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Several heuristics that mimic natural behaviors 
have been proposed for the solution of optimization 
problems. In particular some of the most recent 
algorithms, classified within the field of swarm 
intelligence, are based on the observation of social 
insects like bees, ants, etc. In the last decade of the 
past century the particle swarm optimization (PSO) 
technique was introduced for the continuous 
optimization problem, based on the analogy of bird 
and fish school behavior. Here we present an 
implementation of the PSO technique for the 
solution of the inverse radiative transfer problem of 
radiative properties estimation. In this approach it is 
required the solution of the direct radiative transfer 
problem which is modeled by the linear version of 
the Boltzmann equation. For that purpose we use a 
discrete ordinates method combined with the finite 
difference method. Some general guidelines are 
proposed and discussed for the PSO 
implementation that is applied for the estimation of 
the optical thickness, single scattering albedo, and 
diffuse reflectivities in a one dimensional plane-
parallel participating medium. Test case results 
demonstrate the feasibility of the use of the 
proposed methodology. 
�
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Inverse radiative heat transfer problems have 
several relevant applications in many different 
areas such as astronomy, environmental sciences, 
engineering and medicine [7, 8, 11, 13, 17]. Some 
outstanding examples are parameter and function 
estimation for global climate models, hydrologic 
optics, and computerized tomography [1, 4, 5, 10, 
12, 26]. 

When formulated implicitly [18], inverse 
problems are usually written as optimization 
problems. Several heuristics that mimic natural 
behaviors have been proposed for the solution of 
optimization problems. In particular some of the 
most recent algorithms, classified within the field 
of swarm intelligence [3], are based on the 
observation of social insects behaviour. 

An optimization technique that mimics the 
flight of a flock of birds, the Particle Swarm 
Optimization (PSO), has been used to solve 
continuous optimization problems [27, 28]. An 
enhanced proposed in [1] was used to solve an 
inverse radiative transfer problem in which we seek 
to determine the optical thickness, the single 
scattering albedo and the diffuse reflectivities at the 
inner side of the boundaries of a one- dimensional 
participating medium. As experimental data we 
consider the intensity of the emerging radiation 
measured at the boundary surfaces of the medium 
using only external detectors.  

By probing the search space (range of the 
unknowns) in a random way, a stochastic method, 
such as PSO, may lead to the vicinity of the global 
optimum, if it is properly implemented 
computationally. Nonetheless the computational 
effort is usually high. Gradient based methods, such 
as the Levenberg-Marquardt method [20, 21], are 
usually faster in their convergence, but they may 
get trapped in the closer local minimum.  

Recently, hybrid approaches, coupling 
stochastic methods and the Levenberg-Marquardt 
method have been used successfully for the solution 
of inverse heat transfer problems of parameter 
estimation [20, 21]: SA-LM (Simulated Annealing 
and Levenberg-Marquardt) and GA-LM (Genetic 
Algorithms and Levenberg-Marquardt). Other 
hybrid strategies combining stochastic and 
deterministic methods have also been implemented 
[5]. In such hybrid approach the stochastic method 
(SA or GA) is run for a small number of individuals 
and generations (or cycles), requiring therefore a 
much smaller number of function evaluations. The 
solution obtained with the stochastic method is then 
used as the initial guess for the gradient based 
method. If necessary this approach may be iterated. 
Artificial Neural Networks (ANN) have also been 
used for the same strategy of generating a good 
initial guess for the gradient based method: ANN-
LM [22, 23]. Explicit and implicit formulations for 
the solution of inverse radiative transfer problems 
have also been combined in the same strategy [18, 
19].  

In this work, the inverse radiative transfer 
problem is solved by a PSO implementation 



θµ cos=

θ

<

<
1µ = − 1µ =

0τ τ=

1$ 0µ >0µ <

0τ =  

2$2ρ1ρ

τ

0µ =

without hybridization. This optimization method is 
able to perform an extensive scanning of the search 
space, but demanding a low computational effort.  
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In Figure 1 is represented a one-dimensional, gray, 
homogeneous, isotropically scattering participating 
medium, of optical thickness 0τ  whose boundaries 

reflect diffusely the radiation that comes from the 
interior of the medium. The boundary surfaces at 

0=τ  and 0ττ =  are subjected to the incidence of 

radiation originated at external sources with 
intensities 1$  and 2$ , respectively. 

