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ABSTRACT

Several heurigtics that mimic natural behaviors
have been proposed for the solution of optimization
problems. In particular some of the most recent
algorithms, classified within the field of swarm
intelligence, are based on the observation of social
insects like bees, ants, etc. In the last decade of the
past century the particle swarm optimization (PSO)
technigue was introduced for the continuous
optimization problem, based on the analogy of bird
and fish school behavior. Here we present an
implementation of the PSO technique for the
solution of the inverse radiative transfer problem of
rediative properties estimation. In thisapproachiitis
required the solution of the direct radiative transfer
problem which is modeled by the linear version of
the Boltzmann equation. For that purpose we use a
discrete ordinates method combined with the finite
difference method. Some general guidelines are
proposed and discussed for the PSO
implementation that is applied for the estimation of
the optical thickness, single scattering albedo, and
diffuse reflectivities in a one dimensiona plane-
paralel participating medium. Test case results
demonstrate the feasibility of the use of the
proposed methodology.

1. INTRODUCTION

Inverse radiative heat transfer problems have
several relevant applications in many different
areas such as astronomy, environmental sciences,
engineering and medicine [7, 8, 11, 13, 17]. Some
outstanding examples are parameter and function
estimation for global climate models, hydrologic
optics, and computerized tomography [1, 4, 5, 10,
12, 26].

When formulated implicitly [18], inverse
problems are usualy written as optimization
problems. Several heuristics that mimic natural
behaviors have been proposed for the solution of
optimization problems. In particular some of the
most recent algorithms, classified within the field
of swarm intelligence [3], are based on the
observation of social insects behaviour.

An optimization technique that mimics the
flight of a flock of birds, the Particle Swarm
Optimization (PSO), has been used to solve
continuous optimization problems [27, 28]. An
enhanced proposed in [1] was used to solve an
inverse radiative transfer problem in which we seek
to determine the optical thickness, the single
scattering albedo and the diffuse reflectivities at the
inner side of the boundaries of a one- dimensiona
participating medium. As experimental data we
consider the intensity of the emerging radiation
measured at the boundary surfaces of the medium
using only external detectors.

By probing the search space (range of the
unknowns) in a random way, a stochastic method,
such as PSO, may lead to the vicinity of the global
optimum, if it is properly implemented
computationally. Nonetheless the computational
effort is usually high. Gradient based methods, such
as the Levenberg-Marquardt method [20, 21], are
usually faster in their convergence, but they may
get trapped in the closer local minimum.

Recently, hybrid  approaches, coupling
stochastic methods and the Levenberg-Marquardt
method have been used successfully for the solution
of inverse heat transfer problems of parameter
estimation [20, 21]: SA-LM (Simulated Annealing
and Levenberg-Marquardt) and GA-LM (Genetic
Algorithms and Levenberg-Marquardt). Other
hybrid strategies combining stochastic and
deterministic methods have also been implemented
[5]. In such hybrid approach the stochastic method
(SA or GA) isrun for asmall number of individuals
and generations (or cycles), requiring therefore a
much smaller number of function evaluations. The
solution obtained with the stochastic method is then
used as the initial guess for the gradient based
method. If necessary this approach may be iterated.
Artificial Neural Networks (ANN) have also been
used for the same strategy of generating a good
initial guess for the gradient based method: ANN-
LM [22, 23]. Explicit and implicit formulations for
the solution of inverse radiative transfer problems
have also been combined in the same strategy [18,
19].

In this work, the inverse radiative transfer
problem is solved by a PSO implementation



without hybridization. This optimization method is
able to perform an extensive scanning of the search
space, but demanding alow computational effort.

2. MATHEMATICAL FORMULATION OF
THE DIRECT AND INVERSE RADIATIVE
TRANSFER PROBLEMS

2.1 Direct Problem

In Figure 1 is represented a one-dimensional, gray,
homogeneous, isotropically scattering participating
medium, of optical thickness 7, whose boundaries
reflect diffusely the radiation that comes from the
interior of the medium. The boundary surfaces at
1=0 and 7 =1, are subjected to the incidence of
rediation originated at external sources with
intensities 4, and A4, , respectively.

