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1. Introduction

Laplace transformation is used in solving different problems arising from various
spheres of science and engineering. Simple image functions can be treated with the
help of transform tables or by analytical evaluation of Bromwich contour integral. In
case when Laplace transform has been obtained numerically or from an experiment a
numerical inversion becomes the only way to find required solution. In many cases a
Laplace transform is known on the real axis only.

It is a well-known fact that numerical inversion of integral transforms cannot be
based on exact formulas of inverse transformation because of the problem ill-posedness
[16], and, therefore, Tikhonov regularization should be applied in order to obtain
stable solution. Regularizing operators for integral equations of convolution type [16]
solve the problem when real formula of inverse transformation is given. The problem
becomes more complicated when inverse transformation is given in form of Bromwich
contour integral, whereas given integral transform is known on the real positive axis
[17, 18].

There is a number of methods that use regularization (see, for example, [1]–[4], [6],
[7]). However, in all known regularization methods of Laplace inverse transformation
the regularization step follows by other transformation such as discretization or
decomposition into a series of orthogonal polynomials. That is regularization is
applied to a second-order problem, not to a problem of inverting of real-valued
Laplace transforms itself. In this case it turns out to be impossible to determine
restrictions and limitations of a proposed method differently than by caring out an
actual implementation of the method on a subset of Laplace transforms.

In case of real-valued Laplace transforms effective solution of the problem has
been obtained in [10]. Then results have been generalized by introducing an integer
parameter [11].

In this paper further generalization is provided by building one-parametric set
of regularizing operators. Analytical link between regularized and exact inverse
transforms allows to analyze general features and limitations of regularized numerical
inversion of Laplace transforms. It gives information about the rate of convergence,
that could be useful while solving particular problems. The applicability of given
method was illustrated by various examples [10]. Determination of regularization
parameter is briefly discussed in [11].

2. Outline of the inversion method

The Laplace transform of a function f(t) is:

F (p) =
∫ ∞

0

e−ptf(t) dt . (1)

Considering (1) as integral equation with respect to f(t) it is shown in [10] that in case
when a Laplace transform F (p) is given for real p > 0, its regularized inverse Laplace
transform fR(t) can be found by calculating the following convolution integral:

fR(t) =
∫ ∞

0

F (u)Π(R, tu) du . (2)

The kernel of inverse Laplace transformation Π(R, x) is given by formula:

Π(R, x) =
−2 cosh πR

π2 tanh πR
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where Γ(z) is gamma function, 1F2(1; a, b; x) is a generalized hypergeometric function,
parameter R = π−1 cosh−1(α−1) depends only on parameter of regularization α.
It is also shown in [10] that regularized inverse Laplace transform fR(t) is connected
to the exact one f(t) as follows:

fR(t) =
2 coth πR

π

∫ ∞

0

f(tu)
√

u
sin(R ln u)

u2 − 1
du. (4)

Let us define a connection between regularized and exact inverse integral transforms
in form of equation (4):

fR(t) =
2
π

k(R, a)
∫ ∞

0

f(tu)ua sin(R ln u)
u2 − 1

du, (5)

where a is a real parameter, and coefficient k(R, a) → 1 as R →∞.
It is apparent that integral (5) is absolutely convergent for every t > 0 if f(t) is of
bounded variation and the following conditions are satisfied:

f(t)ta+1 = o(tε), ε > 0, as t → 0, (6)

f(t)ta−1 = o(t−ε), ε > 0, as t →∞. (7)

Theorem 1 If function f(t) is piecewise continuous, has piecewise continuous
derivative, and satisfies conditions (6), (7) then for every t > 0

lim
R→∞

fR(t) =
f(t+) + f(t−)

2
. (8)

The proof of this theorem is similar to the one provided for Theorem 1 in [10].
Let F (p), f(t) and FR(p), fR(t) be Laplace-transform pairs. Applying Laplace

transformation to (5) and inverting the order of integration we get:

FR(p) =
2
π

k(R, a)
∫ ∞

0

F (px)
x1−a

x2 − 1
sin(R ln x) dx . (9)