The mathematical model for the interaction of 
the radiation with the participating medium is given 
by the linear version of the Boltzmann equation 
[14], 
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∂

∂ 1

1

,
2

,
, µµτωµτ

τ
µτµ G,,,  

00 ττ << , 11 ≤≤− µ             (1a) 

( ) ( ) ,,02)(,0
1

0

11 µµµρµµ ′′′−+= ∫ G,$,  

                                                     0>µ          (1b) 

( ) ( ) ( ) ,,2,
1

0

0220 µµµτρµµτ ′′′+=− ∫ G,$,  

                        0<µ             (1c) 

where ,  represents the radiation intensity, τ  is the 
optical variable, µ  is the cosine of the polar angle, 

i.e. the angle formed between the radiation beam 
and the positive τ  axis, ω  is the single scattering 
albedo, and 1ρ  and 2ρ  are the diffuse reflectivities 

at the inner part of the boundary surfaces at 0=τ  
and 0ττ = , respectively. The other symbols have 

already been defined. 
When the geometry, the boundary conditions, 

and the radiative properties are known, problem (1) 
may be solved and the radiation intensity ,  
determined for the whole spatial and angular 
domains, i.e. 00 ττ ≤≤ , and 11 ≤≤− µ . This is 

the so called direct problem. 
When the geometry, the boundary conditions, 

and the radiative properties are known, problem (1) 
may be solved and the radiation intensity ,  
determined for the whole spatial and angular 
domains, i.e. 00 ττ ≤≤ , and 11 ≤≤− µ . This is 

the so called direct problem. 
 

 
 
 
 

 
 

 
 
 
 
 
 
Fig. 1�� 5epresentation of a participating medium 
(1D), with incidence of radiation. <  represents the 
intensity of the radiation emerging from the 
medium, it may be measured by external detectors. 
 

In order to solve problem (1), we use 
Chandrasekhar‘s discrete ordinates method [6] in 
which the polar angle domain is discretized as 
represented in Figure 2, and the integral term (in-
scattering) on the right hand side of eqn. (1a) is 
replaced by a Gaussian quadrature. 
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We then used a finite-difference approximation 
for the terms on the left hand side of eq. (1a), and 
by performing forward and backward sweeps, from 

0=τ  to 0ττ =  and from 0ττ =  to 0=τ , 
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Figure 2. Discretization of the polar angle 
domain. 
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Figure 3. Schematical representation of the 
experimental data 2/,...,2,1, 1L<� =  acquired at 

0ττ = , and < , 12/ += 1L , 11 ,...,22/ +
acquired at 0=τ . 



respectively, ),( µτ,  is determined for all spatial 

and angular nodes of the discretized computational 
domain. 
�
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We now consider that the following vector of 
radiative properties is unknown 
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but experimental data on the intensity of the 
radiation that leaves the medium is available, i.e. 

1L<� ,...,2,1, = . As schematically represented in 

Figure 3, half of the data is acquired at the 
boundary 0=τ , and half at 0ττ = , using only 

external detectors. 
From the experimental data available, we then 

try to obtain estimates for the unknown radiative 
properties. This is the inverse radiative transfer 
problem we want to solve. 

As the number of experimental data, 1 , is 
usually larger than the number of unknowns, we 
may formulate the inverse problem as a finite 
dimensional optimization problem in which we 
seek to minimize the cost function (also known as 
objective function) given by the summation of the 
squared residues between calculated and measured 
values of the radiation intensity, 
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For the solution of the inverse problem 

described here, we have used a stochastic method, 
the�Particle Swarm Optimization (PSO).  
�
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One of the main streams in artificial life is to 
understand how real world animals behave as part 
of a swarm and to try to mimic this behavior in an 
algorithm. Some aspects on such behavior must be 
abstracted in order to obtain rules that are feasible 
to be implemented in an algorithm. Even when the 
individual behavior is simple, the collective 
behavior can be very complex. This is the case of 
PSO.  

