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ABSTRACT :

Numerical simulations of forming processes require a good knowledge of the constitutive

parameters of the material. These parameters are identified using laboratory tests which

reproduce the conditions of forming processes. If mechanical tests involve large strain, the

material flow within the sample may not be homogeneous and the use of an inverse model

may be necessary.

The present paper describes an inverse method coupled with a finite element software. The

direct model solves a strongly coupled thermo-mechanical equilibrium problem using an

incremental approach. Since the discrete system is non–linear, it is solved using an iterative

procedure based on a Newton-Raphson algorithm. State variables are updated using a

Lagrangian formulation and automatic remeshing algorithm is used to avoid element

degeneracy.

The inverse problem is presented as the minimisation of a least square function and is solved

using a stabilised Gauss-Newton algorithm. The sensitivity analysis is obtain by using a semi-

analytical method, which permits to identify various model. Furthermore, this method is

compatible with the remeshing algorithm as opposed to the classical finite difference scheme.

When the number of parameters to identify is relatively important, the Gauss-Newton method

may become unstable due to correlation effects between the parameters. It is shown that for

the identification of complex constitutive law parameters, the inverse problem becomes ill-
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conditioned. A stability analysis is presented in order to understand the reasons of the

unstability and a stabilisation method is proposed.

KEYWORDS :

Inverse problem, semi-analytical sensitivity analysis, stability analysis, constitutive law,

friction law

NOMENCLATURE :

 pε� plastic strain rate tensor

 eε� elastic strain rate tensor

 ε�  total strain rate tensor

 σ  Cauchy stress tensor

 s deviatoric part of the stress tensor

 p hydrostatic pressure ,

 v velocity of the material,

 P discrete hydrostatic pressure ,

 V discrete velocity of the material,

 vdie velocity of the die,

 n outside normal of the piece,

Ω  domain of the piece

fΩ∂  free surface

cΩ∂  contact surface with the dies

ε�  equivalent plastic strain rate

ε  equivalent plastic strain

eC  elasticity tensor

0σ  flow stress

cλ vector containing the set of constitutive parameters to be identified

fλ vector containing the set of friction parameters to be identified

λ vector containing the parameters to be identified

T temperature of the material

pT  temperature of the part on the free edge
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extT  external temperature

intT  interface temperature between the part and the die

 k thermal conductivity

cρ  heat capacity

ρ  penalty coefficient

d admissible penetration distance

t∆  time discretisation step

λ∆  finite difference step

X mesh coordinates

( )λF  vector containing computed data from the direct model

M vector containing experimental data

optλ  optimal set of parameters

W weight matrix

φ  cost function

1 INTRODUCTION

Numerical simulations of forming processes require an accurate knowledge of material

properties. Therefore, constitutive parameter identification is a necessary step in order to

perform realistic simulations. In general, simple mechanical tests are used and analysed using

analytical models. But, in order to simulate forming processes, it is necessary to study

mechanical tests involving high strains. Moreover, the strain paths involved in the forming

process and in the associated mechanical tests have to be similar. These constraints imply that

inhomogeneous strain fields are often encountered during large strain mechanical tests. Then,

constitutive parameter identification may be complicated since it is generally impossible to

use a realistic analytical model to analyse such tests.

Gavrus et al. [1] have developed an inverse model coupled to a FEM software to identify

constitutive parameters using torsion tests. Massoni et al. [2] use a similar inverse method to

identify constitutive and friction parameters from compression tests. One can also cite

Mahnken and Stein [3] who identify constitutive parameters from inhomogeneous traction

tests. All these studies have be done to analyse 2D transient mechanical tests. In this paper, an

inverse analysis coupled to a 3D FEM software is described. The direct model is a software

devoted to the thermo-mechanical simulation of forming processes. The formulations chosen
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to solve the mechanical and the thermal problem are described in the first section of the paper.

Afterwards, the inverse problem is presented as an optimisation problem solved by the Gauss-

Newton algorithm. A stabilisation method is proposed in order to avoid instabilities which

may develop due to correlation effects between the parameters to be identified, and the

sensitivity analysis is done using a semi-analytical scheme [4]. The last section of this work

deals with the analysis of plain strain compression tests and of elliptic bulging tests.