The mathematical model for the interaction of
the radiation with the participating medium is given
by the linear version of the Boltzmann equation
[14],

WD 1) = 2 )
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10, 11)= 4, (1) + 2p1i1 O-w)u du,
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where [ represents the radiation intensity, 7 isthe
optical variable, u isthe cosine of the polar angle,
i.e. the angle formed between the radiation beam
and the positive 7 axis, « isthe single scattering
albedo, and g, and g, are the diffuse reflectivities
a the inner part of the boundary surfacesat 7 =0
and 7 =1,, respectively. The other symbols have
aready been defined.

When the geometry, the boundary conditions,
and the radiative properties are known, problem (1)
may be solved and the radiation intensity 7
determined for the whole spatiad and angular
domains, i.e. 0<s7<7,, and -1<u<1. Thisis
the so called direct problem.

When the geometry, the boundary conditions,
and the radiative properties are known, problem (1)
may be solved and the radiation intensity 7
determined for the whole spatiad and angular
domains, i.e. 0<s7<7,, and -1<pu<1. Thisis
the so called direct problem.
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Fig. 1: Representation of a participating medium
(1D), with incidence of radiation. Y represents the
intensity of the radiation emerging from the
medium, it may be measured by external detectors.

In order to solve problem (1), we use
Chandrasekhar‘s discrete ordinates method [6] in
which the polar angle domain is discretized as
represented in Figure 2, and the integral term (in-
scattering) on the right hand side of egn. (1a) is
replaced by a Gaussian quadrature.
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Figure 2. Discretization of the polar angle
domain.
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Figure 3. Schematical representation of the
experimental data Y,, i =12,...,N/2 acquired at
1=1,,and Y, i=N/2 +1, N/2 +2,..,N

i

acqwred ar7=0.
We then used a finite-difference approximation

for the terms on the left hand side of eq. (1), and
by performing forward and backward sweeps, from
1=0 to 7=7, and from 7=7, to 7=0,



respectively, 7(z,u) is determined for all spatial

and angular nodes of the discretized computational
domain.

2.2 Inverse Problem

We now consider that the following vector of
radiative properties is unknown

Z={r,wp.p) 2

but experimental data on the intensity of the
radiation that leaves the medium is available, i.e.
Y, i=12..,N. As schematically represented in
Figure 3, half of the data is acquired a the
boundary 7 =0, and haf a 7 =17,, using only
external detectors.

From the experimental data available, we then
try to obtain estimates for the unknown radiative
properties. This is the inverse radiative transfer
problem we want to solve.

As the number of experimental data, N, is
usually larger than the number of unknowns, we
may formulate the inverse problem as a finite
dimensional optimization problem in which we
seek to minimize the cost function (also known as
objective function) given by the summation of the
squared residues between calculated and measured
values of the radiation intensity,

o(?)- z[l Cownp)1] @

For the solution of the inverse problem
described here, we have used a stochastic method,
the Particle Swarm Optimization (PSO).

3. PARTICLE SWARM OPTIMIZATION

One of the main streams in artificia life is to
understand how real world animals behave as part
of a swarm and to try to mimic this behavior in an
agorithm. Some aspects on such behavior must be
abstracted in order to obtain rules that are feasible
to be implemented in an algorithm. Even when the
individual behavior is simple, the collective
behavior can be very complex. This is the case of
PSO.

Boyd e Richerson [29] have studied the decision
making process in human beings and observed that
decisions are taken based on the persona
experience, but also on the neighbors’ experience.
This feature was exploited in the PSO algorithm
and applied to the behavior of the birds. It is
assumed that the behavior of the flock is a
consequence of the effort of each bird in keeping an
optimal distance from the neighboring birds.

The aesthetical choreography of a flock of birds
was studied by zoology and computer science
researchers in order to know what are the rules that
provide for the synchronous flight of the flock even
subjected to successive changes of direction.

In the PSO, a flock of birds is represented in a
n-dimensional search space. The position of each
agent/bird i at iteration £ is given by its vector of
Cartesian coordinates X;*. At every iteration, that
corresponds to an unitary amount of time, the flock
of birds evolve as a consequence of the update of
the positions of each bird. The update of position of
agent/bird ; is calculated using its current velocity
vector V;*, which is also updated at every iteration
as a function of its previous position X;*' and
velocity V<.