Boyd e Richerson [29] have studied the decision 
making process in human beings and observed that 
decisions are taken based on the personal 
experience, but also on the neighbors’ experience. 
This feature was exploited in the PSO algorithm 
and applied to the behavior of the birds. It is 
assumed that the behavior of the flock is a 
consequence of the effort of each bird in keeping an 
optimal distance from the neighboring birds. 

The aesthetical choreography of a flock of birds 
was studied by zoology and computer science 
researchers in order to know what are the rules that 
provide for the synchronous flight of the flock even 
subjected to successive changes of direction. 

In the PSO, a flock of birds is represented in a 
n-dimensional search space. The position of each 
agent/bird L at iteration N is given by its vector of 
Cartesian coordinates ; 


�
. At every iteration, that 

corresponds to an unitary amount of time, the flock 
of birds evolve as a consequence of the update of 
the positions of each bird. The update of position of 
agent/bird L is calculated using its current velocity 
vector 9 


�
, which is also updated at every iteration 

as a function of its previous position ; 

����

and 
velocity 9 


����
. 

The position of each bird represents a possible 
solution in the allowed search space. The 
evaluation of each bird is performed at every 
iteration by means of an objective function F(X). 
Each bird stores its best position ; 


���������
, that 

corresponds to the better evaluation obtained by 
itself. This information is due to its own 
experience. Every bird also knows the best 
evaluation obtained by the flock until the moment, 
; ��������

, that correponds to the experience of the 
group. At every iteration, the velocity vector 9 


����
 

of each bird  L is updated in function of the 
following variables:  
 

• its previous position ; 

�����

 
• its previous velocity 9 


�����
  

• the distance vector defined by its previous 
position and its ; 


���������
 

• the distance vector defined by its previous 
position and flock’s ; ���������

  
 

The new (current) position ; 

�
 is defined by 

applying the current velocity operator to previous 
position ; 


����
. Actually, for a unitary time step, this 

is equivalent to add this velocity to the previous 
position in order to obtain the current position. 
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 In the PSO, the following equation defines the 
current velocity of each bird: 
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where UDQG1 and UDQG2 are random numbers 
between 0 and 1 and three positive real numbers, 
denoted learning parameters, must be chosen: 
 
F1: parameter that express the trust of the bird in 

itself; 
F2: parameter that express the trust of the bird in its 

experience; 



F3: parameter that express the trust of the bird in the 
experience of the flock. 

The above learning parameters F2 and F3, weight 
the stochastic accelerations towards positions ; 


����� ���
 

and ; ���������
, respectively [28]. In terms of behavior, 

the parameter c2 represents the cognitive factor 
associated to its best former experience, while the 
parameter c3 represents the social factor associated 
to the best former experience of the group. It is 
common to assign the same value to these two 
parameters [30,31].   

A general description of the 362� algorithm 
follows. 
 
Step 1: Setting of initial conditions for the flock; for 

each bird, the position (;i
0) and velocity 

(9i
0), are randomly generated, given 

suitable ranges;  
Step 2: Evaluation of the objective function F(X) 

for each bird of the flock; the positions 
; 


���������
 and ; ��������

 are eventually updated;  
Step 3: Update of the velocities of each bird of the 

flock using Eq. (5); 
Step 4: Update of the positions of each bird of the 

flock using Eq. (4), in order to obtain the 
new positions ;i

k ; 
Step 5: Check of the stopping criteria; if it is not 

verified, return to step 2 for the next 
iteration. 