2 DIRECT MODEL

2.1 CONSERVATION EQUATIONS AND LIMIT CONDITIONS

The software FORGE3 has been used in order to simulate the mechanical tests. This

software is devoted to the thermo-mechanical simulation of the forming processes. The

material flow of a domain ( )tΩ  at time t is described by the plastic incompressibility (1), the

mechanical equilibrium (2) and the heat equation (3) :

( ) ( )tin)(tracevdiv e Ω= ε� (1)

( ) ( )tin0div Ω=σ (2)

( ) ( )tin:Tk.
dt

dT
cp Ω=∇∇− εσρ � (3)

pe
T

2

vv εεεε ���� +=∇+∇= (4)

where v is the velocity, σ  is the stress tensor, T is the temperature, pcρ  is the heat capacity, k

the heat conductivity, ε�  the strain rate tensor, eε�  the elastic strain rate tensor and pε�  the

plastic strain rate tensor. Three kinds of boundary conditions may be taken into account to

solve the mechanical problem :

Free surface condition :

( )ton0n lΩ∂=σ (5)

Imposed pressure :

( )tonnPn pimp Ω∂−=σ (6)

Unilateral contact and friction law :
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( )
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σ
σ  (unilateral contact) (7)

( ) ( )tonv ctt Ω∂∆= τσ  (friction law) (8)

Two boundary conditions are considered for the thermal problem :

Dirichlet condition :

( )tonTT DD Ω∂= (9)

Neumann condition :

( )tonn.Tk NN Ω∂Φ=∇− (10)

In order to obtain a well-posed problem and to complete the set of conservation equations,

one has to introduce a constitutive law and a friction law.

2.2 CONSTITUTIVE EQUATIONS

If the material behaviour is isotropic, the Von Mises plastic yield criterion is considered

( )T,,)T,,,(fwith

0)T,,,(f

0 εεσσεεσ
εεσ

��

�

−=
≤

(11)

)(trace
3

1
p

dt

d
Ips

:
3

2
s:s

2

3 pp22

σεεσ

εεεσ

−==+=

==

�

���

(12)

where 0σ  is the flow stress, σ  the equivalent stress, s the deviatoric part of the stress tensor,

p the hydrostatic pressure, T the temperature, ε  the equivalent strain, ε�  the equivalent strain

rate and and ε�  the strain rate tensor. If the material behaviour is anisotropic, the Hill 1948

yield criterion [5] is used :

( )T,,)T,,,(fwith

0)T,,,(f

0HH

H

εεσσεεσ
εεσ

��

�

−=
≤

(13)

( ) ( ) ( ) 2
12

2
13

2
23

2
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2
1133

2
3322

2
H N2M2L2HGF σσσσσσσσσσ +++−+−+−= (14)
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where F, G, H, L, M and N are the anisotropic coefficients. The flow stress may be given by

various constitutive models :

(model 1) power law : n
0 Kεσ = (15)

(model 2)

( ) ( ) ( )
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(16)

The elastic strain rate tensor is given by the Hooke’s relation :

Id)(tr
EE

1e συσυε ��� −+= (17)

and the normality rule is used to express the plastic strain rate tensor :
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(18)

One can notice that the plastic multiplier pλ�  is identified to the plastic strain rate ε� .

2.3 FRICTION LAW

The simulations were performed using a Tresca friction law :

t

t
0

v3

v
m

∆
∆

−= στ (19)

where ( )nn.nn σστ −=  is the shear stress and ∆vt the relative sliding velocity.
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2.4 WEAK FORMULATION OF THE THERMO-MECHANICAL PROBLEM

The unilateral contact between the tool and the workpiece is treated using a penalty method :

( ) ( )

( )
( ) cdie

def

die

diedie

on
t

d
n.vv

t

d
n.vvif0

t

d
n.vvif

t

d
n.vv

n.n Ω∂
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−−−=



















∆
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∆
≥−





∆
−−−

=
+

ρ
ρ

σ (20)

where ρ is a penalty coefficient, d is the penetration distance between the die and the part, v is

the velocity of the material point and vdie the tool velocity.

Finally, in order to solve the thermo-mechanical problem using finite element methods, a

weak formulation of problems (1), (2) and (3) is expressed as follows :

( )

( ) ( ) ( )
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0
p TT:T.TkT

dt

dT
c

assuchTfind

Θ∈∀=∇∇+

Θ∈

∗

Ω

∗

Ω

∗

Ω

∗ ∫∫∫ εσρ �
(22)

where Ω  is the workpiece domain, � is the set of admissible velocities, � the set of

admissible pressures, Θ  the set of admissible temperatures satisfying cint onTT Ω∂= , 0Θ  the

set of admissible temperatures satisfying con0T Ω∂=  and χ  is the bulk modulus.

