
Coevolution and Tartarus

Dan Ashlock, Math, Complex Systems,

Joint work with:

Nicole Leahy, Bioinformatics, Complex Systems,

Stephen Willson, Math, Complex Systems.



Co-evolution.

In this study we use a test problem with thou-

sands of problem cases. Using all the test cases

in evaluation of each member of an evolving

population is not practical. The typical ap-

proach is to sample the fitness cases. Co-

evolution consists of selecting fitness cases via

evolution. There are many way to co-evolve

fitness cases. We will look at several.



The Test Problem.

The Tartarus problem asks an agent, called

the bulldozer, to move boxes to the corners

or edges of a square room. There are six

boxes starting away from the walls of a 6 × 6

room. The boxes start with no close groups of

four boxes. The bulldozer is permitted eighty

moves of the form forward, turn left, or turn

right. A starting configuration for Tartarus

might look like:



The Test Problem.

The bulldozer can push one box ahead of it.

The bulldozer cannot push two boxes ahead of

it, nor can it crush a box or push a box through

the wall. The objective function used to mea-

sure the performance of a bulldozer awards two

points for each box in a corner and one for each

box against a wall but not in a corner.

Score 7 Score 8

Score 9 Score 10



The Test Problem.

There are two critical features of a represen-

tation for the Tartarus problem: sensory in-

formation and memory. Sensory information

is conveyed by terminals X1-X8 corresponding

to the squares adjacent to the bulldozer. The

return 0 for space, 1 for a box, or 2 for a wall.

X1 X2

X3

X4X5X6

X7

X8

Memory in this study is supplied by a finite

state device that is a portion of the bulldozer

controller.



The Representation

The input terminals X1-X8 produce, in aggregate, thou-
sands of combinations of input data. As a first step
any collection of inputs will be processed by an integer
formula into a single integer. These formulas use the
following operations and terminals:

Op Args Semantics
e.g. 1 0 Ephemeral integer constants
x1-x8 0 Sensor terminals
∼ 1 Negation
Odd 1 Predicate: True if odd*
Com 1 1-argument
+ 2 Addition
- 2 Subtraction
= 2 Predicate: equality*
>= 2 Predicate: greater than or equal

to*
<= 2 Predicate: less than or equal to*
> 2 Predicate: greater than*
< 2 Predicate: less than*
<> 2 Predicate: not equal to*
max 2 Computes maximum
min 2 Computes minimum
ITE 3 If first argument return second

argument else return third argu-
ment.

* False results are zero, true are nonzero.



The Bulldozer Controller

A GP-Automaton is a finite state device that has a for-
mula associated with each state. The formulas reduce
information from the environment (in this case X1−X8)
to a small set of values (in this case integer parity) used
to drive the finite state device.

Start: 1→0
State If Even If Odd Formulas

0 0→10 3→4 (Com (ITE x8 x7 (∼ x7)))
1 1→3 1→3 (ITE 0 (Com x6) (Odd x3))
2 0→4 0→8 (Odd (ITE x4 x5 (∼ x3)))
3 3→5 2→0 (ITE x1 (∼ -2) (Com (min x6

(Odd x3))))
4 0→1 0→2 (> (= 1 0) (Com x8))
5 1→4 0→3 (ITE (∼ x7) (Com x3) (∼ x6))
6 0→2 0→5 (> (∼ (Odd (∼ (max x8 x7))))

(Com x8))
7 2→7 2→0 (ITE x6 (Com -2) (Odd x4))
8 1→10 0→1 (- (ITE x6 x2 x4) x7)
9 1→4 3→4 (< (>= x7 x5) (Odd x3))

10 3→1 2→1 (= (min x6 (ITE x5 0 x8)) (∼
(max x1 x7)))

11 3→3 2→2 (> (∼ (Odd (∼ (max x8 x7))))
(Com x8))

An example of a GP-Automaton

Actions: 0-advance 1-left 2-right 3-think



Variation Operators on GP-Automata

Crossover of GP-Automata is achieved by treat-

ing the list of states as a linear chromosome

and exchanging middle segments of the list of

states between pairs of automata undergoing

crossover.

Mutation does one of the following: Changes

a state transition or an output, performs (sub-

tree) crossover of two formulas, performs (sub-

tree) mutation of a formula, replaces a formula

with a new random formula, exchanges two

formulas, or copies one formula over another.



Evaluating Bulldozer Controllers

A good bulldozer controller is one that scores

well on any valid Tartarus board. Stephen Will-

son noticed that there are boards, not excluded

by the original problem statement, that are as

bad as those with a close four configuration of

boxes. We call these Willson Boards.

Theorem 1 (Enumeration of Configurations)

There are 320,320 ways of laying out a Tar-

tarus board at all. A total of 23,280 of these

boards contain close fours. The number of

valid starting configurations for standard Tar-

tarus is thus the difference, 297,040. Of the

valid Tartarus configurations, 288 are Willson

configurations.