   
The stopping criteria can be defined in a 

suitable manner. In this work, it is employed a 
threshold to be reached by the objective function. 
Other options include a limit number of iterations 
or a limit time.  
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As in most of optimization algorithms, the quality 
of the solution obtained is related to the proper 
choice and fine tuning of the control parameters. 
For the PSO implementation, we have considered 
flocks with different number of birds (100, 1000 or 
2000), different seeds for the generation of random 
numbers (33, 57 or 99), and different sets of 
learning parameters ({0.2,0.2,2.0}, {0.5,0.5,0.5} or 
{1.0,0.2,0.2}). These sets of learning parameters 
were chosen from previous tests in which standard 
functions were minimized using PSO. The first 
parameter weights the influence of the last position 
of the bird, the second, the best position of the bird, 
while the third, the best position of the band. 
Therefore, the chosen sets are intended to represent 
different schemes for this weighting.  

We are interested in the estimation of the four 
unknown radiative properties given in Eq. (2). The 
range for each of the unknowns was taken as the 

interval (0, 1), the physical bounds of all the 
unknowns but the optical thickness. Synthetic 
experimental data were employed. They are 
calculated from the exit radiation intensities using 
the exact values of the radiative properties. In all 
test cases we have considered noiseless data. 

In order to evaluate the performance of the PSO 
minimizer we chose a relatively difficult test case 
with 

 

  { } { }95.0,10.0,50.0,00.1,,, 210 ==
�

� �����	�= ρρωτ
&

   (7) 

 
The incident radiation was taken as 0.11 =$  and 

0.02 =$  in Eqs. (1b) and (1c), respectively. The 

main difficulty for the solution of the inverse 
radiative transfer problem considered in this work 
is related to the estimation of 1ρ , since its effect 

will be sensed by the external detectors only after 
the radiation goes into the medium at 0=τ , is 
reflected at 0ττ =  and is then both�transmitted and 

reflected at 0=τ . This difficulty is confirmed by 
the sensitivity analysis related to this particular 
unknown. 

Table 1 presents the set of estimated values of 

0τ ,ω , 1ρ  and 2ρ ,  that yielded minimum cost 

considering a flock of 100 birds for different seeds 
and different sets of learning parameters. The 
values are followed by the corresponding value of 

the cost function, ( )=4 &
 defined by Eq. (3), and the 

amount of processing time and evaluations of this 
equation, and consequently of the direct model, that 
were required to reach that cost. Certainly, when a 
sub-optimal estimation was found, i.e. when the 
value of the cost function was greater than 1.0E-10, 
the PSO performed more evaluations that required 
more time until user-termination, but only time and 
number of evaluations until best solution was found 
are shown in the table. 

The best set of learning parameters 
({0.2,0.2,2.0} and its corresponding best seed (33) 
yielded the optimal solution in less than 9 seconds, 
being executed on a AMD Athlon 1.67 GHz IA-32 
single-processor machine. However, flocks of 100 
birds are not sufficient for solving this inverse 
problem: results for other sets of learning 
parameters are much worse and more prone to the 
influence of the seed that is used for the random 
number generation. As expected, the analysis of the 
results presented in Table 1 show that the poorest 
estimates are related to the unknown 1ρ . An 

important point is that the best results were 
obtained using a set of learning parameters that 
weights more the experience of the whole flock. 

 



Table 1: Results for 100 birds, with different sets of learning parameters and seeds: set of estimated parameters, 
with their values of the objective function, processing time and number of evaluations of the direct model.  
 

����ELUGV� 0τ � ω � 1ρ � 2ρ � ( )=4 & ��Eq. (3)� Time(s)� eval 

^�����������������` � � � �    

seed 33 0.99994 0.5000 0.10002 0.94999 4.0122E-10 8.66 1590 
seed 57 0.99980 0.50031 0.10109 0.95004 7.9529E-10 22.40 3975 
seed 99 0.99985 0.50027 0.10097 0.95005 7.2561E-10 37.56 6573 

^�����������������`�        
seed 33 0.99916 0.50134 0.10478 0.95019 1.5129E-08 104.6 18218 
seed 57 0.88494 0.77433 0.72890 0.98127 5.2750E-04 304.84 52685 
seed 99 0.98649 0.52206 0.17522 0.95308 3.9807E-06 188.28 32678 