2.5 FINITE ELEMENT RESOLUTION

The mechanical problem is solved using a P1+/P1 mixed finite element method in velocity

and pressure [6] and the thermal problem is solved using a P1 finite element method [7] on

the same mesh. Indeed, the domain is discretised using a regular triangulation of Ω  with

tetrahedrons. The velocity, the pressure and the temperature are approximated by piecewise

linear functions on Ω . Replacing ∗v , ∗p  and ∗T  by basis vectors of the discretised functional
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spaces, the discrete mechanical and thermal problems are written at time nt  as a discrete non

linear system :

( )
( )
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∆
∆
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1nnnnn

VQKTT
t

C

0T,P,V,,X,R ελ
(23)

where λ  is the vector of parameters characterising the constitutive and/or the friction law,

nX  is the vector of nodal coordinates of the mesh, nε  is the computed equivalent plastic

strain at time nt  and nnn T,P,V  are respectively the vectors containing the discrete velocity,

hydrostatic pressure and temperature at time nt .

As the mechanical problem is non linear with respect to Vn and Pn, it is solved using an

iterative Newton-Raphson algorithm :
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where ( )1nnnnn T,P,V,,X,R −ελ  is denoted Rn by sake of simplicity and β is a real number

determined using a line search algorithm.

A forward Euler scheme is used to update the history variables :

nn1n V.tXX ∆+=+ (25)

and
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nn1n .t εεε �∆+=+ (26)

In this updated Lagrangian scheme, the nodes follow the material flow, so the mesh may

degenerate during the simulation. In order to ensure a satisfying mesh quality, a remeshing

algorithm is used [8].

3 FORMULATION OF THE INVERSE PROBLEM

3.1 STABILISED GAUSS-NEWTON ALGORITHM

The goal of the proposed inverse analysis is to identify some mechanical parameters using

measurements provided by mechanical tests such as compression, torsion, bulging, etc… The

inverse problem is expressed as a least square optimisation problem :

( ) { } ( )( )

( ) ( )( ) ( )( ) ( )





−=−−=

=

∈

=<<∈

2

Wdef

T

NPar,..,1i,,IR
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MFMFWMF
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ii

min
i

NPar

λλλλφ

λφλφ

λ

λλλλ (27)

where λ is a vector containing the parameters to be identified, λopt is the optimal set of

parameters, φ is the cost function, W is a diagonal weight matrix, F is the data computed by

the direct model and M is a vector containing the experimental data.

Problem (27) is solved using a Gauss-Newton algorithm [9]:

( ) ( ) ( ) ( )( )

1nn

d

MFW
d

dF
d

d

dF
W

d

dF

)criterionstop(
d

d
whiledo

n
ls

n1n

n

Tn
n

nTn

stop
2

+=

+=

−−=
















>

+ βλλ

λ
λ
λ

λ
λ

λ
λ

ε
λ
φ

(28)
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where dn is the nth Gauss-Newton step and βls is  obtained using a line search algorithm. At

each Gauss-Newton iteration, the determination of the step dn may be seen as the resolution of

the following optimisation sub-problem :

( )

( ) ( ) ( ) ( ) ( )( )MFW
d

dF
dd

d

dF
W

d

dF
d

2

1
d

dargmind

n

Tn
T

nTn
T

IRd

n

NPar

−+









=

=
∈

λ
λ
λ

λ
λ

λ
λψ

ψ

(29)

Finally, one can prove the following relation :

( )
.

d

d1
d

2
n

n

min
2

n

λ
λφ

α
≤ (30)

where αmin is the lower the Gauss-Newton matrix eigenvalue. Hence, if the Gauss-Newton

matrix is ill conditioned, the Gauss-Newton method may become unstable. When the

modelling error is important (i.e. the final value of φ is relatively high) and the Gauss-Newton

matrix is ill-conditioned, the step computed by the optimisation method may be important

even though λn is close to the optimum. In order to penalise wide optimisation steps when the

Gauss-Newton matrix is ill conditioned, sub-problem (29) is replaced by the following sub-

problem :

( )

( ) ( ) ( ) ( ) ( )( )

ij2min
i

max
i

ij

2

L

n
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T

nTn
T

IRd

n

1
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d
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d
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d
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1
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dargmind
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λ
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=
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(31)