The position of each bird represents a possible
solution in the allowed search space. The
evaluation of each bird is performed at every
iteration by means of an objective function F(X).
Each bird stores its best position X" that
corresponds to the better evaluation obtained by
itself. This information is due to its own
experience. Every bird also knows the best
evaluation obtained by the flock until the moment,
X&* that correponds to the experience of the
group. At every iteration, the velocity vector V;*'
of each bird i is updated in function of the
following variables:

* its previous position X;*"

 its previous velocity V;**

» the distance vector defined by its previous
position and its X;?***

« the distance vector defined by its previous
position and flock’s X&"*

The new (current) position X;* is defined by
applying the current velocity operator to previous
position X;*"'. Actually, for a unitary time step, this
is equivalent to add this velocity to the previous
position in order to obtain the current position.

XK =X+ vE (4)

In the PSO, the following equation defines the
current velocity of each bird:

Vv,'k = Cy. [/}k_l + cz.rand, (Xipbest - Xik_l)
+ csrand, (XB - X)) (5)

where rand, and rand, are random numbers
between 0 and 1 and three positive real numbers,
denoted learning parameters, must be chosen:

c1. parameter that express the trust of the bird in
itself;

co. parameter that express the trust of the bird in its
experience;



cs. parameter that express the trust of the bird in the
experience of the flock.

The above learning parameters ¢, and cs, weight
the stochastic accelerations towards positions X;P***
and X&** respectively [28]. In terms of behavior,
the parameter c, represents the cognitive factor
associated to its best former experience, while the
parameter c; represents the social factor associated
to the best former experience of the group. It is
common to assign the same value to these two
parameters [30,31].

A general description of the PSO agorithm
follows.

Step 1. Setting of initial conditions for the flock; for
each bird, the position (X;°) and velocity
(V?, ae randomly generated, given
suitable ranges;

Step 2: Evaluation of the objective function F(X)
for each bird of the flock; the positions
X;PPt and X2 are eventually updated;

Step 3: Update of the velocities of each bird of the
flock using Eq. (5);

Step 4: Update of the positions of each bird of the
flock using Eq. (4), in order to obtain the
new positions X;*;

Step 5: Check of the stopping criterig; if it is not
verified, return to step 2 for the next
iteration.

The stopping criteria can be defined in a
suitable manner. In this work, it is employed a
threshold to be reached by the objective function.
Other options include a limit number of iterations
or alimit time.

4. RESULTS AND DISCUSSION

As in most of optimization algorithms, the quality
of the solution obtained is related to the proper
choice and fine tuning of the control parameters.
For the PSO implementation, we have considered
flocks with different number of birds (100, 1000 or
2000), different seeds for the generation of random
numbers (33, 57 or 99), and different sets of
learning parameters ({0.2,0.2,2.0}, {0.5,0.5,0.5} or
{1.0,0.2,0.2}). These sets of learning parameters
were chosen from previous tests in which standard
functions were minimized using PSO. The first
parameter weights the influence of the last position
of the bird, the second, the best position of the bird,
while the third, the best position of the band.
Therefore, the chosen sets are intended to represent
different schemes for this weighting.

We are interested in the estimation of the four
unknown radiative properties given in Eq. (2). The
range for each of the unknowns was taken as the

interval (0, 1), the physical bounds of all the
unknowns but the optical thickness. Synthetic
experimental data were employed. They are
calculated from the exit radiation intensities using
the exact values of the radiative properties. In all
test cases we have considered noiseless data

In order to evaluate the performance of the PSO
minimizer we chose a relatively difficult test case
with

Z.. ={r,,wp.p,} ={.00,050,0.10,0.95 (7)

exact

The incident radiation was taken as 4, =1.0 and
A4,=0.0 in Egs. (1b) and (1c), respectively. The
main difficulty for the solution of the inverse
radiative transfer problem considered in this work
is related to the estimation of g,, since its effect

will be sensed by the external detectors only after
the radiation goes into the medium a 7 =0, is
reflected at 7 =7, and is then both transmitted and

reflected at 7 =0. This difficulty is confirmed by
the sengitivity analysis related to this particular
unknown.

Table 1 presents the set of estimated values of

1,,a,0, and p,, that yielded minimum cost
considering a flock of 100 birds for different seeds

and different sets of learning parameters. The
values are followed by the corresponding value of

the cost function, 0(Z) defined by Eq. (3), and the

amount of processing time and evaluations of this
equation, and consequently of the direct model, that
were required to reach that cost. Certainly, when a
sub-optimal  estimation was found, i.e. when the
value of the cost function was greater than 1.0E-10,
the PSO performed more evaluations that required
more time until user-termination, but only time and
number of evaluations until best solution was found
are shown in the table.