^�����������������`�        
seed 33 0.97866 0.50773 0.14027 0.95023 1.7679E-05      24.34 4283 
seed 57 0.99971 0.55373 0.27292 1.0000 3.3719E-03 25.72 4561 
seed 99 0.99777 0.55163 0.26936 1.0000 3.3732E-03 33.45 5884 
([DFW� ����� ����� ����� ����� �����   

 
Table 2:  Results for 100 birds, with different sets of learning parameters and seeds: set of estimated parameters, 
with their values of the objective function, processing time and number of evaluations of the direct model.  
 

�����ELUGV� 0τ � ω � 1ρ � 2ρ � ( )=4 & ��Eq. (3)� Time(s)� eval 

^�����������������` � � � �    

seed 33 0.99991 0.50016 0.10057 0.95004 8.4289e-10 67.75 12736 
seed 57 1.00000 0.50018 0.10053 0.95001 7.6907E-10 40.71 8036 
seed 99 0.99994 0.50022 0.10071 0.95003 6.057E-10 54.05 10260 

^�����������������`�        
seed 33 0.99984 0.50027 0.10093 0.95003 7.0006e-10 546.21 94069 
seed 57 0.99983 0.50032 0.10112 0.95004 8.4499E-10 364.62 64249 
seed 99 0.99991 0.50027 0.10090 0.95004 9.6085E-10 226.49 40023 

^�����������������`�        
seed 33 0.99962 0.50696 0.12024 0.95130 1.7008E-06     193.78 34583 
seed 57 0.99725 0.50736 0.12311 0.95180 2.5660E-06  139.10 24762 
seed 99 0.99872 0.50272 0.10801 0.95053 7.7596E-07    85.09 15729 
([DFW� ����� ����� ����� ����� ����� � �

 
Table 3: Results for 100 birds, with different sets of learning parameters and seeds: set of estimated parameters, 
with their values of the objective function, processing time and number of evaluations of the direct model.  
 

.�����ELUGV� 0τ � ω � 1ρ � 2ρ � ( )=4 & ��eqn. (3)� Time(s)� Eval 

^�����������������` � � � �    

seed 33 0.99983 0.50024 0.10087 0.95003 5.2516E-10 106.56 20364 
seed 57 0.99998 0.50010 0.10029 0.94999 5.4930E-10 114.22 21654 
seed 99 0.99981 0.50031 0.10110 0.95005 8.8029E-10 91.17 17672 

^�����������������`�        
seed 33 0.99993 0.50028 0.10089 0.95004 9.3544E-10 215.93 39439 
seed 57 0.99981 0.50032 0.10110 0.95004 9.9527E-10 357.84 63104 
seed 99 0.99995 0.50017 0.10056 0.95001 6.5325E-10 221.37    40348 

^�����������������`�        
seed 33 0.99818 0.50142 0.10622 0.95010 1.6337E-07     444.55 78734 
seed 57 0.99226 0.51443 0.14776 0.95188 2.0802E-06 315.04 56510 
seed 99 0.99262 0.50533 0.12073 0.95072 2.0696E-06 802.04 141051 
([DFW� ����� ����� ����� ����� ����� � �



 
Tables 2 and 3 are similar to Table 1, but for 

flocks of 1000 and 2000 birds, respectively. It can 
be seen that even using 2000 birds, a solution with 
objective function value in the order of 10-6 can be 
reached for any seed or set of learning parameters 
in less than 15 minutes on the same machine. It can 
be concluded that a larger flock gives robustness to 
the PSO since more birds are able to perform a 
better scanning of the search space. 
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In the present work the PSO yielded good estimates 
for the radiative properties of a one-dimensional 
participating medium using the measured data of 
the intensity of the radiation acquired only by 
external detectors. The use of flocks with more 
birds gave more robustness to the PSO. In future 
works it is intended to repeat these tests using noisy 
data and to  
�
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