Integral (9) converges absolutely for every real p > 0 under the following conditions:

F (p)p2−a = o(pε), ε > 0, as p → 0, (10)

F (p)p−a = o(p−ε), ε > 0, as p →∞. (11)

Equation (9) is of type (5), therefore FR(p) → F (p) as R → ∞ for every real p > 0.
For complex parameter p, integral (9) is convergent and FR(p) → F (p) if Laplace
transform F (p) satisfies conditions (10), (11) and is analytic for Re p ≥ 0 except for
p = 0, or may have isolated singular points on the imaginary axis of type 1/(p± ib)r,
where 0 < r < 1, b > 0.

Next step is to find regularized solution of equation (1) in form of (2). Applying
Laplace transformation to equation (2) we get:

FR(p) =
∫ ∞

0

F (pu) du

∫ ∞

0

e−xΠ(R, ux) dx . (12)

Equations (9) and (12) are identical if there is a function Π(R, x) such that
∫ ∞

0

e−xΠ(R, ux) dx =
2
π

k(R, a)
u1−a

u2 − 1
sin(R ln u) . (13)
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The last equation is the integral equation of the first kind of the convolution type
with respect to function Π(R, x). Equation (13) can be solved by means of Mellin
transformation. Indeed, applying Mellin transformation to (13) we get:

Γ(1− s)M[Π(R, x); s] = M
[

2
π

k(R, a)
x1−a

x2 − 1
sin(R ln x); s

]
, (14)

where M, s are Mellin transformation operator and parameter correspondently.
The Mellin transform in right-hand side of equation (14) can be obtained directly
using standard integrals [15]:

M
[

2
π

x1−a

x2 − 1
sin(R ln x); s

]
=

sinhπR

cosh πR + cos π(s− a)
. (15)

Taking into account that Γ(s)Γ(1 − s) = π/ sin πs [13], Mellin transform of function
in question can be presented as follows:

M[Π(R, x); s] = Π(R, s) =
k(R, a)

π
Γ(s)

sinhπR

cosh πR + cos π(s− a)
. (16)

In equation (16) the factor sinh πR/(coshπR + cos π(s− a)) plays the role of a
stabilizing factor [10, 11]. Equation (16) is the basic equation for finding regularizing
operators. If equation (16) is solvable, then there is a function Π(R, x) for which
equations (9) and (12) are identical. Therefore, because of uniqueness of Laplace
transforms, equations (2) and (5) will represent one and the same function fR(t).

Note that considered method is not specific to Laplace transformation. Whenever
it is possible to compose and solve equation (16), this method could be used for other
integral transformations of Mellin convolution type [12].

In order to invert equation (16) let us rewrite (16) in a ”more symmetrical” form:

Π(R, s) =
2k(R, a)

π
Γ(s) sin

πs

2
sinh πR

cos π
2 (s− a) cos π

2 a− sin π
2 (s− a) sin π

2 a

cosh πR + cos π(s− a)
.(17)

Taking into account the following identities [9]: §
M[sinx; s] = Γ(s) sin

πs

2
, (18)

M
[
xa cos(R ln x)

x2 + 1
; 1− s

]
=

π cosh πR
2 cos π

2 (s− a)
coshπR + cos π(s− a)

, (19)

M
[
xa sin(R ln x)

x2 + 1
; 1− s

]
=
−π sinh πR

2 sin π
2 (s− a)

cosh πR + cos π(s− a)
, (20)

inverse Mellin transform of Π(R, s) in (17) can be obtained by calculating the following
integrals:

Π(R, x) =
4k(R, a)

π2

[
sinh

πR

2
cos

πa

2

∫ ∞

0

ua cos(R ln u)
u2 + 1

sin xu du+

+ cosh
πR

2
sin

πa

2

∫ ∞

0

ua sin(R ln u)
u2 + 1

sin xudu

]
.