Evaluating Controllers: Co-evolution

With 297,040 valid configurations, evaluation

of a controller on all available configurations

is impractical, taking four to five minutes per

controller. In most research on Tartarus the

approach has been to test controllers on a ran-

dom selection of Tartarus boards in each gen-

eration. Figuring out how to allocate fitness

trials to members of an evolving population is

an active area of research. The focus of this

study is locating good boards by Co-evolution.

Co-evolution attempts to locate a population

of boards that improve the (final) performance

of the bulldozers being evolved.



Types of Co-Evolution

Hard Co-evolution takes the available points

of fitness and divides them between, for ex-

ample, a bulldozer and a Tartarus board. The

bulldozer’s fitness is computed out of 10 in

the usual manner and the remainder of the 10

points are awarded to the board. The fitness

accumulated by boards is used as their fitness

within their own evolving population.

Soft Co-evolution still evaluates the bulldozer

in the usual fashion. The fitness for boards is

computed so as to reward boards that create

a fitness gradient on the current population of

bulldozers. One might compute the standard

deviation of the numbers that were summed to

compute board fitnesses in hard co-evolution.



The Hypothesis

W. Daniel Hillis in a paper entitled Co-Evolving

Parasites Improve Simulated Evolution as an

Optimization Procedure, in Artificial Life II,

first proposed to use (hard) co-evolution to lo-

cate hardwired sorting networks for 16 element

lists.

The hypothesis we test in this study is that:

soft coevolution is more effective than
hard co-evolution to enhance perfor-
mance on the Tartarus task.

This hypothesis was tested and confirmed, for

sorting networks, by John Cartlidge and Seth

Bullock in a paper entitled Lessons from the

common cold: How reducing parasite virulence

improves coevolutionary optimization that ap-

peared in the Proceedings of the 2002 Congress

on Evolutionary Computation.



Motivation

Hard co-evolution places the two evolving pop-

ulations, in this case bulldozers and boards,

into absolute conflict. This creates the po-

tential for very hard fitness cases (boards) to

appear and be retained, preventing or retarding

the evolution of the bulldozers.

Soft co-evolution will not strongly encourage

the appearance of “killer” fitness cases and

so will permit evolution to proceed more ef-

ficiently than hard co-evolution.

Since the standard problem permits a known

type of “hard” board, the Willson board, it

follows we should look for this board’s presence

in our evolving population of boards as part of

our analysis.



Experimental Design

In all the experiments performed in this study

a population of 200 GP-Automata was used.

The crossover and mutation operators given

previously were used in breeding. Evolution is

performed with generational single tournament

selection with tournament size four. In this

model of evolution, the population is shuffled

randomly into four-member tournaments and

the two most fit members of each tournament

breed (copy, crossover, mutate) and replace

the two least fit members of each tournament.



Experimental Design - continued

Fitness for a GP-Automata controlling a bull-

dozer is evaluated on 100 Tartarus boards se-

lected either at random or according to the

method of coevolution specified. This fitness

is the sum of its scores on the 100 boards used

in a given generation. In experiments that use

co-evolution, a fitness was computed for each

board in a number of ways. The least fit half

of the population of boards were replaced with

new boards selected uniformly at random from

the set of admissible boards.

Each evolutionary setup was run 100 times for

1000 generations. The fitness of the most

fit member of the 100 population, estimated

by testing on a cross-validation set of 5000

boards, was saved.



The First Three Experiments

Baseline. This experiment used 100 boards selected
at random to test each generation with no close four
boards, but with Willson boards permitted.

Hard Coevolution. In this experiment was identical to
the baseline save that boards were chosen by coevolu-
tion. The fitness function of a board is the points of
fitness out of ten, per board, not earned by the bull-
dozers it was testing. Fitness was thus strictly divided
between the GP-Automata and boards.

Soft Coevolution(SD). This experiment was like the
hard coevolution experiment save for the fitness func-
tion used to co-evolve the boards. This function was
the variance of ten minus the scores obtained by the
GP-Automata on that board. In this case boards were
rewarded for distinguishing GP-Automata by achieving
high variance.



Soft and Hard : Willson Boards?

Below are the first 12 of the 100 boards used in the
final generation of the first hard coevolution population.

Note: 4 are Willson boards. The nominal density is
0.00097, not 1/3. The hypothesis that hard co-evolution
would enrich difficult fitness cases among the boards is
worth checking in more depth.



10 30 50
0

20

40

Number of Willson Boards

A histogram of the number of Willson boards

in the final population of boards for all 100

simulations run with Hard co-evolution. The

minimum number of Willson boards observed

was 18, the maximum was 45. Enrichment

is confirmed and consistent with all randomly

generated Willson boards being retained.



The First Three Experiments : Fitness

Below are given 95% confidence intevals for

the mean fitness of a most fit member of a

final population for each of the first three ex-

periments.

3 4 5 6 7 8

Baseline

Hard

Soft

fitness

Experiment mean 95% CI Best

Baseline 6.33 (6.19,6.47) 7.459

Hard 6.66 (6.59,6.73) 7.489

Soft(SD) 3.58 (3.38,3.78) 7.187

Oh, dear!