The solution of the above sub-problem satisfies the following inequality (c.f. Appendix ) :

( )
1L

n

n

R
i

L
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d

d1
d
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λ
λφ
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(32)
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where R
minα  is the lower eigenvalue of the matrix H defined as following :

( ) ( )

ijmin
i

max
i

ij

1
nTn

1

1
Rwith

R
d

dF
W

d

dF
RH

δ
λλ

λ
λ

λ
λ

−
=

= −−

(33)

From relation (32), one can deduce :

( )
1L

n

n
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d

d1
d
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λφ

α
(34)

If we want to impose NPard
L

n ≤ , the following relation comes :
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λλ
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λ
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One can notice that the stabilisation coefficient α tends to zero when the gradient of the cost

function vanishes.  This methods aims at determining automatically a stabilisation parameter

which avoids the determination of wide Gauss-Newton steps in comparison with the

parameter variation range. Within this framework, the lower eigenvalues may be filtered if it

is necessary.

3.2 STABILITY ANALYSIS

Once the optimal set of parameters is obtained, it may be interesting to study the stability of

the inverse analysis. The computation of the sensitivity matrix allows to study the stability of

the developed inverse module [12]. The stability analysis consists in studying the influence of

an experimental data perturbation on the optimal set of parameters. The optimal set of

parameters is defined by the following relation :

( ) ( ) ( )( ) 0MFW
d

dF
2

d

d T

=−= λ
λ
λ

λ
λφ

(36)
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If the experimental data M is replaced by a perturbed experimental data M+δM, one can

denote the perturbed optimal set of parameters λ+δλ and the following relation holds :

( ) ( ) ( )
0MM

d

dF
FW

d

dF
2

T

≈




 −−+ δδλ

λ
λλ

λ
λ

(37)

Finally, one can prove that :

( ) ( ) 1T

Wkkk

d

dF
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dF
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−
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λ
λ

λ
λ

δδλ

(38)

One can notice that this analysis is based on a first order approximation and that the inequality

holds only for small perturbations. Finally, the stability analysis is able to indicate whether a

parameter can be identified accurately or not.

Some parameters may be determined with an important uncertainty because of a lack of

sensitivity of the measurements. This means that the experiments are not adequate to

determinate these parameters. Uncertainty on the parameters may also be caused by important

correlation effects between some parameters. If some parameters are highly correlated, the

cost function shows a valley close to the optimum. Therefore, the columns of the sensitivity

matrix are not linearly independent and the Gauss-Newton matrix degenerates [13]. The cross

effects between pairs of parameters can be detected by using some appropriate indicators. Let

us define the cosinus between two sensitivities as follow :

WjWi

Wji
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d
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d
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d
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d

dF
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(39)

where 
j
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iWji d
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d
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d
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d
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λλλλ
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Then, if 










ji
W d

dF
,

d

dF
cos

λλ
 is close to 1, the Gauss-Newton matrix is ill-conditioned and it is

difficult to discriminate the effects of the parameters on the measurements.

4 SENSIVITY ANALYSIS

The sensitivity analysis is a necessary step to compute first order optimisation methods and

for the stability analysis. The finite difference method  [10] is the most simple algorithm

because it uses the direct model as a black box. In counterpart, this method is relatively slow

and its accuracy depends on the discretisation step. Many authors prefer to use an analytical

sensitivity analysis (see [1], [3] and [11]). This method is very precise and linear, but its

development requires many calculations when the direct model is complex. In this work we

have chosen to use a semi-analytical scheme, which combines certain advantages of the

analytical and of the finite difference methods. The semi-analytical method [4],[2] is based on

a first order approximation of the derivative of F with respect to λ :

( )
( )λ

λ

λ
λ

λ
λ

λ
λ

λλλ

λ
∆+

∆

−




 ∆+∆+∆+∆+

= O
T,P,V,F

d

dT
T,

d

dP
P,

d

dV
V,F

d

dF
(40)

where ∆λ is the finite difference step. The derivatives of the velocity, of the pressure and of

the temperature with respect to the parameters to be identified are obtained from the

differentiation of system (23) :

( ) ( )fixedP,Vd

dR

d

dP
d

dV

P,V

R

λ
λ

λ −=


















∂
∂

(41)

( )
λλλ d

VdQ

d

dT
K

d

dT

t
C =





+







∆
∆

(42)

One should stress that the tangent systems are linear, contrary to those of the direct model.