§ Equations (19), (20) can be verified by direct calculations of Mellin transforms with the help of
standard integrals [15]
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Applying standard integrals [15] we will have:

Π(R, x) =
−2k(R, a)

π2
× (21)

×Im
[
sin π(a + iR)Γ(a− 1 + iR)x1−a−iR

1F2

(
1;

2− a− iR

2
,
3− a− iR

2
;
x2

4

)]
,

where according to convergence conditions of standard integrals −2 < a < 2.
The convergence conditions of integral (2) follow from analysis of continuous function
Π(R, x). In accordance with definition [8], function 1F2

(
1; 2−a−iR

2 , 3−a−iR
2 , −x2

4

)
→ 1

as x → 0. Therefore

Π(R, x) = O(x1−a) as x → 0, (22)

Representing function 1F2(1; 2−a−iR
2 , 3−a−iR

2 , −x2

4 ) in terms of confluent
hypergeometric functions and using asymptotic expansion of the latter [8, 13] it can
be shown that

| Π(R, x) |= O(x−1−a) as x →∞. (23)

It follows from (22), (23) that integral (2) converges under conditions (10), (11).
Let us analyze equation (21) in more details. Because of factor x−iR =

cos(R ln x)− i sin(R ln x), equation (21) can be written in an equivalent form:

Π(R, x) = A(R, x) cos(R ln x) + B(R, x) sin(R ln x). (24)

It is apparent from (21) that limR→∞Π(R, x) does not exist for all x 6= 0, because
A(R, x) →∞, and B(R, x) →∞ as ”frequency” R →∞. In other words, real transfer
function of inverse Laplace transformation does not exist.

3. Proof of regularization

It has been proven in Theorem 1 that fR(t) → f(t) as R → ∞ at any t > 0 where
f(t) is continuous. Let U (a) denote a subspace of pre-image functions that satisfy
conditions of Theorem 1 for some fixed, valid value of parameter a. Let F (a) denote the
corresponding subspace of Laplace transforms transforms, which satisfy convergence
conditions for integral (2).

It is apparent that integral (2) is convergent if the following integral exists:

‖ F ‖=
∫ ∞

0

w(x) | F (x) | dx, (25)

where w(x) = x1−a/(1 + x2), −2 < a < 2.
As it follows from (21), function Π(R, x) is continuous for x > 0. Analyzing the weight
function w(x) and conditions (22) , (23) we state that limits limx→0 Π(R, x)/w(x), and
limx→∞Π(R, x)/w(x) exist. Therefore

| Π(R, x) |≤ A(R)w(x). (26)

Let L−1
R denote operator defined by equations (2), (21) for some fixed −2 < a < 2.

If F1(p) ∈ F (a), F2(p) ∈ F (a) and

‖ F1 − F2 ‖=
∫ ∞

0

w(x) | F1(x)− F2(x) | dx < δ, (27)

then we can prove the continuity of the operator L−1
R .
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Theorem 2 Operator L−1
R from F (a) to U (a) is continuous with respect to F (p).

Proof. Estimating the difference ∆L−1
R :

∆L−1
R = L−1

R [F1(p)]−L−1
R [F2(p)] =

∫ ∞

0

Π(R, tx)[F1(x)−F2(x)] dx ,(28)

and taking into account (26), (27) we get:

|∆M−1
R | ≤

∫ ∞

0

A(R, t)w(x)|F1(x)− F2(x)| dx ≤ A(R, t)δ. (29)

The continuity of the operator L−1
R follows.

Thus we have proved that L−1
R is a continuous operator with respect to F (p)

and limR→∞ fR(t) = f(t) for any t where f(t) is continuous. Therefore, the following
theorem is a corollary of Tikhonov theorem [10, p.49].

Theorem 3 For any fixed −2 < a < 2 operators L−1
R from F (a) to U (a) are

regularizing operators of inverse Laplace transformation.

It follows from the regularization theory that each of built regularizing operators
defines a stable method for finding inverse Laplace transforms.

4. Error analysis

The fact that a regularized solution tends to the exact one when R → ∞, i.e. under
unbounded increase of input data accuracy, provides no information about the rate of
convergence. We may assume that the rate of convergence depends on location and
type of Laplace transform singular points. Equation (5) allows to investigate errors
analytically as well as the rate of convergence similarly to the one provided in [10] for
a = 1/2, and in [11] for a = 1/2− k.

