)
.

I2 is estimated similarly. Then, applying similar procedure to u2yx, from (39) we obtain

u2xx(x, y, t) ≤ C46 + C47t
−β, u2yx(x, y, t) ≤ C48, t ∈ [0, T ]. (42)

For u2xy and u2yy, using similar calculations, we have:

u2xy(x, y, t) ≤ C49, u2yy(x, y, t) ≤ C50, t ∈ [0, T ]. (43)

From the given estimates it follows, that the kernel of the equation (34) is integrable, therefore the
solution to (29)-(33) is trivial. This condludes the proof of the theorem.
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Abstract 

One of elements cement kiln installation is a precalciner, which improves calcination process 
efficiency and product quality. During operation of presented type of precalciner particle distribution 

between upper and lower outlets is separated in a proportion 30 and 70%, respectively. This paper 

presents results of numerical calculations of the gas-particle countercurrent flow in precalciner. Gas-

particle flow was calculated using Euler method for air motion and Lagrange method for the particles 
motion. By iterative scaling the particle diameters is possible achieve proper particle distribution 

between outlets from precalciner chamber. 

1 Introduction 

Industrial installations for clinker production have a very complex structure and they are difficult to 

analyses by theoretical methods [1]. One of the most important elements of this installation is 
precalciner, where is the initial stage of the raw material calcination [2,3]. The main part of the work is 

modelling the phenomena flow in the chamber with atypical construction. Gas-particle multiphase 

flow in some kind of precalcination chamber is considered. Fig. 1 presents calculation domain with the 
information about inlets, outlets and geometrical shape of the chamber. The distribution of particle size 

in inlets to precalciner chamber has influence on heat and mass transfer between particles and gas. As 

a result of sieve analysis of raw material and Rosin-Rammler-Sperling calculation method, the authors 

obtained a particle size distribution as shown in Fig. 3. This distribution was assumed in the early 
stages of calculations. 

Due to Euler-Lagrange method used for the calculation, it was necessary to set the correct fractional 

distribution of particles. For assumed particles distribution, authors noted that all particles were carried 
away by upper outlet to preheater tower (Fig. 2). Sieve analysis, shown in Fig. 3, was made for 

particles after cooling to room temperature. This situation creates a risk that during the sieving particle 

were crushed and sieve residues do not represent the fractional composition of raw material in real 

flow. The possibility of particles coagulation increases with the temperature. Because of that, particles 

ICIPE2014 8th International Conference on Inverse Problems in Engineering, May 12–15, 2014, Poland
Eds: I. Szczygieł, A.J. Nowak, M. Rojczyk

433



 J. Wydrych, G. Borsuk, B. Dobrowolski, G. Nowosielski  

 

 

from cyclones IV may have larger diameters than those from cyclones III. The authors proposed a 

method based on the displacement of the upper range of diameters in the direction of greater values. 
Because of the lack of possibility to determine the true particles size distribution by measurements, 

therefore authors used the method of gradually increasing particle diameters. Due to the frequent 

change of the upper limit, this method can be classified as iterative. The method used for the 
calculation and numerical results are presented in the following parts of the work. 

 
 

Figure 1. Calculation domain with control 

cross-sections. 

 
 

Figure 2. Particles trajectory from upper inlets for 

all diameters in range15-500µm. 

 

 
 

Figure 3. Particle size distributions of raw material. 
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2 Method of calculations 

In order to realize numerical calculations, the mathematical model containing equations of motion for 
the gaseous phase and particles was formulated. Gas motion was described with the Euler method, and 

the particle motion – by the Lagrange method. To analyze motion of the gas-particle polydispersive 

mixture, in this paper the PSI-Cell method was applied [4,5,6]. 

Numerical calculations are based on the following assumptions: considered flow is stationary, without 
phase changes, and both phases are incompressible. Gas motion is described in the uniform, 

generalized conservative form, isolating convection, diffusion and source components. In a 

consequence we obtain 
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, (1) 

where  is a generalized dependent variable,  is the coefficient of diffusion transport, and the source 

term S contains all the remaining components of the differential equations [4]. The coefficients  and 

S are dependent on the variable . In the PSI-Cell method it is assumed that particles of the 
disintegrated phase are the sources of mass, momentum and energy occurring as additional 

components Sp in equations of the continuous (gaseous) phase.  
The system of equations is accompanied by suitable boundary and initial conditions. The above system 

of partial differential equations is non-linear. Particular equations are coupled, so they have to be 
solved with special numerical techniques. 

In order to calculate turbulence, model k- was used. The standard k- model is a semi-empirical 

model based on model transport equations for the turbulence kinetic energy k and its dissipation rate . 
The model transport equation for k is derived from the exact equation, while the model transport 

equation for  was obtained using physical reasoning and bears little resemblance to its mathematically 

exact counterpart. 