The matrices involved in linear systems (41) and (42) are already evaluated in the direct

model for solving the thermo-mechanical problem (23). Then, it is only necessary to compute
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the right hand sides of linear systems (41) and (42). In order to avoid the calculation of the

right hand sides, a first order finite difference scheme can be used :

( ) λ
λ

λ
∆

−−≈


















∂
∂ RR

d

dP
d

dV

P,V

R p

(43)

and
( )

λ
λ

λ

λλ ∆
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 ∆+

≈
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d
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dT
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d

dT

dt

d
C (44)

with 





∆+∆+∆+∆+=

−
−

λ
λ

λ
ελε

λ
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d

dT
.T,P,V,

d

d
.,

d

dX
.X,RR

1n
1nnn

n
n

n
np (45)

and ( )1nnnnn T,P,V,,X,RR −= ελ (46)

The derivatives of the history variables are then updated :

λλλ d

dV
.t

d

dX

d

dX nn1n

∆+=
+

(47)

and

λ
ε

λ
ε

λ
ε

d

d
.t

d

d

d

d nn1n �

∆+=
+

(48)

Finally, this scheme gathers some advantages of the analytical scheme and of the finite

difference scheme. Indeed, the semi-analytical sensitivity analysis is linear and is relatively

simple to compute because of the local finite difference schemes. Moreover, the sensitivity

analysis module is easily updated when the direct model is modified. This method allows to

study different mechanical tests in order to characterise different constitutive laws.

5 APPLICATIONS

5.1 PLANE STRAIN COMPRESSION TEST

The inverse analysis described in this paper has been applied to the analysis of the plane strain

compression test. During this test,  parallelepiped brass samples are upset between two dies

(Figure 1).
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Figure 1: Plane strain compression test

The strain state generated in this mechanical test is relatively close to the strain state

encountered during the rolling process. Then, it is generally used to characterise materials to

be formed using a rolling process. As the material is deformed, the time versus load curves

are recorded.  The influence of the constitutive and of the friction coefficients on the load may

be difficult to discriminate. In order to decouple the effects of the friction and of the

constitutive coefficients on the load, two different sample heights are used.

11 
cm

2 cm

2

2 cm

0.
5 

cm

Figure 2: Sample dimensions

The material behaviour is modeled using the Von Mises plasticity criterion and the flow stress

(16). The tools are piloted using an average strain rate definied as follows :

h

vdie
av =ε� (49)

where vdie is the die velocity and h the sample height. An experimental plan (TAB 1) is used

to provide enough data for ensuring the identifiability condition [14].
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Temperatures

avε�
550 600 650 700

0.1 geometry 1

      geometry 2

+

+

+

+

+

+

5    geometry 1

geometry 2

+ +

+

+

+

TAB 1: Experimental plan

The constitutive coefficients of model (16) and the friction coefficient of the Tresca law are

identified using the developped inverse model. The result of the identification process is show

in TAB 2.

m

K0 (KPa.sm)

m0

m1(K
-1)

n

β  (K)

r0

r1(K
-1)

Ksat (KPa.sm)

satβ  (K)

0.53

152

-0.13

4.59.10-4

0.1

4915

0.96

2.49.10-3

9.8

6636

finalφ 10.9%

TAB 2: results of the estimation

A total of 14 iterations were necessary to reach the optimal set of parameters. One notices that

the Gauss-Newton method does not convergence if the stabilisation method is not used.

Figures 3 to 6 show a good agreement between computed and experimental loads.



17

geo1  -  0.1/s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

displacement (mm)

lo
ad

 (
T

o
n

s)

Computed data

Experimental data

Figure 3 : Comparison between the computed and the experimental load for the first

geometry and for an average strain rate at 0.1/s
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Figure 4 : Comparison between the computed and the experimental load for the first

geometry and for an average strain rate at 5/s
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geo2  -  0.1/s
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Figure 5 : Comparison between the computed and the experimental load for the second

geometry and for an average strain rate at 0.1/s
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Figure 6 : Comparison between the computed and the experimental load for the second

geometry and for an average strain rate at 5/s
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5.2 BULGE TEST

5.2.1 DESCRIPTION OF THE EXPERIMENT

Circular samples cut out of steel sheets are clamped using a circular blank holder. The

samples are bulged thanks to a pressured fluid. Sequences of images are taken with two CCD

cameras during bulging and they are compared to an initial reference image using ARAMIS, a

pattern recognition system [15] (see Figure 7).