The best set of learning parameters
({0.2,0.2,2.0} and its corresponding best seed (33)
yielded the optimal solution in less than 9 seconds,
being executed on a AMD Athlon 1.67 GHz 1A-32
single-processor machine. However, flocks of 100
birds are not sufficient for solving this inverse
problem: results for other sets of learning
parameters are much worse and more prone to the
influence of the seed that is used for the random
number generation. As expected, the analysis of the
results presented in Table 1 show that the poorest
estimates are related to the unknowng,. An
important point is that the best results were

obtained using a set of learning parameters that
weights more the experience of the whole flock.



Table 1: Results for 100 birds, with different sets of learning parameters and seeds: set of estimated parameters,
with their values of the objective function, processing time and number of evaluations of the direct model.

100 birds 1, « 0, 0, 0(7),eq.3 Timely  eva

(02,02,2.0}

seed 33 099994 05000 010002 094999  4.0122E-10 8.66 1590

seed 57 099980 050031 010109 095004  7.9529E-10 22.40 3975

seed 99 099985 050027 010097 095005  7.2561E-10 37.56 6573
{05,05,05]

seed 33 099916 050134 010478 095019  1.5129E-08 1046 18218

seed 57 0.88494 077433 072890 098127  52750E-04 30484 52685

seed 99 098649 052206 017522 095308  3.9807E-06  188.28 32678
(1.0,02,02}

seed 33 097866 050773 014027 095023  17679E-05 2434 4283

seed 57 099971 055373 027292 10000  3.3719E-03 25,72 4561

seed 99 099777 055163 026936 10000  3.3732E-03 3345 5884

Exact .00 050 0.10 0.95 0.00

Table 2: Results for 100 birds, with different sets of learning parameters and seeds: set of estimated parameters,
with their values of the objective function, processing time and number of evaluations of the direct model.

1000 birds 1, « 0, e,  0Z).Eq @  Timey  eva

{02,02,20]

seed 33 099991 050016 010057 095004  8.4289¢-10 67.75 12736

seed 57 1.00000 050018 010053 095001  7.6907E-10 40.71 8036

seed 99 099994 050022 010071 095003  6.057E-10 5405 10260
{05,05,05}

seed 33 099984 050027 010093 0095003  7.0006e10 54621 94069

seed 57 099983 050032 010112 0095004  8.4499E-10 36462 64249

seed 99 099991 050027 010090 0095004  9.6085E-10 22649 40023
(1.0,02,02}

seed 33 099962 050696 012024 095130  1.7008E-06 19378 34583

seed 57 099725 050736 012311 095180  25660E-06  139.10 24762

seed 99 099872 050272 010801 095053  7.7596E-07 8500 15729

Exact .00 050 0.10 0.95 0.00

Table 3: Results for 100 birds, with different sets of learning parameters and seeds: set of estimated parameters,
with their values of the objective function, processing time and number of evaluations of the direct model.

2000 birds 1, “ o, p,  0Z).en(m Timey Eva
{02,02,2.0}
seed 33 009983 050024 010087 095003  52516E-10 10656 20364
seed 57 009998 050010 010029 094999  54930E-10 11422 21654
seed 99 009981 050031 010110 095005  88029E-10 9117 17672
{05,05,05}
seed 33 009993 050028 010089 095004  9.3544E-10 21593 39439
seed 57 009981 050032 010110 095004  99527E-10  357.84 63104
seed 99 009995 050017 010056 095001  65325E-10 22137 40348
{1.0,02,02}
seed 33 009818 050142 010622 095010  16337E-07 44455 78734
seed 57 009226 051443 014776 095188  20802E-06 31504 56510
seed 99 099262 050533 012073 095072  2.0696E-06 80204 141051

Exact 1.00 0.50 0.10 0.95 0.00




Tables 2 and 3 are similar to Table 1, but for
flocks of 1000 and 2000 birds, respectively. It can
be seen that even using 2000 birds, a solution with
objective function value in the order of 10-6 can be
reached for any seed or set of learning parameters
in less than 15 minutes on the same machine. It can
be concluded that a larger flock gives robustness to
the PSO since more birds are able to perform a
better scanning of the search space.

6. CONCLUSIONS

In the present work the PSO yielded good estimates
for the radiative properties of a one-dimensional
participating medium using the measured data of
the intensity of the radiation acquired only by
external detectors. The use of flocks with more
birds gave more robustness to the PSO. In future
works it isintended to repeat these tests using noisy
dataand to
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