Consider the following Laplace-transform pair:

F (p) =
1

(p + z)r
, f(t) =

1
Γ(r)

tr−1 exp (−zt), r > 0, Rez ≥ 0 . (30)

In this case (5) will become:

fR(t) =
2k(R, a)

π

tr−1

Γ(r)

∫ ∞

0

ua+r−1 exp(−ztu)
sin(R ln u)

u2 − 1
du . (31)

Integral (31) converges on the lower limit if a + r > 0. In case of Re z = 0 we have an
additional condition: a + r < 2.

Evaluating integral (31) we get:

fR(t) =
tr−1

Γ(r)
k(R, a)

{
exp(−zt)

sinh πR cosh πR

cosh2 πR− cos2 πA
+

+ exp(zt)
sinhπR cosπA

cosh2 πR− cos2 πA
+ (32)

+
1
πi

[
Γ(A− 2 + iR)(zt)2−A−iR

1F2

(
1;

4−A− iR

2
,
3−A− iR

2
,
z2t2

4

)
−

−Γ(A− 2− iR)(zt)2−A+iR
1F2

(
1;

4−A + iR

2
,
3−A + iR

2
,
z2t2

4

)]}
,

where A = a + r.
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4.1. Singular point is at the origin

In case of z = 0 (32) becomes:

fR(t) =
tr−1

Γ(r)
k(R, a) cosh πR

coshπR + cos(πa + πr)
. (33)

As it is follows from (33) the regularized solution rapidly tends to the exact one for
all t > 0 as R →∞. If coefficient k(R, a) in (5)is repaced with

k(R, a) =
coshπR + cos π(a + r)

cosh πR
, (34)

then regularized solution would not depend on regularization parameter R and
fR(t) = f(t).

Using the symmetry property, integral (2) can be written in the following form:

fR(t) =
1
t

∫ ∞

0

F
(u

t

)
Π(R, u) du . (35)

Then for the Laplace transform F (p) = 1/pr we get:

fR(t) = tr−1

∫ ∞

0

Π(R, u)
ur

du . (36)

If we take coefficient k(r, a) in form (34), then fR(t) = tr−1/Γ(r). Therefore the
following integral

∫ ∞

0

Π(R, u)
ur

du =
1

Γ(r)
(37)

does not depend on parameter R. Equality (37) is a good testing criteria for an
algorithm that evaluates fR(t) using (2).

4.2. Singular point is in left half-plane

In case of Re z > 0 the first term of (32) tends rapidly to the exact solution f(t) as
R →∞. The second term equals to zero if a + r is half-integer. In general the second
term is a small value only at the beginning of the process and it increases with time.

The third term (in square brackets) of (32) is more complicated. Let z be
z = ρ exp(iϕ), −π/2 < ϕ < π/2. Then the third term from (32) can be written
as:

| E3 |∼ (tρ)2−a−r
∣∣∣Γ(a + r − 2 + iR)(tρ)−iRe|ϕ|R exp (iϕ(2− a))×

×1F2

(
1;

4− a− r − iR

2
,
3− a− r − iR

2
,
ρ2t2 exp (2iϕ)

4

)∣∣∣∣ . (38)

Because of factor (tρ)−iR presence, the E3 value is an alternating quantity. It is
obvious that E3 strongly depends on angle ϕ. It follows from standard formulas [13],
that

| Γ(a + r − 2 + iR) |∼ Ra+r−5/2 sinh−1/2 (πR) , (39)

and, therefore,

| Γ(a + r − 2 + iR) | exp(ϕR) ∼ Ra+r−5/2 exp(ϕR− πR/2) . (40)

Equation (40) shows that when R → ∞ and ϕ = 0 the decreasing rate of | E3 | is
highest, and it is getting slower as |ϕ| → π/2.
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Obviously the quantity | E3 | also depends on values of ρ and t. When tρ ¿ R
we have the following estimation:∣∣∣∣1F2

(
1;

4− a− r − iR

2
,
3− a− r − iR

2
;
z2t2

4

)∣∣∣∣ ∼ 1 . (41)

The factor (ρt)2−a−r vanishes as t → 0 if a+r < 2. That is we can calculate an inverse
Laplace transform with small relative error for small instances of time. If condition
a + r < 2 is not satisfied, then relative error increases as t → 0 or ρ → 0.