Did we pick a bad soft fitness?

Soft Coevolution(ABS). This experiment was like
the soft coevolution(SD) experiments save that fitness
for boards was computed differently. The average of ten
minus the score obtained by GP-Automata against the
board was computed and then the positive difference
of this number from five was used as the fitness for a
board. In this case we reward a board for taking about
half the available fitness.

Well:

3 4 5 6 7 8

Base I

Hard

Soft SD

Soft ABS

fitness

It’s better but hard coevolution is still way ahead and
soft is still below the baseline.



How bad ARE “hard” boards?

There is an assumption embedded in the Tartarus prob-
lem description: hard boards impair training. At this
point we decided to check this hypothesis.

Baseline II. The outcome of the hard coevolution ex-
periments suggested that the rejection of boards con-
taining close fours might have been somewhat hasty. A
second baseline study that permitted close four boards
was performed.

3 4 5 6 7 8

Base I

Base II

Hard

Soft SD

Soft ABS

fitness

Including hard boards just makes the system slightly
more reliable?!?



Hard boards+hard coevolution?

What if we run the hard coevolution with close 4 boards
permitted? There are far more of these than Willson
boards and, perhaps, we can pile up enough “impossi-
ble” fitness cases to finally get bad behavior out of hard
coevolution.

The first twelve boards in the first run are:

Look ma! Close sixes. (There are only 480 of them).



Hard-hard : Fitness effects.

3 4 5 6 7 8

Base I

Base II

Hard

Hard 4

Soft SD

Soft ABS

fitness

Apparently that hard boards did very little dam-

age. There is not a significant separation be-

tween the Hard and Hard 4 experiments. The

“too hard” boards either didn’t do much dam-

age or evolved slowly enough not to cause too

much trouble.



Compensating for genetic

operator disruption.

Suppose we took two computer programs, ex-

changed a middle block of statements, and

then changed a couple statements at random.

Even if the semantics of the programming sys-

tem permit such programs to run there is an

excellent chance of creating brain-damaged code.

Hypothesis: When computing soft fitness, GP-

Automata that have not survived at least one

round of fitness evaluation should be ignored.

They are a source of vacuous fitness gradient.

Experiment: Soft(SDE) (Standard Deviation

Expert).



SDE Results

3 4 5 6 7 8

Base I

Base II

Hard

Hard 4

Soft SD

Soft ABS

Soft SDE

fitness

Ignoring the brain damaged helps. Not surpris-

ing, but good to know.



Discussion

This collection of experiments shows a po-

tential trap in soft co-evolution. If the ge-

netic operators routinely create inferior (brain

damaged) population members then test cases

could generate a steep fitness gradient without

being particularly challenging. The simple ex-

pedient of paying attention only to information

from population members that did not die dur-

ing their first fitness evaluation really helped.

After seeing these results Steve Willson asked

if it would help to pay attention only to mem-

bers of the population that have survived two

fitness evaluations. This question suggests that

we search for the top of this hill: how much

age should we require in the bulldozers used to

evaluate the fitness of the boards? Two more

experiments were performed with only age 2+

and age 3+ bulldozers used to evaluate boards.



The effects of age limits.

3 4 5 6 7 8

Base I

Base II

Hard

Hard 4

Soft SD

Soft ABS

Soft SDE

Soft SDE2

Soft SDE3

fitness

Experiment mean 95% CI Best

Baseline I 6.33 (6.19,6.47) 7.459

Baseline II 6.35 (6.24,6.46) 7.597

Hard 6.66 (6.59,6.73) 7.489

Hard 4 6.58 (6.53,6.70) 7.283

Soft(SD) 3.58 (3.38,3.78) 7.187

Soft(ABS) 4.63 (4.36,4.91) 7.419

Soft(SDE) 6.23 (6.05,6.41) 7.531

Soft(SDE2) 6.65 (6.58,6.73) 7.874

Soft(SDE3) 6.68 (6.62,6.75) 7.262



Discussion

• Once the bugs are worked out, hard and soft

coevolution are not significantly different on

the Tartarus problem. The hard coevolution is

slightly easier to code but they both run at the

same speed and yield almost indistinguishable

results. In addition, soft co-evolution still piles

up some “hard” boards, albeit not as many as

hard co-evolution.

5 20 35
0

20

40

Number of Willson Boards in Soft(SDE3).



Discussion

• Co-evolution can be used to discover hard fit-

ness cases. Willson boards, close 4, and close

6 boards are all highly enriched in co-evolved

populations of boards where they are permit-

ted at all.

• Given that co-evolution seems to behave very

differently for sorting networks and Tartarus

it would be nice to see experiments on other

problems.

• A LARGE number of additional experiments

are possible in the Tartarus environment, e.g.

running the absolute value fitness experiments

with age restrictions.



Thanks

The authors thanks the Iowa State Univer-

sity Complex Adaptive Systems program for its

support and help.

Questions?