In the derivation of the k- model, it was assumed that the flow was fully turbulent, and the effects of 

molecular viscosity were negligible. The standard k- model is therefore valid only for fully turbulent 

flows [7]. The turbulence kinetic energy, k, and its rate of dissipation, , are calculated from the 

following transport equations [8]: 
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In these equations, Gk represents the generation of turbulence kinetic energy due to the mean velocity 

gradients. Gb is the generation of turbulence kinetic energy due to buoyancy. YM represents the 

contribution of the fluctuating dilatation in compressible turbulence to the overall dissipation rate. C1, 

C2, and C3 are constants. k and  are the turbulent Prandtl numbers for k and , respectively. Sk and 

S are user-defined source terms. The turbulent (or eddy) viscosity µt is computed by combining k and 

 as follows:  

             


 

2k
Ct  , (4) 

The model constants 
1

C , 
2

C , 


C , 
k

  and 


  have the following default values 44.1
1



C , 92.1

2



C , 

09.0


C , 0.1
k

  and 3.1


 . 
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The particle trajectory should be known during calculation of the mentioned above source components 

of differential equations. The particle trajectory is calculated according to its equation of motion [8]. If 
the phase density difference is big, the equation of particle motion can be written as: 

       spp

2/12/1

p

p

p
Re,Refuu

1
084,3guu

1

dt

ud 



































 , (5) 

Equations presented above were solved with the using ANSYS Fluent Package [9] 

3 Results 

In order to perform the calculations authors adopted the boundary conditions, which are shown in Tab. 

1. Inlet from kiln is the source of gas produced during the combustion of fuel and chemical 

transformation of raw material in the high temperature. The same cross-section is treated as a outlet for 

calcined material. Raw material is supplied from two inlets. In the following descriptions raw material 
inlets from cyclones III and VI are called upper and lower inlets, respectively, regarding outlets inlet 

from kiln and outlet to cyclones are called lower and upper outlets. 

Table 1. Boundary conditions for inlets and outlets. 

Boundary v [m/s] T [K] pn [Pa]  

Inlet from kiln 15 1370 -400 

Outlet to bypass -30 1100 -400 

Outlet to cyclones 
From the balance of 

the inflow mass 
1112 -800 

Coal inlet 100 300 0 

Shale’s inlet 45 300 0 

Tires inlet Closed – treated as a wall 

Raw material inlet 

from cyclones III From flow rate of 

particles 

1000 0 

Raw material inlet 

from cyclones IV 
1100 0 

 

To reach from the initial ranges of diameters, as a result the sieve analysis to the final range, 

corresponding to the mass distribution between the upper and lower outlets, authors made about 20 
steps in the search for the appropriate range. In the first of the result series, maximum limits of the 

particle diameters from the upper and lower inlets were set to 1500 and 2000µm, respectively. 

The results that were presented in Table 2 allow to conclude that all particles with diameter less than 

200µm from the upper inlet and all particles with diameter less than 105µm from the lower inlet flow 
to the upper outlet to cyclones. For all particles from the two inlets mass flow rate is separated in a 

proportion 76.22% to 23.78% for the upper and lower outlets, respectively. Ranges used in this 

iteration are not those that cause the correct distribution of the mass flow rate between the upper and 
lower outlets. 

Since the upper diameter ranges have been changed to higher values, the numbering does not indicate 

the particle diameters but rather their names, and for each fraction, the actual particle diameters are set, 

as in example shown in Tab. 3. 
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Table 2. Percentage distribution of particles from all, upper and lower inlets 
to the upper and lower outlets considered size of particles. 

 

All inlets Upper inlet Lower inlet 

d Upper Lower Upper Lower Upper Lower 

15 100.00% 0.00% 100.00% 0.00% 0.00% 0.00% 

30 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 

45 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 

60 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 

75 99.40% 0.60% 100.00% 0.00% 98.59% 1.41% 

90 99.83% 0.17% 100.00% 0.00% 99.52% 0.48% 

105 93.60% 6.40% 100.00% 0.00% 79.79% 20.21% 

120 88.26% 11.74% 100.00% 0.00% 65.37% 34.63% 

135 82.82% 17.18% 100.00% 0.00% 50.50% 49.50% 

150 79.92% 20.08% 100.00% 0.00% 43.18% 56.82% 

165 70.79% 29.21% 99.59% 0.41% 26.42% 73.58% 

180 67.19% 32.81% 100.00% 0.00% 28.16% 71.84% 

200 56.72% 43.28% 97.99% 2.01% 11.45% 88.55% 

220 46.10% 53.90% 82.86% 17.14% 1.96% 98.04% 

245 39.77% 60.23% 94.51% 5.49% 0.40% 99.60% 

280 34.00% 66.00% 91.28% 8.72% 0.00% 100.00% 

350 27.15% 72.85% 76.52% 23.48% 0.00% 100.00% 

500 2.75% 97.25% 6.30% 93.70% 0.00% 100.00% 

 

For next series of the results, upper limits of the particle diameters from the upper and lower inlets 

were set to 1500 and 2500µm, respectively. Results for this step were presented in form of particle 
trajectories. 

a)  b)  
 

Figure 4. Trajectory particles of size a) 45, b) 105. 
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a)  b)  c)  
 

Figure 5. Trajectory particles of size a) 245, b) 500, c) all diameters. 

 
The results presented in this form allow for the identification of areas not reached by particles. 