Figure 7 : Bulging machine

The evolution of strain field with respect to time is deduced  from this analysis.

5.2.2 INVERSE ANALYSIS OF THE CIRCULAR BULGING TEST

The inverse module previously presented is used to find out constitutive parameters of the

steel from sheet shape measurements. The Von Mises yield criterion (11) and the constitutive

law (15) are used to model the behaviour of the material. The evolution of the positions of

five points on the sheet is used for the parameter identification. An axisymetric software

FORGE2 is able to simulate the bulge test. Within this framework, the cost function is

written as follows :
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where NbPoint is the number of points used for the identification (i.e. 5), Ni is the number of

images used, Xj
cal(ti) is the position of the j-th point computed by FORGE2 and Xj

exp(ti) is

the position of the j-th measured point at time ti. Two Gauss-Newton iterations are necessary

to reach the optimal set of parameters. The identified parameters are K=518 KPa.s and n=

0.206, and the final cost function value is 2.6%. A very good agreement between computed

and experimental shape is shown at the end of the identification (see Figure 8).
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Figure 8 : Evolution of the shape of the sample with respect to the time, X=(r,z)

Therefore, the stability analysis shows that the parameters are well defined by the data:

2
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≤

(51)

This result indicates that, even though the evolution of the shape is well reproduced by

FORGE2, it is necessary to use accurate experimental data to determine the value of n.

Finally, this example shows that the bulge tests can be studied using an inverse method. The

main advantage of this approach is that no analytical model of the bulge test has to be used.

Moreover, the stability analysis provides an information about the quality of the results given

by the inverse model.

5.2.3 INVERSE ANALYSIS OF THE ELLIPTIC BULGING TEST

The behaviour of a metallic sheet have been modelled using the Hill’48 yield criterion (13)-

(14) and the flow stress (15). In this section, the bulging tests are performed using an elliptic

blank in order to find out the Hill criterion and flow stress parameters. In order to validate the
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method, artificial experimental data is used for the inverse analysis, generated with

FORGE3, using the following set of parameters.

F

G

H

K (MPa)

n

0.4

0.5

0.6

0.54

0.15

TAB 3 : Nominal values of the constitutive parameters

At least two experiments are necessary to characterise the material. The main axis of the

elliptic blank is aligned with the rolling direction in the first experiment, and is perpendicular

to the rolling direction in the second experiment. The goal is to identify F, H, K0 and n from

the displacement measurements of three points (denoted A, B and C) on the surface of the

sheet.

Figure 9 : Measurement point locations
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Seven Gauss-Newton iterations are necessary to converge and the results of the identification

are shown in Figures 6 to 8. A good agreement between computed and experimental data is

obtained and the final cost function value is close to 0.1%.
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Figure 10 : Evolution of K with respect to Gauss-Newton iterations
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Figure 11 : Evolution of n with respect to Gauss-Newton iterations
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Figure 12 : Evolution of F and H with respect to Gauss-Newton iterations

The L, M and N parameters cannot be identified because there is no shearing during the

bulging tests. Indeed, there is no influence of these parameters on the shape of the sheet. The

parameter values at the end of the identification process are the following :

F

G

H

K0 (MPa)

n

0.4006

0.5

0.62

0.539

0.149

6 CONCLUSION

An inverse method coupled to a 3D FEM direct model is presented in this work. The semi-

analytical sensitivity analysis allows to identify various constitutive law parameters without

any adaptation of the inverse module. Moreover, the direct model, FORGE3 is able to model

different mechanical tests. Therefore, the inverse method presented in this paper allows to

identify various constitutive parameters using various mechanical tests.

The proposed stabilised inverse method provides satisfying results on various test cases. The

identification of ten parameters of a constitutive and of a friction law have been done from a
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PSC test. The proposed approach has also been used to analyse the bulging test : circular

bulging tests can be used to find out the constitutive parameters of a metallic sheet, and

elliptic bulging tests can provide Hill’s anisotropic coefficients.
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APPENDIX

The stabilised Gauss Newton step is given by the following relationship :
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where α is the stabilisation parameter and δij is the Kronecker delta.

From (52), one can deduce that :
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One can obtain the following inequality :
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where R
minα  is the smallest eigenvalue of the matrix H defined as :
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Finally, if we denote L the matrix defined as :

RRL = (57)

then
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