In case of tρ À R we can obtain asymptotic value for generalized hypergeometric
function, which results in fR(t) → 0 as t → ∞. That is the sum of all terms of (32)
tends to zero. In considered case f(t) ∼ tr−1 exp (−zt), Re z > 0, so limt→∞ f(t) = 0.
Thus, we can calculate the inverse Laplace transform with small absolute error as
t →∞.

In applications for any given image function one should calculate the regularized
solution fR(t) by calculating integral (14) with an appropriate value of parameter R
which depends on inaccuracy of initial data. In case of noisy data, when a Laplace
transform is known with three decimal digits, the optimal value of parameter R is
approximately 3. The optimal value of R is not less than 10 when a Laplace transform
can be calculated with double precision.

Figures 1, 2 show graphs of real part of absolute error δ when a + r = 1/2,
ρ = 1, and 0 < t < 100. As it is seen from graphs the original function can be found
with small absolute error for all instances of time. The absolute error value strongly
depends on angle ϕ.

−1 0 1 2
−5

−4

−3

−2

−1

0

1

2

3

4

5

log t

δ*1E3, R=3 
δ*1E8, R=10

Figure 1. Real part of absolute errors for ϕ = 0.

4.3. Singular point is on the imaginary axis

In case when Laplace transform has a singular point on the imaginary axis error
analysis is similar to the previous case. Indeed, in this case Re z = 0 and ϕ = ±π/2,
then instead of (40) we will have:∣∣∣∣Γ(a + r − 2− iR) exp

πR

2

∣∣∣∣ ∼ Ra+r−5/2 . (42)
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−1 0 1 2
−8

−6

−4

−2

0

2

4

6

8

log t

δ*1E2, R=3 
δ*1E5, R=10

Figure 2. Real part of absolute errors for ϕ = π/4.

That is the third term in (32) decreases not slower than R−1/2 for any valid value
0 < a+ r < 2. Thus, we have the slowest convergence to the exact solution as R →∞
when Laplace transform singularities are on imaginary axis.

In case when t → 0, the value of E3 tends to zero because a + r < 2. Therefore
we can find the inverse Laplace transform with small relative error at the beginning
of the process. If t →∞ then fR(t) → 0 as it was in the previous case. Then, if r < 1
we have that f(t) → 0 as t → ∞. That is final values of exact original function and
fR(t) are equal. However, if r ≥ 1 then limt→∞ f(t) does not exist and the values of
the original function can not be found as t →∞.

Graph in figure 3 shows real part of absolute errors when ϕ = π/2, a + r =
1/2, r = 1.

−1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

log t

R=3 
R=10

Figure 3. Real part of absolute errors for ϕ = π/2, r=1.
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4.4. Conclusion

It follows from the analysis above that, in case when conditions (6), (7) are satisfied,
we have that:

- if limt→∞f(t) exists or f(t) has a power asymptotic function then f(t) can be
approximately determined for any t > 0;

- if limt→∞f(t) does not exist then f(t) can be approximately determined only
in some neighborhood of t = 0;

- the rate of convergence decreases as function f(t) becomes less and less
monotonous:

tr−1 → tr−1e−αt → tr−1e−αt sin ωt → tr−1 sin ωt (43)

For the last function in (43) we should expect to obtain acceptable results from
noisy data only in some neighborhood of t = 0, especially in case of r ≥ 1.

Provided error analysis reveals well known restrictions of determining values of
inverse Laplace transform as t → ∞ with the help of final-value or asymptotical
expansion theorems of operational calculus [5].

The fact that the rate of convergence strongly depends on location of the Laplace
transform singular points was first pointed out by Orurk [14].
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