Detection of these areas can be helpful in modifying the geometry and efficiency increasing of the 

flow system. Particles calcination process is dependent on the surrounding gas temperature and the 
particles residence time in the system. This time is indicated by trajectory colors. Analysis of Fig. 4 

and 5 lead to the conclusion that the largest particles end up in the lower outlet, the smallest in the 

upper outlet, while the rest are distributed between the upper and lower in different proportion. 
For all particles from the two inlets mass flow rate is distributed in the ratio 54.02% to 45.98% for the 

upper and lower outlets, respectively. But also, this ranges are not those that cause the correct 

distribution of the mass flow rate between the upper and lower outlets. 

In last series of the results, upper limits of the particle diameters from the upper and lower inlets were 
set to 1500µm and 2900µm, respectively. 

a)  b)  
 

Figure 6. Trajectory particles of size a) 45, b) 105. 
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a)  b)  c)  
 

Figure 7. Trajectory particles of size a) 245, b) 500, c) all diameters. 
 

Analysis of trajectory presented in Fig.4÷7 let conclude, that change of diameter range for the lower 

inlet causes significant changes in the trajectory of the particles from the upper inlet. In the Fig. 6 and 
7 can be seen that the particles are concentrated in a smaller areas than it was before. This is due to the 

fact that almost all of the particles from the lower inlet flow down along the chamber wall in form of 

“rope” and get into lower outlet, which results in more free motion of the gas phase [10,11]. For all 
particles from the two inlets mass flow rate is separated in a proportion 27.01% to 72.99% for the 

upper and lower outlets, respectively. This ranges was used as a correct for final calculations. 

 

 
 

Figure 8. Percentage distribution of particle from all inlets to the upper and lower outlets. 
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a)  b)  
 

Figure 9. Percentage distribution of particle to the upper and lower outlets from 

a) upper, b) lower inlets. 
 

Charts presented in the Fig. 8 and 9 show percentage particle distributions to the upper and lower 

outlets: supplied from all (Fig. 8), upper and lower inlets (Fig. 9). Fig. 9 b shows, that from lower inlet 

all the particles flow into the lower outlet, except the particle sizes of 15 and 30. 
 

 
 

Figure 10. Percentage distribution of particle from all (All), upper (U) and lower (L) 
inlets to the upper and lower outlets for samples B and D. 

 

Results presented in this work refer to change the upper diameter ranges for examples: A – upper inlet 
500 µm, lower inlet 500 µm, B – upper inlet 1500 µm, lower inlet 2000 µm, C – upper inlet 1500 µm, 

lower inlet 2500 µm and D – upper inlet 1500 µm, lower inlet 2900 µm. In the Fig. 10 was shown 

percentage distribution of particles from upper, lower and both of inlets to the upper and lower outlets 

for cases B and D. This comparison confirms influence of particle diameter range flowing from lower 
inlets on particles flow from upper inlets. Particles flowing from lower inlet along the chamber wall 

reduces the disturbances in the throat of the chamber between the kiln and the precalciner. This gas 

flow reduces the amount of particles flowing into the upper outlet from the upper inlets. 

4 Conclusions 

The number of steps of numerical calculations used at this stage gave the effect of the mass 
distribution between top and bottom of the chamber similar to the obtained from the experimental 

observations. In order to achieve the separation of the particles mass flow in correct proportions, 

authors made series of numerical calculations, for which the fractional distribution of the particles was 

varied. In the Fig. 11 was shown percentage distribution of particle from all inlets to the upper and 
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lower outlets for all considered examples. Percentage distribution for case D has reached the required 

level of 30% to the upper and 70% to the lower outlet. 

Table 3. Corrected values of particle diameters of raw material 

and flow rates for upper and lower inlets 

d dU[m] MU[kg/s] dL[m] ML[kg/s] 

15 15 0.428 15 0.385 

30 60 1 105 0.9 

45 105 1.417 195 1.275 

60 155 1.722 285 1.55 

75 200 1.928 370 1.735 

90 245 2.047 460 1.843 

105 290 2.089 550 1.88 

120 335 2.064 640 1.858 

135 380 1.986 730 1.788 

150 430 1.867 820 1.68 

165 475 1.717 905 1.545 

180 520 1.55 995 1.395 

200 580 1.794 1115 1.615 

220 645 1.486 1235 1.338 

245 720 1.456 1385 1.31 

280 825 1.406 1590 1.265 

350 1040 1.331 2010 1.198 

500 1500 0.492 2900 0.443 

 

By scaling the particle diameters we can observe, that mass flow rate reaching directly to the kiln and 
returning to the heat exchangers tower were significantly changed. After changing the range of 

diameters to 15-2900 µm, large diameter particles fall into the rotary kiln, while the remaining 

fractions are carried away to the outlet from the chamber. In Tab. 3 was presented real particle 
diameters and mass flow rates for correct distribution, which was used on the final stage of 

calculations. First column numbering does not mean the particle diameters but rather their names, and 

for each fraction, the actual particle diameters are set for upper and lower inlets. 

 

 
Figure 11. Percentage distribution of particle from all inlets to the 

upper and lower outlets for all considered samples. 
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